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A RIGOROUS TIME BOUND FOR FACTORING INTEGERS

H. W. LENSTRA, JR. AND CARL POMERANCE

1. INTRODUCTION

For real numbers χ , a and b with χ > e , we write

Lx{a, b} = exp̂ loĝ aoglog*)1"0).

The main result of the present paper is äs follows.

Theorem. There exists a probabilistic algorithm that factors any given positive
integer n completely into prime factors, and that takes expected time at most
Ln[{, l +0(1)] for n-+00.

For a discussion of the notions "probabilistic algorithm" and "expected time"
we refer to §12. The proof of the theorem is given in §10.

There are many factoring algorithms that are conjectured to have expected
running time at most Ln[^, l + o(l)], including the quite practical quadratic
sieve and elliptic curve methods. However, for none of these methods has this
conjecture been proved, and for one of them it must be withdrawn, äs we shall
see below.

The best prior results on rigorously analyzed probabilistic factoring algo-
rithms were a time bound of Ln[^, \/2 + o(l)] obtained by Pomerance [28]

and a time bound of Ln[i , 1/4/3 + 0(1)] by Vallee [33]. These algorithms are
refinements of the random squares method of Dixon [10].

The algorithm on which the proof of our theorem is based is rather less el-
ementaiy, and depends on the use of class groups of binary quadratic forms.
More precisely, let Δ be a negative integer with Δ = 0 or l mod 4, and de-
note by C. the set of SL2 Z-equivalence classes of positive definite, primitive,

binary quadratic forms of discriminant Δ, where SL2 Z denotes the group of

2 χ 2-matrices of determinant l with coefficients in the ring Z of rational inte-

gers. Gaussian composition makes CA into a finite abelian group; we shall call

its elements simply "forms." In §2 we recall the main properties of C& . In par-

ticular, we shall see that there is an explicit correspondence between elements

of order dividing 2 in CÄ , the so-called ambiguous forms, and factorizations
of |Δ| into two coprime factors. There are several factoring algorithms that
exploit this correspondence. Thus to factor an odd number n that is not a
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prime power, one could choose a negative number Δ with Δ = 0 or l mod 4

that is a multiple of n, and then somehow find elements of order 2 in CA.

One such algorithm, the class group relations method, is due to Seysen [32].

Under the assumption of the generalized Riemann hypothesis (GRH) for L-

functions of abelian characters of imaginary quadratic fields, Seysen showed

that his method runs in expected time at most Ln[%, ̂ /5~/4 + o(l)]. A. K.

Lenstra [20] improved one of the ingredients of Seysen's algorithm, obtaining

the bound Ln[\, l + o(l)] for the expected running time, but still under the

assumption of the GRH.

In the present paper we remove the GRH assumption from the analysis of

the Seysen-Lenstra class group relations algorithm. This enables us to prove the

theorem.

It may very well be that some variant of the class group relations algorithm

has practical value. However, any choices and recommendations we make in

this paper are inspired only by the desire to give a valid and efficient proof of

our theorem, and not by any practical considerations.

Another algorithm that exploits the connection between ambiguous forms and

factorizations of |Δ| is the random class groups method proposed by Schnorr

and Lenstra [29]. This algorithm sometimes goes under the name "SPAR," after

Shanks, Pollard, Atkin and Rickert. This was the first factoring algorithm of

which the expected running time was conjectured to be Lji, l + o(l)], and

it is now also the first algorithm for which that conjecture must be withdrawn.

Namely, we shall show in the present paper that there is a fairly dense sequence

of positive integers n for which the assumption underlying the conjectural run-

ning time analysis is incorrect. There is no reason to think that the random

class groups method can factor those numbers in time Ln[^, l +o(l)].

With our theorem, we hoped to bridge the gap between rigorously analyzed

factoring algorithms and heuristically analyzed factoring algorithms. Our vic-

tory has turned out to be an empty one, however, since in 1989 factoring broke

through the Ln[^, 1] barrier in a rather dramatic fashion. The number field

sieve (see [23; 4]) is conjectured to run in time at most LJ± , c + o(l)], where

the current best value for c , due to Coppersmith [6], is ((92+26vT3)/27)1/3 =

1.90188. This method is practical for numbers of a special form, and may in

fact prove to be practical for all numbers.

We now provide a brief description of the tools that we use for avoiding

the GRH assumption. The main idea is the use of a multiplier d; that is,

instead of working with a single discriminant Δ = -« or Δ = -3«, whichever

is l mod 4, we work with the four discriminants Δ = -dn , where d ranges

over the sei {3, 4, 7,8} if n = l mod 4 and over the set {1,5,8, 12} if

n = 3 mod 4; for our purposes, any set of four positive integers d for which

-dn = 0 or l mod 4 will do, provided that the product of no two of thein is

a square and that d is bounded independently of n .

To see how this helps us, let us consider at which points the GRH enters into

the proofs in [32] and [20]. It turns out that the GRH is used twice. First, it

is needed to guarantee the existence of sufficiently many smooth forms in CA .

For the definition of smooth forms we refer to (2.9); roughly speaking, they

are defined in terms of smooth numbers, that is, numbers built up from small
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prime factors. Proving that there are sufficiently many smooth forms comes

down to proving that there are sufficiently many smooth numbers that are built

up from prime numbers p for which the Kronecker symbol (|) equals l . It

is to guarantee the existence of sufficiently many such primes that the GRH is

used. We show that for our purposes it suffices that each of two key intervals

contains enough such primes p. It is not difficult to see that each of these

intervals contains, for all but at most one of the four multipliers d, enough

primes p with (=̂ίί) = l; but the possible exception d depends on the interval.

Sacrificing at most two values of d, we conclude that at least two multipliers

d are left for which there do exist enough smooth forms in C_dn .

The second use of the generalized Riemann hypothesis in [32; 20] is that

it makes it possible to construct a small set of generators of C&, namely the

set of prime forms fp (see (2.7)) for all prime numbers p < c0(log|A|)2 with

(-) = !; here c0 is some absolute positive constant. In our algorithm we obtain

generators in a different way, namely by choosing (log|A|)O(1) random prime

forms / for prime numbers p with (|) = l that ränge up to the much larger

bound exp(c4(log|A|) ); here c4 is another absolute positive constant. Toprove
that this works, it would suffice to show (a) that there are sufficiently many such
p , and (b) that the corresponding prime forms f are approximately uniformly
distributed over C& , so that choosing sufficiently many of them at random, one
is very likely to obtain a set of generators for CÄ . Both (a) and (b) are valid if

GRH is true.
Actually, we can neither show (a) nor (b). For (a), we get around this by

again sacrificing one of our four multipliers, so that at least one is left. Once
(a) is valid, the only obstruction towards a proof of (b) is the possible existence
of exceptional zeros of certain Dirichlet L-functions. Since these cannot be
avoided by the use of a multiplier, it is fortunate that exceptional zeros actually
help us: their presence makes it more likely thal the randomly chosen prime
forms generate CΔ than if (b) were true (see the proof of Theorem 4.1).

Our ideas for removing the GRH assumption do not appear likely to work

in the context of [13], where a probabilistic algorithm is given to compute the

invariants of the group CA . This algorithm, which is also based on Seysen's class

group relations method, is proved to run in expected time L|A|[i , Λ/2 + o(l)]

for Δ -> -oo on assumption of GRH. If one tries using a multiplier d , say, to

avoid the need for the GRH, then the group CA is changed to the group CrfÄ .
If d is not a square, then but for the parts annihilated by 2 , these groups need
bear little resemblance.

The structure of this paper is äs follows. In §2 we recall the basic results on
class groups that we need. In §3 we prove an estimate of certain character sums
for Dirichlet characters of algebraic number fields, with an explicit dependence
on possible exceptional zeros of the corresponding L-functions. This result
is not new, but it does not appear explicitly in the literature in the form we
wish to use, so we give a new proof here. Section 4 is devoted to an algorithm
for finding generators of the class group CÄ. The analysis of this algorithm
depends on the result of §3. In particular we show that the algorithm is very
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likely to find a sei of generators of C& provided that a certain interval contains

enough primes p with (̂) = l. In §5 we show how a set of generators can

be used to draw random elements from CÄ, with an approximately uniform
distribution. Section 6 contains a result about the distribution of smooth num-
bers with restricted prime factors. In §7 we discuss the method by which we
recognize smooth numbers, which is the elliptic curve factoring method [24].
Unfortunately we are not able to prove that the elliptic curve method can rec-
ognize all smooth numbers efficiently. For this reason we introduce the notion
of a recognizable smooth number. A result from [28] shows that not only do
recognizable smooth numbers have a good probability of being recognized äs
smooth by the elliptic curve method, but a fair fraction of smooth numbers are
recognizable. The corresponding notion of recognizable smooth forms is stud-
ied in §8. In particular, we shall see that there are sufficiently many recognizable
smooth forms provided that each of two particular intervals contains enough
primes p with (|) — l. In this section we also present a Supplement to [20],
äs communicated to us by the author of [20]. In §9 we prove by an elementary
argument that the conditions on which §§4 and 8 depend can be achieved by
means of a multiplier. In §10 we formulate the basic factoring algorithm, and
we show how it leads to a proof of our main result. The reader who just wants
to see the algorithm, and is not interested in the proof, can turn directly to §10
after §2 and a glance at Algorithms 4.4 and 7.2.

In § 11 we exhibit a serious flaw in the heuristic analysis of the random class
groups method, äs announced above. Finally, in §12 we indicate, by lack of a
suitable reference, what we mean by a probabilistic algorithm and its expected
running time. Logically, this section precedes all others, and we assume famil-
iarity with its contents throughout the paper.

All algorithms in this paper are probabilistic, and their running time is mea-
sured in bit operations.

Except for §11, when we write "constant" in this paper, we mean an effec-
tively computable, absolute, positive constant, even when this is not explicitly
mentioned. The same applies to all constants that are implicit in the O-symbol.

In several algorithms in this paper we need to round real numbers t to inte-

gers. For example, in Step 3 of Algorithm 7.2 the number t = exp((logy)6/7) is
rounded down to an integer. We do not mean by this to round it to its integer
part [t], since for all we know that might be very hard to compute, namely if
t lies very close to an integer. It will be sufficient to round it to an integer m
with 0 < t - m < 2. It is left to the reader to show that, in all cases when
this is done, such an integer m can be efficiently calculated (cf. [3]). A similar
convention applies to rounding up.

2. CLASS GROUPS

In this section we review a few basic facts about class groups of positive
definite quadratic forms. For more theoretical and algorithmic Information the
reader may consult [2; 7; 9; 15; 25; 30].

Let Δ be a negative integer with Δ Ξ 0 or l mod 4. Such an integer will
be called a negative discriminant. A positive definite primitive binary quadratic
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form of discriminant Δ is a polynomial aX2 + bXY+cY2 e Z[X , Y] forwhich

(2.1) gcd(a, b, c) = l, b2-4ac = A, a > 0.

The group SL2 Z acts in a natural way on the set of such forms, and each orbit

contains exactly one form that satisfies

(2.2) 0<b<a<c or 0 < -b < a < c.

A form satisfying (2.2) is called reduced. There is a reduction algorithm that,

given any form aX2 + bXY + cY2 äs in (2.1), finds the unique reduced form

in the same SL2Z-orbit in time O((log(\b\ + 1) + (log|A|)2) log(a + 1)) .
We denote by C& the set of SL2 Z-orbits of forms. For algorithmic purposes,

we identify CA with the set of triples of integers (a , b , c) satisfying (2.1) and
(2.2). The elements of CÄ will simply be called forms.

Each form (a, b, c) satisfies \b\ < a < ̂ /\Ä\ß , and since c is determined
by α , b and Δ it follows that CÄ is finite. Its cardinality is called the class
number belonging to Δ .

Το obtain an explicit upper bound for the class number, note that for each

value of a the number of integers b with -a < b < a and b = Δ mod 2

equals a . Therefore

(2.3)
a=\

Observing that α is a divisor of b + |Δ| and using an upper bound for the

divisor function one can prove that #C4 < |Δ|1/2+ο(1) for Δ -> -oo . By using

a more complicated argument involving the average order of a function similar

to the divisor function, one can prove that #CA = O(|A|'/2log|A|) . In (2.13) we

give an explicit upper bound for #CA of this nature, derived by other means.

Siegel's theorem, which states that #CA = |Δ|1/2+ο(1) for Δ -> -oo , will not be

needed in this paper; the lower bound m Siegel's theorem is not effective.

Gaussian composition makes CA into an abelian group, which is called the

class group corresponding to Δ . The neutral element of C& will be denoted by

1Δ ; it is the unique form (a , b , c) e C& with a - l . There is an algorithm

that performs the group Operation — which will be written äs multiplication — in

CÄ in time 0((log|A|)3) . The inverse of (a, b, c) is (a, -b , c) if the latter
is reduced, and (a , b , c) otherwise.

(2.4) Ambiguous forms. An ambiguous form is an element / e CÄ of order
dividing 2 . The ambiguous forms form a subgroup of CA , which is denoted
by C& 2 . A form (a , b , c) is ambiguous if and only if it is equal to its own

inverse, which by the above is equivalent to

b = 0 or b = a or a = c.

In these three cases we see from (2.1) that

Δ = -4α · c or a · (a - 4c) or (b - 2α) · (b + 2α) ,
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respectively, where the gcd of the two factors on the right divides 4. Hence,
removing factors 2 and passing to absolute values, we see that each element
of CÄ 2 gives rise to a coprime factorization of the largest odd divisor of Δ.

Let &~ be the set of these factorizations; so an element of ̂  is an unordered

pair d0, d{ of odd coprime positive integers with —2 •d0-dl = Δ for some

£eZ>0.

Theorem 2.5. Let t be the number of distinct prime factors of Δ. The order of

CA 2 is equal to 2l if Δ ΞΞ 0 mod 32, to 2'~2 if Δ = 4 mod 16, and to 2'~l

in all remaining cases. Further, the map CÄ 2 -> & defined above is surjective,

and the number of elements of CA 2 mapping to any given element of SF is

equal to l if A is odd or Δ = 4 mod 16, to 4 // Δ = 0 mod 32, and to 2 in
all remaining cases.

Proof. This is a classical result, which is proved by a straightforward computa-

tion. See [7, Proposition 3.11] and the references given there.

Remark. It can be shown that the map CÄ 2 -> & is a group homomorphism if

onemakes J?~ into a group by letting the product of the factorizations d0-dl and

•̂ί?! be the factorization (lcm(W0, e0)/gcd(J0, e0))-(lcm(i/0, i?,)/gcd(i/0, e^}.

(2.6) 77ze Kronecker symbol. For any integer i/ that is 0 or l mod 4 and any

positive integer α, the Kronecker symbol (̂) is defined äs follows. First let p

be prime. If p divides d then (̂) = 0. If p does not divide d, then (|)

is l if u? is a square modulo 4p and -l otherwise. Finally, the definition
is extended to nonprime numbers by the rule (̂) = (~) (|). Note that the
Kronecker symbol is equal to the Jacobi symbol when both are defined.

(2.7) Prime forms. We write

Δ̂ - {p : p is prime, (j) = 1}.

If p is even, then p e S6̂  if and only if p = 2 and Δ = l mod 8 , by (2.6). If p

is odd, then p £^A if and only if A(/?~1)/2 = l mod p and p passes a primality

test, for example the Jacobi sum test [1; 26]. It follows that a positive integer p

can be tested for membership in ̂Δ intime O((log|A|)logJp)+(log/7)o('ogloglog;')

(for p>ee).

Let p € ̂ Δ. We Claim that there is a unique integer b = b for which

0 < £ < p and ö Ξ Δ mod 4p . For p — 2 this is obvious. For p > 2, it
follows from (|) = l that there are exactly two integers b for which 0 < b < p

and b2 = Δ mod p , and that they add up to p ; the one that has the same parity

äs Δ is bp .

Let p e^Ä and bp be äs just defined. Then pX2+bpXY + ((b2p-A)/(4p))Y2

is a positive definite primitive binary quadratic form of discriminant Δ. We

denote its SL2 Z-orbit by f , which is an element of C& . We call / the prime

form corresponding to p .
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Given p e «^ , the prime form f can be computed by means of a proba-

bilistic algorithm that runs in expected time O((logmax{p , |Δ|})3) ; namely, one

first calculates bp using a probabilistic algorithm for factoring X2 — (A mod;?)

over Z/pZ (see [19]), and next one applies the reduction algorithm mentioned

aboveto (p,bp,(b2p-&)/(4p)).

(2.8) Factoring forms into prime for ms. Let (a,b,c) 6 CA be such that

gcd(a , Δ) = l . From b2 = Δ mod 4α it follows that each prime divisor p

of a belongs to ̂Δ . Moreover, if t (p) denotes the number of factors p in α ,

then we have

P\a

where e(p) e {l , -1} is such that b = e(p)bp mod 2p . Note that from a <

νΊΔ|/3 it follows that the number of primes p appearing in the product is less

than log |Δ| .

(2.9) Smooth forms. Let y be a real number. A positive integer a is called

y-smooth if a does not have any prime factors exceeding y . An element

(a , b , c) e CÄ is called y-smooth if a is y-smooth and gcd(a , Δ) = l . The

following result will be used to estimate the number of smooth forms.

Lemma 2.10. Let a be an integer with l < a < \\/\K\ all ofwhose prime factors

belang to ̂ . Then there exist b , c e Z such that (a , b , c) e CA .

Proof. Since all prime factors of a belong to ̂ Δ , there exists b e Z with

b2 = Δ mod 4α ; note that gcd(a ,b} = \ for any such & . Adding multiples

of 2α to b we can achieve that -a < b < a . The integer c = (b2 - Δ)/(4α)

satisfies 4ac = b2 + |Δ| > |Δ| > 4α2 , and equality is possible only if b-= 0 . It

follows that (2.1) and (2.2) hold, so (a, b, c) e C& . This proves Lemma 2.10.

(2.11) Class number formula. Let the character #:Z>0 -> {-l , 0, 1} bedefined

by χ (a) = (-) (see (2.6)). For a complex number s with Res > 0 we put

whichfor Rei > l equals Hp(l- X(P)P~~S)~ , where p runs through the prime

numbers. Then we have

(2-12, *C4=

where w = 6 for Δ = -3 , u; = 4 for Δ = -4 , and w = 2 for Δ < -4 . It

was proved by Schur [31] that

L(i, X)< i log |Δ| + loglog |Δ| + ι.

From this it follows that

(2.13) #CA<v1ä|-log|A|.
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3. A CHARACTER SUM ESTIMATE

In this section we prove a character sum estimate for Dinchlet characters

of algebraic number fields. This estimate is essentially known (see [17] and

the references cited there), but we have not been able to find a Statement in

the hterature that gives an exphcit and effective dependence on all parameters

mvolved. Smce that is what we need, we present a proof in this section.

By C we denote the field of complex numbers, and by C* its multiplicative

group. For background on algebraic number theory we refer to [18]

Let K be an algebraic number field, i.e., a field extension of fimte degree

of the field Q of rational numbers We wnte & for the ring of mtegers of K

and JF for the group of fractional ideals of @ . By a cycle m of K we mean

a formal product Π P extending over all primes p of K , where the m(p)

are nonnegative mtegers that are almost all 0, with m (p) — 0 for complex p

and m(p) < l for real p . If m = Π P 1S a cycle, then «̂ (tn) denotes the

subgroup of ̂  generated by the fimte primes p for which m (p) — 0, and

Pm C Ĵ tn) is the subgroup generated by the nonzero ideals of the form &a ,

where α e & is such that a. = l mod pm(p) for each fimte pnme p , and a > 0

under each embedding of K in the field of real numbers corresponding to a real

pnme p with m(p) = l The norm 9l(m) of a cycle m = Opm(P) 1S defined to

be the number n̂ (p)m(P) > where p in the latter product ranges only over the

fimte primes, and 9l(p) denotes the norm of p .

By a Dinchlet character of K we mean a pair consisting of a cycle m of K

and a group homomorphism χ. Ĵ (m) — > C* such that Pm is contamed in the

kernel of χ . We shall, by abuse of language, simply refer to χ äs a Dinchlet
character, and call m the modulus of χ . A character is called pnncipal if it
maps all elements of Ĵ (m) to l . We extend any Dinchlet character χ to

a map J^ — > C, also denoted by χ , by putting χ (a) = 0 whenever o e J^ ,

α φ J^m) . The Dinchlet L-senes L(s , χ) of a Dinchlet character χ is

defined by

the sum ranging over the set of nonzero ideals α of & , and 9ΐ(α) denoting the

norm of o. This series is absolutely convergent for all s e C with Res > l .

It can be analytically contmued to a meromorphic function on C , u is entire

if χ is nonpnncipal, and it has a single pole, which is simple, at s = l if χ is

pnncipal.

Let χ and χ' be Dinchlet characters of K with moduh m = f] pm^p' and

m' = Π Pm (P) > respectively. Then χ is said to be mduced by χ if m' divides

m — that is, m' (p) < m (p) for all p — and χ is the composition of the inclusion

Ĵ (m) c Ĵ (m') and the map χ'· Ĵ m') -» C* . A Dinchlet character is called

primitive if it is not mduced by any character different from itself. Each Dinch-

let character χ is mduced by exactly one primitive character, and the modulus

of the latter is called the conductor of χ .

By class field theory, the primitive characters of an algebraic number field

K can be identified with the one-dimensional contmuous characters of the Ga-
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lois group of the algebraic closure of K over K . The Dinchlet L-senes of a

primitive character χ comcides with the Artin L-senes of χ when viewed äs
a character of the Galois group. These are the L-senes that occur m [17]; so
when we make use of [17], äs we shall frequently do m this section, we have to
restrict to primitive characters. In [16] this restnction is dropped; what is called
"Hecke character" and "conductor" in that paper is called "Dinchlet character"
and "modulus" here.
For a nonzero ideal o of & , we define Λ(α) = logOT(p) if α = pk for some

pnme ideal p and some positive integer k , and Λ(α) = 0 otherwise. The main

result of this section is an estimate for the sum

Ψ(Χ,Χ) = *(α)Λ(α),

the sum ranging over nonzero ideals α of & .

We introduce some additional notation. For an algebraic number field K ,

we wnte ηκ for the degree of K over Q and Δκ for the discnminant of K

over Q . When χ is a Dinchlet character of a number field K , with modulus

m , then we wnte

, X) = log^Ct) + ηκ log(x + 2) ,

for any nonnegative real number x .

Theorem 3.1. There are effectively cornputable positive constants cl and c2 such

that for all algebraic number fields K , all Dinchlet characters χ of K and all

real numbers x > 2 one has

xp

κ exp

Here we wnte δ (χ) = l or 0 according äs χ is pnncipal or not, and S (χ)

denotes the set ofreal zeros of L(s , χ) that exceed l - cJJ?(Q, χ)

Remark The set S (χ) m this theorem consists of the "Siegel zeros" of L(s , χ] ,

and it satisfies #S(#) < l (by Lemma 3.5).

Proof In this proof, we abbreA iate ̂(x , χ) to ̂(x) . We first give the proof

with the additional assumption that χ is primitive. This assumption will be

removed at the end. Our proof leans heavily on arguments from [17].

Let x > 2. We begin by approximatmg ψ(χ , χ) with the negative of the

truncated inverse Mellm transform

l Γ
= —-
2π' Ja0-,T S

where σ0 = l + (log χ) and T > 2 , and the path of Integration is a vertical
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line segment. We have

where the sum is over nonzero ideals α of & . The convergence is uniform for

Re 5 = σ0 > l , so

Applying Lemma 3.1 from [17] to each of the Integrals, we find that

\Ιχ(χ , T) + ψ(χ , χ)\ < ( ]Γ (Ι + σ0Γ~1)Λ(α))+̂ 0(λ,Γ),

a, <K(a)=x

where the error term R0(x , Γ) is given by [17, (3.9) (p. 424)]. The sum on

the right, which corresponds to a term that is incorrectly given in [17, (3.8)], is

easily seen to be Ô l̂og.*) for χ > 2, T >2 and σ0 äs above. From the
estimate [17, (3.17) (p. 428)] for R0(x, T) we find

(3.2) Ιχ(χ, Τ) + ψ(χ,χ) =

for χ > 2 , T >2, which is our approximation of ψ(χ , χ) by ~Ιχ(χ , Τ) .

To estimate Ιχ(χ, T) we use the last displayed equation on p. 450 of [17].

Correcting a sign error, we find that

(3.3) p,\lmp\<T

for χ > 2, T > 2 , if T does not coincide with the absolute value of the

imaginary part of any zero of L(s, χ) . The sum over p , here and below,

extends over the zeros of L(s , χ) for which 0 < Re/> < l , with the proper

multiplicities. It is for the proof of (3.3), given in [17], that we need χ to be

primitive; this assumption is needed for the existence of the functional equation

for L(s , χ) .

We now quote two results about the zeros p of L(s , χ) .

Lemma 3.4. There is an effectively computable constant c3 such that for any

Dirichlet character χ ofany algebraic number field, and any real number t , the

number of zeros p of L(s , χ) with 0 < Re/9 < l , \t -lmp\ < l , counting

multiplicities, is at most ĉ (\t\] .

Proof. This is Lemma 5.4 of [17] in the case that χ is primitive, which is the

only case that we shall need; for the general case, see [16, Lemma 2.1].

Lemma 3.5. There is an effectively computable positive constant cl < 1/3 with

the following properties. For each algebraic number field K and each Dirichlet

character χ of K the Dirichlet L-function L(s , χ) has at most one zero p with
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Ifthis zero exists, then it is real and simple and χ is principal. Every other zero

p of L(s, χ) satisfies

Re/? < l -

Proof. This is Lemma 2.3 in [16].

We remark that 0 < cl < 1/3 implies that

ci c\ c\ ^ l
iog2 2

for every real number T > 0, a fact that we shall use several times.

Let T > 2. From Lemma 3.4, we have

= 0(J?(T)logT).

P,\P\>l/2
\lmp\<T

Denote by £)' a sum over zeros P °f L(s, χ) with 0 < Re/> < l and p <£
S (χ), where S (χ) is äs in Theorem 3.1. Combining the estimate just proved
with the last assertion of Lemma 3.5 we find that

p

(3.6) Y"' — = O(xl~Cll""(T)Jf(T)\o%T).

\lmp\<T

By Lemma 3.4 there are at most cŷ f (0) zeros p of L(s, χ) with Re p > 0

and \p\ < \. For each of these zeros we have

\xP-l\ = \ l xs(logx)ds < \p\xl/2logx.
'./o

Hence

y^ (z£_ + -} = o(xl/2(\ogx)ji(o]
^̂  V p pl ^

p,\p\<\/2

Combining this estimate with (3.6), we obtain

, Ρ ι
v '̂ Λ V ^ J -r~*/ I —

- /^ *" / v ~= ̂(̂
r n \ l ̂  i fy ι

Putting this into (3.3) we conclude from (3.2) that if x , T are real numbers

with 2 < T < x , and T is not the absolute value of the imaginary part of any

zero of L(s , χ) , then we have

(3.7) ψ(χ,χ)-δ(χ)χ+ Σ ̂- = 0

Since the left side does not depend on T , we can now drop the restriction that

T is not the absolute value of the imaginary part of any zero of L(s , χ) .

Let
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If T < 2, then we have

,, xl/(2n„) / C, \ l
Α(χ) K>

In this case the mequahty m the theorem holds with a suitable c2, because

ψ(χ ι X) — Ο(ηκχ] for χ > 2 . Assume now that T > 2 . From

and an easy calculation one sees that Λ?(Τ) log(T + 2) < c{ log χ, and therefore

(3.8) T<xc^(T]<x,

so that we may use this value of T m (3.7). But (3.8) shows that the nght-hand

side of (3.7) is O(2xJi(x)(logx)/T), which implies the theorem, in the case

that χ is primitive.

In the general case, let χ be the primitive character that induces χ , and m'

the modulus of χ . Then we have

f(x,x') = ¥(x,X) + Σ /(α)Λ(α),

W(a)<x

with α ranging only over those ideals of & that are powers of pnme ideals p

that divide m but not m'. Smce each such p contnbutes [(loĝ c)/logOT(p)]

terms to the sum, we find that

ψ(χ,χ') - ψ(χ,χ) = θ(Χ>8*) = 0((login(m/m'))logx).
V p /

Now we apply (3.7) for the primitive character χ . Note that

A(x)K(m/m) = Α(χ), J?(x , χ) + log9T(m/m') = *(x, χ),

δ(χ') = δ(χ), S(X')DS(x)

(cf. [16, (2.9) (p. 276)]). From Lemma 3.5 we see that

It follows that (3.7) also holds for χ , for 2 < T < x, and we obtain the desired

inequahty in the same way.

This proves Theorem 3.1.

4. GENERATORS OF THE CLASS GROUP

Let Δ be a negative discnmmant. This section is devoted to an algonthm

for findmg a set of generators of CA . We prove that it is hkely to be successful

provided that the set 3°̂  (see (2.7)) contams enough prime numbers up to a

certain bound z (condition (4.3)). We wnte n(x, ̂) - #{p e &>& : p < x}

for a positive real number x .
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Theorem 4.1. There is an effectively computable positive constant c4 with the

following property. Let Δ be a negative discriminant and z a real number

satisfying

(4.2) z>exp(c4(log|A|)2),

(4-3) Ä(Z;^)>_L_.

Further let H be a subgroup of C& with H ·£ C& . Then we have

Proof. We begin by recalling the connection between CÄ and the ideal groups
of the previous section.

Let K be the field Q(>/A) and & the ring of integers of K . Denote by Δκ
the discriminant of K over Q . It is well known that there is a positive integer

/ with Δ = Δ̂ /2 ; namely, / is the index of Ζ[(Δ + VA}/ 2] in ff . Let m

be the $ '-ideal f& ; replacing m by its prime ideal factorization, we shall view

m äs a cycle of K . Let ̂(m) , Pm be äs in §3. There is a surjective group
homomorphism Ĵ (m) -» CA , the kernel of which is generated by the set of
nonzero ideals of the form <f α , where α e & is such that a = k mod f& for

some k € Z with gcd(& , /) = l ; see [7, Proposition 7.22]. Note that Pm is
contained in this kernel. Checking the definition of the map one finds that for
each prime number p with (|) = l the two prime ideals of norm p in Ĵ m)

are sent to the elements fp of CA .
Let // be äs in the theorem, and choose a nontrivial group homomorphism

λ: C& — > C* with /i c ker λ . Denote by χ the composed map J^m) — > C& — >

C* . By the above, this is a nonprincipal Dirichlet character of K with modulus

m .

Now let z be äs in the theorem, with c4 sufficiently large, äs dictated by
the proof. We compare two expressions for ψ(ζ, χ) . The irrst is found from
Theorem 3.1, with x = z . We have

Α(χ) = \Δ\, ,*(z,;f) = log|A| + 21og(z + 2), <*(*) = 0,

and from z > exp(c4(log3)2) it folüows that the condition z > 2 of Theorem
3.1 is satisfied for c sufficiently large. Hence we find

ψ(ζ, χ) +

ι

1 /4 / R λ
< <;2z(log|A|+2]og(z + 2))(logz)|A| exp ί - J -j- logzj.

Using that |Δ| < exp(v/(logz)/c4) one easily sees that the right-hand side is

less than z/100, for c4 sufficiently large. Therefore

Ψ (z, x) = SQ— Y"̂  — , where
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The second expression for ψ(ζ, χ) is obtamed from its defimüon

<Τί(α)<ζ

Here sl is the sum over those α for which 9l(a) — p" for somc prime number
i ?2

p < z and some integer a > l , and s2, s3 are the sums over those prime

ideals α — p whose norm is a prime number p satisfymg z ' < p < z and

for which the image of p under the map J^m) —> CA is or is not in H,

respectively

For each prime number p < z , the ideals α of p-power norm contnbute

at most 2 log z to sl , so \sl <2z ' log z Note that for c4 sufficiently large

all primes p dividmg Δ are subsumed in sl , äs we shall now assume
The norm of each α = p occurrmg in s3 belongs to the set

Conversely, each p £ %? gives nse to two p 's m s3 Therefore i3| < 2 · #̂

log z

By construction, we have χ (p) = l for each α = p that appears in s2, so s2

is a nonnegative real number Each prime number p e ̂A with z1/2 < p < z ,

P Φ %? > gives nse to two p 's in s2 Usmg (4 3) we thus find

/ z \n \ i/?
y ~> "<{ 7' ü^\ \c\a( 7 ' \Λ-, -̂  L\ — — Z — nt/l, l lUgl^ )
2 ~ V 6 log z /

The two expressions for ψ(ζ, χ) combine to show that

zp

Usmg the mequahties for the st, and noticmg that the sum over S (χ) is a

nonnegative real number, we find that

logz< T7r + 2z l o g z + 2.#ir log z,~ -- -
6 log z / l DU

For c4 sufficiently large, this implies that #̂ " > z/(201ogz) From the defini-

tion of %? given above we see that this estimate proves Theorem 4 l

Algorithm 4.4. We describe an algonthm that, given a negative discnminant

Δ and a positive integer z , produces a set ̂ of elements of CA that, under

suitable hypotheses, is hkely to generate CA (see Theorem 4 5) Imtially, ̂  is

empty

Draw a random positive integer p with p < z , from a uniform distribution

Test whether p belongs to ̂ Δ , äs in (2 7) If it does, delermme the prime
form fp e CÄ äs m (2 7), and add it to the set W

Repeat the above 60(log|A|)logz times (rounded up to an integer) This
completes the descnption of the algonthm

Remark We will apply this algonthm with log z = O((log|A|)2) (cf (42))
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Theorem 4.5. If z satisfies (4.2), then the expected running time of Algorithm 4.4

is (iogz)0(1°8loslogz), and the set ff determined by the algorithm satisfies #ff <

2 + 60(log |Δ|) log z. Ifin addilion (4.3) is satisfied, then the set & determined

by the algorithm generates CA with probability at least ^ .

Proof. The running time estimate is straightforward from (2.7), and the upper

bound for #j? is obvious.

To estimate the success probability of the algorithm, let us first consider the

variant of the algorithm that does not stop after having processed 60(log|A|)log z

values of p. Let, at each stage of that algorithm, H denote the subgroup of C&

generated by &; so initially H = {1Δ} . As long äs H is different from CA ,
the next p that is drawn will enlarge H with probability at least l/(201ogz),
by Theorem 4.1. Hence the expected number of p 's that one needs to draw
until H changes is at most 20 log z. Adding up expectations, one finds that
the expected number of p 's that one needs to draw until H either becomes
equal to CA or has changed k times is at most 20k log z , for any nonnegative
integer k.
From #C& < |Δ| (see (2.3)) it follows that the longest strictly increasing

chain of proper subgroups of CÄ has length at most [(log |Δ|)/ log 2]. Thus the
expected number of p 's that one needs to draw until H = C& is at most

20(logz)(log|A|)/log2 < 30(logz)log|A|.

We conclude that drawing twice äs many p 's—äs the actual algorithm does—
will guarantee that in the end H equals C& with probability at least \ .
This proves Theorem 4.5.

Remark. One obtains a more efficient algorithm, running in expected time

(logz)0(1), by omitting the Jacobi sum primality test in (2.7), and discarding p
if the construction of f is unsuccessful within a reasonable amount of time.

Remark. We know of no efficient way to test whether or not the set ff de-
termined by the algorithm actually generates CA. If it does not, then a later
algorithm that depends on 4.4 may fad; this provides an indirect test.

Remark. To achieve success probability at least l — 2~ , for a positive integer
k , it suffices to investigate k times äs many values of p . To prove this, apply
Theorem 4.5 to k successive independent runs of the algorithm.

5. RANDOM FORMS

In the present section we prove that, given a set ff of generators of a class
group CA , we can find random elements of CA with an approximately uniform
distribution.

Lemma 5.1. Let m, h, d, b be positive mtegers with d <b, and Λ c Zm a
subgroup ofindex h with (dZ)m c Λ. Further let fö c Zm be a coset of K.
Then

hm
#({l,2,... ,b}mn&) = ?j
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for some real number e satisfying

min{/z - l , m(d - 1)}

- b-d+l '

Proof. By Lemma (4.1) in [20] and its proof, there are positive integers A, ,

. . . , hm dividing d for which H™=1 A( = h and

1=1

Combining this with the inequalities log(l + x) < χ (for χ > 0) and

|log(l -x)| = log(l +x/(l -x)) <x/(l -*) (for 0 < χ < l ) we obtain

and the lemma follows easily.

Theorem 5.2. Let Δ be a negative discriminant, & a sei of generators of CA ,

and f e CÄ. TAe« /A<? number ofvectors r = (r(g)} ̂  in {1,2,... ,

satisfying Tl€& gr(8] = f equals

for some real number e satisfying

(g
Proof. Let L be the kernel of the group homomorphism φ: Z — > CÄ sending

(>"(£)) 6̂  to Π £& S · By hypothesis, this map is surjective. The theorem

follows from the lemma applied to m = #& , h = d = #CA , b = |Δ| , Λ = L

and ̂  = i»"1/; note that d < \b by (2.3).

In the following lemma, let Δ and & be äs in Theorem 5.2, and let L = kerq>
be äs in the proof just given. We remark that there is a group isomorphism

(5.3) ((2z nL)/2L-»CÄ>2

sending r to <p(^r) ; here CA 2 is äs in (2.4).

Lemma 5.4. With the above notation, let J/ c Ί? bea coset of 2L and 3§ c Ί
(jp

the coset of (2Z)̂  n L containing s/ . Then

#({1,2,... ,|A|fW) l

#({1,2,... ,

5om<? real number e satisfying

•expe

· #CA

|A|-2#C '
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Proof. One proves this by applying Lemma 5.1 twice, once with Λ = 2L and

once with Λ = (2z n L , and both times with b = |Δ| and d = 2 · #CA ; note

that d < b by (2.3). By (5.3), the index of 2L in T? is #C& 2 times äs large

äs the index of (2Zf n L in Ί? . This proves Lemma 5.4.

(5.5) Remark. We shall apply Lemma 5.4 with #& = 0((log|A|)3) (see Theo-

rem 4.5). From (2.13) we then see that |e| < log 2 if |Δ| is sufficiently large.

6. SMOOTH NUMBERS WITH RESTRICTED PRIME FACTORS

For positive real numbers v , χ , y , and any set of prime numbers & , we

let ψ(χ,γ;&) denote the number of positive integers < χ all of whose prime

factors are at most y and belong to 3° , and

pt&>, p < χ} ,

" , v<p<y

This section is devoted to the proof of the following theorem.

Theorem 6.1. There is an effectively computable positive constant c5 with the

following property. Let 3° be any set of prime numbers, η α real number with

0 < η < l , and χ , y real numbers satisfying

(6.2) x>c5, 2<y<exp((logx)1/2(loglogjc)'').

Lei

(6.3) u

Suppose that there are real numbers a>\, β > l for which

l w
(6.4) S (v , y ; 3°) > — : - , n(w ; 3°} > -̂ - .
v ' v alogw ßlogw

Then we have

ψ(χ,γ;3°) >x-exp(-M(logM+12(logi/)'/+loglogM+2(logM)''~1log/?+logQ)).

Proof. From (6.2) we have log M > { log log χ - η log log log χ . We let c5 be so

large that this implies

(6.5) logw> \ log log x> 3.

Let ̂  denote the set of integers that are the product of [u] not necessarily

distinct primes p G & with υ < p < y . Since w < υ , we have

(6.6) ψ(χ ,·/;

Let m e Jf. We estimate <//(x/m, w; 3°) from below. From v" ' < m <

y" — x we have

(6.7) i < £ < -JL· = „«/«Ό·»)-»-' < „2-/10·",
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the last inequality being a consequence of (6.5). Let /(m) — (log ̂)/ log w .

From (6.7) we have

(6.8) 0</(m)

With (6.5) this gives

(6.9) /(m)loglog(;t/m) < 2«(logM)'!~ loglog^c <

Assume, for the moment, that l(m) > l . One obtains a lower bound for

ψ(χ/ιη , w ; 3?} by considering all products of [/(m)] not necessarily distinct

primes p e & with p < w . Since no integer has more than [/(m)]! represen-

tations äs such a product, we find

\ßl(m)logw

χ ( l

ßlog(x/m)

exp(-/(w)(loglog(x/w)

where in the last inequality we use that n(w ; 3°) < w . Combining this with
(6.8) and (6.9) we obtain

(6.10) ψ(χ/πι̂ ;&>) > — exp(-5w(logM)' - ~

which is our lower bound for ψ(χ/πι , w ; 3°} . It is also valid if l (m) < l ,

since in that case \j/(x/m , w ; 9°} > l > x/(mw) .

Since no element of ΛΚ has more than [u]\ representations äs a product of
[M] primes p e ̂ , f</?<y,we have

—- r τ» \ ) S * ' -— Γ
m [M]! [u

> exp(-w(logM + loglog M + log«)).

Using this and (6.10) in (6.6), we have

(6.11) ψ(χ, y;^)> — exp(-w(logw + 5(logw)'' + loglog u

+ 2(logM)''~ logß + log a)).

It remains to estimate w . From (6.2) and (6.5) we see that

< fM(loglogx)'< fw

Putting this into (6.11) we obtain the theorem.
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7 THE ELLIPTIC CURVE SMOOTHNESS TEST

The elhptic curve method, äs descnbed m [24], is a probabilistic algonthm
that, given f our integers α , y , w , h exceedmg l , attempts to find a non-

trivial divisor of α . The number y may be thoughl of äs an upper bound for
the divisor that one is trymg to find, h is an upper bound for the number of
elhptic curves that one tries, and w is proportional to the time spent on a single
elhptic curve. The following theorem summan/es the results that we shall need
about the elhptic curve method.

Let ψ0(χ , w) denote the number of w-smooth integers in the interval

Theorem 7.1. There is an effectively computable constant c6 with 0 < c6 < l

such that the following holds Let a , y , w , h be integers exceedmg l such that

a has at least two distmct pnme factors, and such that the least pnme factor p of

a satisfies 3 < p < y Suppose further that ψϋ(ρ , w) > 3 Then the probabüity
that the elhptic curve method, given a , y , w , h , succeeds mfindmg a nontrivial
factor of a , is at least

i hi//0(p,w)/(^/plogy)
l -C6

The runmng time ofthe method is O(hw(\ogy)(\oga}2)

Proof The first assertion is [24, Corollary (2.8)], up to a harmless change in
the defimüon of ψ0(ρ , w) For the runmng time, see [24, (2.9)]. This proves

Theoiem 7.1.

Theorem 7. l asserts that the elhptic curve method will probably be effective

m Splitting a if the least pnme factor p of a is such that there are many

ΐϋ-smooth numbers m (p - ̂ /p , p + ̂ /p) . Let J?" denote the set of primes p

for which

ψϋ(ρ, exp((log/?)6/7)) > x/^-exp(-i(logp)1/7loglogp) > 3.

For a positive real number y , let a recogmzable y-smooth number be a positive

integer all of whose pnme factors are at rtiost y and belong to S? .

Algorithm 7.2. Given integers a and v , with a > 0 , y > l , this algonthm

attempts to factor a completely into primes. It is designed to be very likely to

succeed if a is a recogmzable y-smooth number.

Step l . Remove all factors 2 and 3 from a , and replace a by the quotient.

If now a = l , the algonthm termmates at this point

Step 2. Find the largest integer k such that a = mk for some positive integer

m (cf. [22, §2]), and replace a by m .

Step 3. If a < y , test a for pnmahty usmg the Jacobi sum test [1]. If a is

composite or a > y , run the elhptic curve method with parameters a , y , w ,

h , where w and h are the numbers

exp((logj;)6/7),

(l - c6)~'(logy)(loga) exp(i(logy)1/7 loglogy) ,

rounded down to integers, with c6 äs m Theorem 7. l . When a proper Splitting
of a is achieved, perform Steps 2 and 3 recursively with a replaced by each
factor that is discovered. This completes the descnption of the algonthm.
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Theorem 7.3. If a is a recognizable y-smooth number, then the probability that

Algorithm Ί2 factors a completely into primes is at least l-(loga)/a. Further,

the running time ofthe algorithm is <9((log(a + l))4 · exp(2(logy)6/7)).

Proof. This is a straightforward consequence of Theorem 7. l and the definition

of S?. For a fuller discussion of a similar result, see [28], in particular Theorem

2.1 in that paper. This proves Theorem 7.3.

The following result provides an upper bound for the number of primes not

in &. Denote by S?' the set of primes that are not in S?, and let π(χ; S"')

be the number of primes in S?1 up to χ, äs in §6.

Theorem 7.4. There is an effectively computable constant c1 such that for all
real numbers χ > 2 we have

Proof. This follows from Theorem B' in [28], which in turn relies heavily on

the work of Friedlander and Lagarias [12]. The fact that c7 is effectively com-

putable was not stated in [28; 12], but follows from the proof in [12] and the

effective computability of the constants in the Vinogradov-Korobov zero-free

region σ > l -c(log|i|)~2/3(loglog |?|)~1/3, \t\ > t0 for the Riemann zeta func-

tion ζ(σ + it), see [11, Theoreme 11.2 (p. 423)]. This proves Theorem 7.4.

The notation S (v , y; jX) in the following result was introduced in §6.

Corollary 7.5. For any two real numbers v, y with 2 < v < y we have

S(v ,y;̂ ')< c7exp(-i(logi;)I/6) · (l + log(y/v)),

with c7 äs in Theorem 7.4.

Proof. Using partial summation and Theorem 7.4 we find

i / / ry i / /
S(v,y; 5" ) = - (n(y; 5* ) - π (v ; S? )) + / -̂  (π (t; ̂  ) - π (v ; <9>)) dt

y " v ι

= c7exp(-i(logw)'/6) · (l +log(y/w)).

This proves Corollary 7.5.

Remark. It is clear that combining Theorem 6. l with Theorem 7.4 and Corollary

7.5, one can obtain for certain ranges of χ and y the lower bound estimate

ψ(χ, y, ̂) > x · exp(-(l + o(l))u\ogu) for u — (\ogx}/\ogy -> oo, where

ψ(χ, y; 5") is the number of recognizable y-smooth integers up to χ . It is

known ([5]) that ψ(χ, y) = χ · exp(-(l + o(l))wlogM), in these ranges of χ

and y, where ψ(χ, y} is the number of all j-smooth integers up to χ . Thus

in some sense there are essentially just äs many recognizable y-smooth numbers
in the ranges we consider äs there are y-smooth numbers.
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8. RECOGNIZABLE SMOOTH FORMS

If Δ is a negative discriminant and y is a positive real number, then by a

recognizable y-smooth form in C& we mean a form (a , b , c) e CA for which

α is a recognizable y-smooth number (see §7) with gcd(<2 , Δ) = l .

In this section we prove that if the set £ö& defined in (2.7) has sufficiently
many elements in each of two particular intervals (condition (8.2)), then CA
has a fair Proportion of recognizable y-smooth elements.

The role of the additional parameter d in Theorem 8.1 will become clear in
§ 9. For the moment, the reader may think of d = l , so that χ = \̂/\Ä\ . The
notation π(χ ; &>) , S(v,y;^>) is from §6.

Theorem 8.1. There are effecti vely computable positive constants cg , cg with the

following property. Lei Δ be a negative discriminant, and let d , χ , y be real

numbers satisfying

x = i^\A\/d, I<d<l2, x>c9,

exp(c8loglogx) < y < exp((logx)1/2(loglogx)1/2).

Suppose that the numbers

lORX l -l/ log u (logw)~I/2
u = -r^—, v =y , w = v{

logy

satisfy

l w
(8.2) S (v , y ; ̂ A) > -7-, - , n(w;^>.)>-- - .
v ' v Δ 61ogw Δ 6 log w

Then the number of recognizable y-smooth forms in CA is at least

#CA-exp(-w(logM+13(log«)1/2)).

Proof. We begin by applying Theorem 6.1, with & = ̂̂ S? and η = \ . We

take c9 > c5 , with c5 äs in Theorem 6.1, and we assume that (6.5) holds. The
lower bound on y implies that

Combining this with Theorem 7.4 we see that

w
-t(w ·

42 log TU

if cg is taken large enough. With (8.2) this gives

w
>
7 log w '

which is the second condition of (6.4), with β — l.
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Next we apply Corollary 7.5. We have

logy
log(y v) =

log u log log χ

\log υ = (l - i) l o g y > \ logy,

using (6.5), so from Corollary 7.5 we obtain

S(„, „;.#») <,7«ΡΚ(2 log,)'")-

the last inequality by increasing c9 , if necessary. With (8.2) this yields

which is the first condition of (6.4), with a = l .

Theorem 6.1 now implies that ψ(χ , y ; ̂ Δ n S?} is at least

> χ · exp(—M (log M + ̂ r(

where again we may have to increase cg. From x < 2 VW an^ Lemma 2.10

it follows that this is also a lower bound for the number of recognizable y-

smooth forms in C& . To prove the theorem, it remains to find an upper bound

for #CA. From (2.13) and |Δ| < 48.x2 we obtain

#CA < V48 · x · log(48x2)

= x · exp(loglog(48x2) + i log 48)

( i n ^)/2^< x · exp iwüogw) ,
\ /

by (6.5). This proves Theorem 8.1.

Remark. If the generalized Riemann hypothesis is correct, then (8.2) is satisfied
if c9 is sufficiently large; cf. [32, Theorem 5.3] (in which one should read \ Li(x)
for Li(x)). So in that case there are sufficiently many y-smooth forms in CA .
The corresponding point was not satisfactorily dealt with in [20, eq. (2.10)].
To correct this, one can either apply Theorem 8.1, or, äs the author of [20]
communicated to us, follow the proof of [32, Theorem 5.2] to estimate the
number of smooth integers built up from the primes in .̂Δ η 5̂ ; this requires

Theorem 7.4 in addition to [32, Theorem 5.3].

9. THE CHOICE OF A MULTIPLIER

In this section we show that the conditions (4.3) and (8.2) of Theorems 4.1

and 8. l can be achieved by means of a small multiplier.

Theorem 9.1. There is an effectively computable positive constant c,0 with the

following property. Lei n be an odd integer with n > \, and let u, v, w , y,

z be real numbers satisfying

w > c10log«, z > c,0logn,

(9.2) 1..logy> l

' log v ~ log M
logT-— >: >0, logt; > cmlogw, f>log«.

~ 1(J - o
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Further let 2 = {3, 4, 7, 8} ifn = \ mod 4 and S = (l, 5, 8, 12} ;/ n Ξ

3 mod 4. JTzen there exists an integer d & 2> for which the number Δ = -an

is a negative discriminant satisfying the conditions

(9-3) n(z;̂
6logz'

(9.4) n(w ; &>>) > W
6log«; '

(9.5) S(„.r.,*j >̂ -.

Proof. For each d e 21, the number Δ = -an is a negative discriminant. It

will thus suffice to show that each of the three conditions (9.3), (9.4), (9.5) is

violated by at most one d e 2! .

Let d{, d2 e 2! be two distinct elements of 2> , put Al = —d\n, Δ2 =

-i/2« > and ̂  = {P : P is prime, (-̂) = -1} . Writing JV for the set of prime

divisors of n , we have from the multiplicativity of the Kronecker symbol

3® c & U 3® U.//'"Δ, Δ2

It follows that for all χ we have

We have #yT = O((log n)/ log log n) , so for c10 sufficiently large we have

^x/logx whenever χ > c10log« . Also, because d{d2 is not a square, we have

π(χ; £P) ~ |x/logjc for χ — > oo, so ΤΓ(ΛΓ; &} > -^x/logx for all χ beyond

some efFectively computable constant; this constant is absolute because 2! is

finite (see [8, Chapter 20]). Hence, increasing c10 if necessary, we have

whenever χ > c,0logn . Applying this to χ = z we conclude that Aj and Δ2

cannot both violate (9.3), and likewise for (9.4).

For (9.5), we have

Since n has at most (log«)/ log r prime divisors > v , we have

" v log v c10logw'

Further, since dt d2 is not a square, we have

5(υ , y, 3°} = jloglogy - jloglogT; + O(l/logt;),

with an effectively computable, absolute O-constant (again, see [8]). It follows

that, for c10 sufficiently large, we have

l l l

i ' ' Δ2/- 2 log M 6 log u 3 log u '



506 H. W. LENSTRA, JR. AND CARL POMERANCE

which shows that Aj and Δ2 cannot both violate (9.5). This concludes the

proof of Theorem 9. 1.

Remark. We shall apply Theorem 9.1 with u, v , w , y äs in Theorem 8.1,
with χ = \\fn , and z äs in (4.2). One verifies in a straightforward manner
that these numbers satisfy (9.2) if

y >exp(cu(loglogx)3/2)

for some absolute constant c, l .

1 0. THE FACTORING ALGORITHM

Algorithm 10.1. Given an odd positive integer n , this algorithm attempts to
find a nontrivial factorization of n .

Step 1. Choose a multiplier. Let ̂ = {3,4,7,8} if n Ξ l mod 4 and
3! = {l, 5, 8, 12} if n = 3 mod 4 . Select d e 2 at random, with the

uniform distribution. Put Δ = — an . (Note that Δ is a negative discriminant,

in the sense of §2.)

Step 2. Find a generating sei. Run Algorithm 4.4 on Δ and z , where z isthe

number exp(c4(log(12«)) ) , rounded up to an integer, with c4 äs in Theorem

4.1. This yields a set & of elements of C& . (Note that #3? = 0((log |Δ|)3).)

Step 3. Construct the factor base. Let y be the number Lx[^ , \\/Ί\ , rounded

down to an integer, where χ — \\fn . Find the prime numbers q < y with

(-) = !. We write $ for the set of these q . Construct the prime forms f for

q e if , äs in (2.7). (Note that M < y = L„[£ , \ + o(l)] for n -> oo.)
Step 4. Collect relations. In this step, one attempts to produce a sequence of

#3? + ftf + l relations between "§ and { f : q e dP} . Such a relation is, by

definition, an element (r , t) e Ί? χ if satisfying

where r = (r(g)} & , t = (t(q)} 6(f . Initially, the sequence of relations is

empty.

Draw a random vector r = (r(g)) ^ £ {1,2,... , |Δ|} , with the uni-

form distribution. Calculate Hg€<? gr(8} ', let it be (a,b,c). Test whether
gcd(ö , Δ) — l , and if so, attempt to factor a into prime numbers < y using
Algorithm 7.2. If this attempt is successful, use the method of (2.8) to find a

vector t = (t(q)}q(i/s e T̂  such that

Then (r,t)eZ^x if is clearly a relation between S and {f̂  : q e ß } ; it is
the next term in the sequence of relations.

Repeat the above until a sequence of #"§ + #a" + l relations has been found,
or until at least

2(#5? + ##+!). exp(w(log u + 1 3(log w)'/2) + 2)
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(rounded up to an integer) vectors r have been drawn and inspected, whatever
happens first; here u = (log(±̂ fn)) / logy is äs in Theorem 8.1. (Thus at most

Ln[i , l + o(l)] vectors r are processed, for n -> oo.)
If in this way fewer than #&+#&+ 1 relations are found, then Algorithm 1 0. l

terminates unsuccessfully at this point. Suppose now that Step 4 is successful,
and denote by (ri , i;) the zth relation that is found, for l < i < #& + #S + l .

Step 5. Solve the linear System. For l < i < #̂  + #<f + l , let vi e Ff χ if
be the vector that one obtains by reducing the coordinates of (rf , tj modulo

2; here we put F2 = Z/2Z. Use the coordinate recurrence method [34; 21,

§2.19] to find a nonempty subset J" c {l , 2 , . . . , #& + #& + 1} for which

Σ,̂  vt = 0. (Note that such a J" exists, since #&+#&+ 1 > dimF (Ff xff ).)

Step 6. Construct an ambiguous form. Compute the components s(g] , u(q)

( g e & , q e € ) of the vector \ E,€̂ (r, , tt) &2? -x.2? . Compute the form

This is an ambiguous form. Calculate the corresponding factorization of Δ (see
(2.4)) and, by taking a gcd, the resulting factorization of n . This factorization

is the Output of the algorithm. This completes the description of Algorithm

10.1.

Remark. The fact that, in the last step, jŶ ,iê (r,, tt) is an integer vector

foilows from ]C/e ? «, = 0 . To see that / is ambiguous note that

by (10.2).

Remark. The factorization of n obtained in Step 6 is a coprime factorization

of n , see (2.4). It may, however, be the trivial factorization l · n .

Theorem 10.3. The expected running time of Algorithm 10.1 is at most

L [± , 1 + 0(1)] for n —> oo. There is an effectively computable constant c{2,

such that if n is an odd number and n > c{2, then theprobability that Algorithm

10.1 succeeds infinding a nontrivial factorization of n is at least ̂ (1 - 2~Λ+1),

where h is the number ofdistinct prime factors of n; this is at least ̂  if n is

not a power of a prime number.

Proof. We first estimate the time; 0(1) will always be for n —> oo . Steps l and

2 take only time (log/?)0008'08'06"', by Theorem 4.5, and Step 3 takes expected

time at most y1+o(l} = Ln[\ , \ + o(l)]. Processing a single vector r in Step

4 can be done in expected time (log|A|) (1)exp(2(logy) '7), by Theorem 7.3.

This is absorbed in the upper bound of Ln[^, l + o (l)] for the number of

vectors r to be considered in Step 4. In Step 5, we solve a System of m linear

equations in m + l variables over F2, where m < Ln[^ , ̂ + o(l)J. From

(2.8) it foilows that each of the vectors vt has less than #̂  + log|A| nonzero

coordinates. Therefore the number of nonzero coefficients in the System of



508 H. W. LENSTRA, JR. AND CARL POMERANCE

linear equations is at most Ln[̂  , j + o(l)]. Thus from [34] it follows that Step

5 takes expected time at most Ln[^, l + o(l)]. Finally, Step 6 takes time at

most Ln[\ , 5 + o(l)]. This concludes the running time analysis.

Next we estimate the probability that a nontrivial factorization is obtained.
We shall suppose that n > cn, with cn sufficiently large, äs dictated by the
proof.

By Theorem 9.1, the discriminant Δ = -dn constructed in Step l satisfies

(9.3), (9.4) and (9.5) with probability at least \ ; and if this is the case, then

by Theorem 4.5 the set #̂  found in Step 2 generates CA with probability at

least \.

Suppose now that Δ satisfies (9.3), (9.4) and (9.5), and that S generates

CA . We first show that the conditional probability that Step 4 of the algorithm

is successful is at least ^ . First consider the variant of Step 4 that stops only

when #& + #&+1 relations have been found. From Theorem 8. l and Theorem

5.2 it follows that whenever a vector r is drawn, the form (a, b, c) computed

by the algorithm is a recognizable y-smooth form with probability at least

exp(-w(logw + 13(logw)1/2) - 1).

If (a, b, c) is a recognizable y-smooth form, then the probability that Algo-

rithm 7.2 factors a into primes < y is at least l - (loga)/a > exp(—1). It

follows that a random r gives a relation with probability at least

exp(-w(logw + 13(logw)1/2) - 2),

so that the expected number of vectors r that one needs to draw until one has

#̂  + #& + l relations is at most

(#5? + M + 1) · exp(w(logw + 13(log«)1/2) + 2).

Hence if one draws twice äs many vectors r, one is successful with probability
at least 5 . This implies that the actual Step 4 has success probability at least

5 , äs asserted.
We now restrict attention to those runs of the algorithm for which d assumes

a given value satisfying (9.3), (9.4) and (9.5), the set 3? is a given set of less
than 2 + 60(log|A|)logz generators of CA (see Theorem 4.5), and Step 4 is
successful. It will suffice to prove that the conditional probability of obtaining

a nontrivial factorization of n is at least (̂1 — 2~ + ). We do this by an
argument that is similar to the one presented in [20].

The number n has 2 ~~ coprime factorizations, and only one of them is
trivial. Hence Theorem 2.5 implies that the number of ambiguous forms that

yield a nontrivial factorization of n is (l - 2~ +1) · #CA 2 . Thus it suffices to

prove that the ambiguous form / constructed in Step 6 is equal to a given am-

biguous form with probability at least 2'(#CA 2)~ . Note that / is completely

determined by f and by the rt, since each tl is determined by r(.
Put ̂  = {1,2, ... ,#& + #&+!}, andlet ,/ be any nonempty subset of

*f. The probability that J? is the subset found by the coordinate recurrence
method in Step 5 depends only on the vectors vt, which in turn depend only
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on the vectors i( and the cosets of the vectors r( modulo (2Z)̂  . Further, tf

depends only on the coset of rt modulo the lattice L (defined in §5) of vectors

r e Ί? with llges? gr(8) = 1Δ . We conclude that the probability of finding a

particular ̂  in Step 5 depends only on the cosets of the vectors ri modulo

(2zf n L .

Consider a pair consisting of a sequence of vectors (f,),̂  and a nonempty

subset J" c *f , and suppose that this pair can be produced by the algorithm.

One such pair is called equivalent to another such pair (r(), ̂' if, first of

all, we have J? = ̂' ; and, second, if j denotes the smallest element of ̂ ,

then rt = r\ for all / £ ̂  , i φ j ; and, fmally, r} and r'} lie in the same
np (g

coset, 38 (say), of Z modulo (2Z) Π L . It is obvious that this is indeed an

equivalence relation, and from what we said in the previous paragraph it follows

that any two equivalent pairs have the same probability of being produced by

the algorithm. Hence we may now fix ̂ and the vectors rt for i-φ j , äs well

äs the coset 3§ of Ί? modulo (2Z)̂  n L . It is to be proved that the fraction

of elements r e ̂Π{ l , 2 , . . . , |Δ|}̂  that give rise to a given ambiguous form

isat least \

Note that one of the terms in the sum Σ̂  /-(r, > 0 computed in Step 6 is

equal to (r , t ) . From this it follows that the ambiguous form / is equal to a

given ambiguous form if and only if r} belongs to a certain coset s/ modulo

2L contained in 3§ . Thus the fraction to be estimated is

,... , \ A \ )

By Lemma 5.4 this is at least ^-(#C&>2)~' , if cn is sumciently large (cf. (5.5)),

äs required.
The last assertion of the theorem is obvious. This concludes the proof of

Theorem 10.3.

Remark. It can be shown that the expected running time of Algorithm 10.1 is
actually equal to Ln[\, l +o(l)], for n -> oo, and that one cannot improve this
by choosing the parameter y differently. The storage needed by the algorithm
is at most L [i , j + o(l)], for n -> oo . This follows easily from [34].

To obtain an algorithm for the complete prime factorization of positive in-
tegers it now suffices to add a few embellishments to Algorithm 10.1. In §7
we saw the elliptic curve method similarly transformed into a smoothness test
(Algorithm 7.2).

Algorithm 10.4. This is an algorithm that factors a given positive integer n into
prime factors.

Step l. Remove all factors 2 from n , and replace n by the quotient. Stop
if n = l .

Step 2. Find the largest integer k such that n = m for some positive integer
m , and replace n by m .
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Step 3. If n < cl2, with cl2 äs in Theorem 10.3, factor n into primes by
trial division.

Step 4. If n > cn, first test n for primality using the Jacobi sum test [1].
Stop if n is prime. Next suppose that n is composite. Apply Algorithm 10.1
repeatedly, until it finds a nontrivial factorization of n . Apply Steps 2, 3 and 4
recursively to both factors of n that are found. This completes the description
of the algorithm.

Theorem 10.5. Algorithm 10.4 completely factors any positive integer n into
prime factors in expected time at most Ln[^, l + 0(1)], for n —> oo .

Proof. The running time estimate for Steps l, 2 and 3 is left to the reader. It
is easy to see that the total number of divisors of n to which Steps 2, 3 and 4
are applied is at most the number of distinct odd prime factors of n , which is

at most log«. In Step 4, the primality test takes time (logn)o(logloglog") (for
n > ee), by [1]. Algorithm 10.1 is applied only to odd integers larger than
c,2 that are not prime powers. For each such number, the expected number of
applications of Algorithm 10. l that is necessary to find a nontrivial factorization
is at most 64, by Theorem 10.3. Hence all applications of Algorithm 10.1
together take expected time at most Ln[j,l + o(l)] for n —> oo . This proves
Theorem 10.5.

The theorem stated in the introduction is a direct consequence of Theorem
10.5.

l l. THE RANDOM CLASS GROUPS METHOD

It is the purpose of this section to point out a serious flaw in the heuristic
running time analysis of the random class groups method that was proposed
in [29]. We refer to [29; 21, §4.A] for a description of this method. For our
purposes it suffices to know that, in order to factor n , the random class groups
method needs a "small" positive integer d for which Δ = —dn is a negative
discriminant with the property that #CA is y-smooth for some "small" value of

y . The dominating contribution to the expected running time is then, roughly,

the upper bound for d multiplied by y . The heuristic running time analysis

assumes that, for fixed n and variable d, the class number #C_dn is essentially

just äs likely to be smooth äs a random number of the same approximate size.
This assumption implies that one can take both d and y to be no larger than
LJ± > 2 + °(1)]' leading to an upper bound Ln[̂  , l + o(l)] for the expected
running time of the random class groups algorithm, for n -> oo .

In this section we prove that the assumption just stated is incorrect for a fairly
dense sequence of integers n . Theorem 11.1 shows that for many integers n
there is not even a single multiplier d for which #C_dn is smooth, for a very
wide ränge of smoothness bounds. For example, if the smoothness bound is

taken to be χ ' , then the number of such n up to χ is at least ex / log χ

for some positive constant c; there is no reason to suppose that the random

class groups method can find a nontrivial factor of any of those n in time less

than «1/9.
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Theorem 11.1. There is a positive constant c13 with the following property Let

•̂ (x, y) be the set of positive mtegers n < χ such that for every negative dis-

cnminant Δ Ξ 0 mod n , the class number #CA has a pnmefactor exceedmg y

Thenfor all χ , y with c,3 < y < xl/9 we have

, ·
40y logy

Remark Due to the use of the Bombien-Vmogradov theorem in the proof of

Lemma 11.3, the constant c,3 m the theorem is meffective.

Before we give the proof we treat a few lemmas First we descnbe the "bad"

mtegers n . Let the greatest prime factor of an integer m > 2 be denoted by

P(m) , and put P (l) = l . We wnte 3" for the set of prime numbers p with

the property that min{P(p - 1) , P (p + 1)} > p1/3 > 3 .

Lemma 11.2. Let n be an integer that is divisible by p for some prime number

p e «9"" with p > y3 Further let A be a negative discnmmant that is divisible

by n Then the class number #C& has a pnmefactor exceedmg y

Proof We can wnte Δ = p Δ' , where Δ' is also a negative discnmmant. Di-

vidmg the class number formula (2.12) by the same formula for Δ' we find that

#CÄ = AG? - (y))-#CA- , where w' <E {2,4,6}. Hence 6-#CÄ is divisible by
one of the prime numbers P(p — 1) , p , P (p + 1) , dependmg on the value of

(— ) . By hypothesis, each of these primes is larger than 3 and exceeds y This

imphes Lemma 11.2.

In the following lemma, J7" is äs above and n(x , J7") is äs in §6 The lemma
asserts that, asymptotically, at least one third of all primes belong to 3" .

Lemma 11.3. We have
f

lim inf
-οο χ I log x 3

Proof It suffices to show that

(11.4) Σ logP> (ί ̂  o(l))x, for.x->oo

This sum is at least

(11.5) Σ log/?- ]T log/?- Σ log/7.

21<p<x P<x P<x
P(p-\)<xlß P\p+\)<xtß

The first sum is (l + 0(1))* for χ —> oo , by the prime number theorem. The
other two sums in (11.5) can be estimated with one argument Let α e {l, -1} .

Then

(11.6) ^ log/7 = ̂

p<x p<x
•/3 P(p+a)<xl/i
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Now

P<x p<x d\p+a
<xl/}

A(d)n(x;d,-a) + A(d)n(x; d , -a),

P(p+a)<xl/}

where Λ is the von Mangoldt function and π(χ; d, -a) is the number of

primes p < χ with p = -a mod d . Trivially, we have π(χ; d, -a) < | + l,

so the second sum is at most

Σ
xiß<d<x+a
P(d)<x>n

which we can see by noting that the sum is dominated by those d that are
squares of primes. By the Bombieri-Vinogradov theorem (see [8, Chapter 28]),
the first sum is

d<xl»

for χ —> oo. Assembling these calculations in (l 1.6), we have

Σ log/? < (| + o(l))x,

p<x
P(p+a)<x>/3

which when put in (l 1.5) gives (l 1.4). This proves Lemma 11.3.

Remark. The same proof shows that for each c with 0 < c < | the set of

primes p for which min{P(p - 1), P (p + 1)} > pc has lower density at least

\-2c.

We now prove Theorem 11.1. Let χ, y be äs in the theorem. We write

t = y . By Lemma 11.2, each integer n < χ that is divisible by the square of
a prime p > t , p € ZF , belongs to Ĵ (x ,y) . Therefore

The second sum is at most

The first sum is at least
X , 1/2,
-2-π(χ )
P

ι<Ρ<χί/2
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It remains to note that π(χ1/2) = ο (χ/(t log t)) for χ -» oo and that

l

for i —> oo . This last inequality follows from Lemma 11.3 and an upper bound

for n(t;̂ 7~) afForded by the prime number theorem. Thus if cl3 is taken

sufficiently large, we have Theorem 11.1.

Remark. Let n, p, Λ be äs in Lemma 11.2. If the number of factors p in
Δ is odd, then the large prime factor that we show to exist in #CÄ is p itself,
hence divides n. We can protect the random class groups method against
such large prime divisors by working only with nth powers of elements in C& .
If the random class groups method is modified in this way, we should only
consider integers n in Lemma 11.2 that have an even number of factors p , and
restrict to discriminants Δ = —dn for which the multiplier d is not divisible
by p. The arguments in this section then go through with very few changes,

and the conclusion is that the modified random class groups method has the

same shortcoming äs the original method.

12. PROBABILISTIC ALGORITHMS

In this section we discuss briefly what we mean by a "probabilistic" algorithm
and by the "expected" running time of such an algorithm. Several definitions
have been proposed for these notions, and the fact lhat they are not all mathe-
matically equivalent is not generally appreciated. We have chosen the definitions
below because they are natural and convenient to use. See [14] for a further
discussion.

By a probabilistic algorithm we mean an algorithm that is allowed to employ
a random number generator. Every time the random number generator is called
it Outputs 0 or l, each with probability \ . Any collection of calls is supposed
to be independent; this also applies to calls that are made in different runs of
the algorithm. It will be supposed that a call to the random number generator
takes unit time. We are not concerned with the question of how the random
number generator is to be implemented, or indeed whether this is possible at
all.

It is easy to see that a random number generator can be used to draw, for a
given positive integer m , a random number from {0,1,...,m — 1} with the
uniform distribution, in expected time O(logm).

The course of a probabilistic algorithm is determined, not only by its input
(for example, the number n to be factored, in the case of a factoring algorithm),
but also by the random bits that are drawn. This means that, for a given value
of the input, the running time of the algorithm may not be constant; instead, it
has a distribution. The same applies to the Output of the algorithm; for example,
which factor of n is found by a factoring algorithm. Also, the correctness of
the output of the algorithm may be subject to a distribution, äs is the case for
certain primality tests.
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The "expected running time" of a probabilistic algorithm, for a given value
of the input, is defined äs the expectation of the running time. Note that we
average only over the possible Outputs of the random number generator, not
over different values of the input of the algorithm. For example, when we say
that a factoring algorithm has expected running time f(ri), then this is true for
each individual value of n , without a single exception.

We mention a few rules that are helpful in Computing expected running times.
If a probabilistic algorithm consists of performing several other probabilistic
algorithms, one after the other, and all with the same input, then its expected
running time is simply the sum of the expected running times of the component
algorithms. This obvious rule would not have been worth mentioning had its
analogue not been incorrect for other definitions that have been proposed. The
rule is even valid if one of the algorithms involved can in principle run forever;
of course, if the expected running time is finite, this happens with probability
zero.

The Situation is a little more complicated if the component algorithms do
not all have the same input. This occurs, for example, if the Output of each
algorithm is the input of the next one. In such a case it is often possible to
find an upper bound for the input of each algorithm, and hence for its expected
running time; the sum of the latter upper bounds is then a valid upper bound
for the expected running time of the entire algorithm.
Another convenient rule is the following. Suppose that some of the Outputs of

a probabilistic algorithm are pronounced "successes" and the others "failures";
for example, finding the factor l or n in a factoring algorithm is a failure,
or finding a nonsmooth number if it i s the purpose of the algorithm to find a
smooth one. Let p be the success probability, and suppose that p > 0. Then
the expected number of times that one has to perform the algorithm until the

first success occurs equals p~} , and the expected time that this takes is p~~l
times the expected running time of the algorithm itself; this is even true if the
average running time of a successful run of the algorithm is different from the
average running time of an unsuccessful run. If one needs k successes one has

to replace p~ by kp~ . In the examples just given one can teil the successes
from the failures, but this is not always the case (see Algorithm 4.4). For an
algorithm for which we cannot easily recognize when we are successful we have
the option of bounding the number of iterations in advance. If this bound is at

least 2p~[, then the probability that at least one Iteration of the algorithm is
successful is at least ^ (see, for example, the proof of Theorem 4.5).
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ABSTRACT In this paper a probabihstic algonthm is exhibited that factors any
positive integer n mto prime factors m expected time at most Ln[\ , l+ö(l)]
for n —> oo , where Lx[a, b] = exp(6(log.x)a(loglog;c)1~a) Many practical
factormg algonthms, mcludmg the quadratic sieve and the elliptic curve method,
are conjectured to have an expected running time that satisfies the same bound,
but this is the first algonthm for which the bound can be rigorously proved
Nevertheless, this does not close the gap between rigorously estabhshed time
bounds and merely conjectural ones for factormg algonthms This is due to the
advent of a new factormg algonthm, the number field sieve, which is conjectured
to factor any positive integer n m time Ln[~ , 0(1)]

The algonthm analyzed m this paper is a vanant of the class group relations
method, which makes use of class groups of bmary quadratic forms of negative
discnminant This algonthm was first suggested by Seysen, and later improvcd
by A K Lenstra, who showed that the algonthm runs m expected time at most
Ln[\, l+o(l)] if one assumes the generahzed Riemann hypothesis The mam
device for removmg the use of the generahzed Riemann hypothesis from the
proof is the use of multiphers In addition a character sum estimate for algebraic
number fields is used, with an exphcit dependence on possible exceptional zeros
of the correspondmg L-functions

Another factormg algonthm usmg class groups that has been proposed is
the random class groups method It is shown that there is a fairly large set of
numbers that this algonthm cannot be expected to factor äs efficiently äs had
previously been thought
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