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Abstract. Single electron tunneling can cause periodic oscillations to appear
in the conductance äs a function of gate voltage in split-gate nanostructures
defined in the two-dimensional electron gas in GaAs-AlGaAs heterostructures.
We review our theoretical and experimental results on these Coulomb-blockade
oscillations in the resonant tunneling regime, where the transfer of single elec-
trons proceeds through discrete energy levels.

l Introduction
Oscillations in the conductance of a metallic grain äs a function of the voltage
on a gate electrode are a well-known manifestation of the Coulomb blockade
of single electron tunneling [1,2]. The "orthodox" theory [3]-[5], supplemented
by treatments of higher order tunneling processes and of the interaction of
the tunneling electron with the electromagnetic environment [6]-[8], provide
a detailed quantitative understanding of current experiments in metals [9].
Meanwhile, rapid progress has been made in the development of semiconductor
nanostructures. The electron gas density in a two-dimensional electron gas
(2DEG) in a Si MOSFET or in a GaAs-AlGaAs heterostructure is low, which
is why the Fermi wavelength of the conduction electrons can be äs large äs 50
nm — two Orders of magnitude larger than in metals. Lateral confinement of
the electrons in the 2DEG on the scale of a few hundred nm, using split-gate
techniques, has been exploited to make quantum wires and quantum dots [10].

After the discovery of conductance oscillations periodic in the gate voltage
in a disordered quantum wire [11], and the identification of this phenomenon äs
Coulomb-blockade oscillations [12], it has become clear that in certain regimes
single electron tunneling is the dominant transport mechanism in semiconduc-
tor nanostructures. This is exciting because of the possibility to study the
interplay between size and Charge quantization effects, which is not feasible
in metallic grains (because of the small Fermi wavelength in a metal). This
field has developed rapidly, äs witnessed by the considerable number of recent
experimental [13]-[22] and theoretical [23]-[26] papers.

Here we present an informal overview of our contributions. We discuss a
theory for the period and the temperature dependence of the peak height of
the Coulomb-blockade oscillations (See. 2). Experimental results on a quantum
wire and a quantum dot are given in See. 3. We refer to a recent review article
for a more complete discussion of single electron tunneling in semiconductor
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nanostructures [27], and to the chapter by Averin and Likharev in this volume
for a discussion of possible device applications.

2 Theory
Consider the System of dot, leads, and gate electrode depicted in Fig. l (inset).
The number N of electrons on the dot may be treated äs a sharply defined
classical variable, provided the barriers have a tunnel resistance large compared
to the resistance quantum h/e2. The charging energy U (N) of the dot may
change discretely because of a change in the number N of electrons on the
dot (through tunneling to or from the leads), or it may change continuously
because of a change in the voltage on the external gate electrode. We adopt
the approximation of the orthodox model [4] of taking the charging energy into
account macroscopically. We write U(N) — /„" c 0(<2')dQ'', where

is the electrostatic potential difference between dot and leads, C is the mutual
capacitance of the dot and its environment (gate plus leads), and 0ext is an
externally controlled potential proportional to the gate voltage (cf. Eq. (6)
below). The charging energy then takes the form
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Figure 1: Charging energy of a dot, coupled by tunnel barriers to leads, äs a
function of the external electrostatic potential 0cxt. Straight lines are according
to Eq. (2) for a dot containing N = l,..., 12 electrons. The ground state
of the dot, for a given value of <^cxt, corresponds to the minimum value of
U(N~). Conductance peaks due to classical Coulomb-blockade oscillations occur
if U (N) = U(N - 1) (füll dots).
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U(N) =
IC

(2)

A metallic dot has a very small energy level Separation at the Fermi level,
so that the change in Fermi level by the transfer of a single electron from dot to
leads may be neglected. The ground state of such a classical System corresponds
to the minimum value of U (N). The linear decrease of U (N) with increasing
0ext is illustrated in Fig. l for a set of values for N. Elastic tunneling, which
requires the occupation sequence N-*N-l-+N->N-l->--;is blocked
at low temperatures, except when U(N) = U(N - 1), äs indicated by the füll
dots in Fig. 1. The conductance thus exhibits peaks periodic in (Äext, located

Φ^ = (Ν-\}^. (3)

Eq. (3) does not apply to a quantum dot, in which the energy level Sepa-
ration can not be neglected. We denote by Ep (p = 1,2,...) the single-electron
energy levels in ascending order, measured relative to the bottom of the poten-
tial well in the quantum dot. Each level contains either one or zero electrons.
Spin degeneracy, if present, can be included by counting each level twice, and
other degeneracies can be included similarly. The energy levels Ep depend on
gate voltage and magnetic field, but are assumed to be iudependent of N. A
peak in the low-temperature conductance now occurs whenever

EN+U(N}-U(N-1)=EF, (4)

for some integer N. Eq. (4) equates the electrochemical potential in the dot
(left hand side) to the Fermi level EF in the leads (measured with respect to
the local conduction band bottom). Substitution of Eq. (2) into Eq. (4) gives

e2 _ ,5)

äs the condition for a conductance peak [24]. If the incremental charging energy
e2/C is much smaller than the level Separation Δ£, then Eq. (5) is the usual
condition for resonant tunneling. In the opposite limit Eq. (3) is recovered.

In Fig. 2 we have illustrated the tunneling of an electron through the dot
under the conditions of Eq. (5), with N = 9. In panel (a) N - l electrons
occupy the dot. The TVth level in the dot is empty. In panel (b) an electron has
tunneled into this level. The potential difference φ between dot and leads has
decreased by e/C (becoming negative), because of the added electron. Finally,
in panel (c) the added electron tunnels out of the dot, resetting the potentials
to the initial state of panel (a). In Fig. 2 the two leads are shown at the same
potential. In a conductance measurement a small voltage difference is imposed
between the two leads. This voltage difference has no effect on the condition
(5) if it is sufficiently small.

To determine the periodicity A^gate of the conductance oscillations äs a
function of gate voltage we first need to know how EF and the set of energy
levels Ep depend on the electrostatic potential from external chargcs #ext· The
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Figure 2: Single-electron tunneling through a quantum dot, under the condi-
tions of Eq. (5), for the case that the charging energy is comparable to the level
spacing. (From Ref. [24].)

Figure 3: Schematic top-view of a quantum wire (a) and a quantum dot (b).
Hatched regions denote gates on top of a GaAs-AlGaAs heterostructure con-
taining a 2DEG. Non-depleted electron gas regions are black. Dashed lines
indicate tunneling paths. (From Ref. [27].)

external charges are supplied by ionized donors and by a gate electrode. We
denote by ^Bate the electrostatic potential difference betweeu gate and 2DEG
reservoir. One has

(*ext = + (6)

with α a rational function of the capacitance matrix elements of the system.
As illustrated in Fig. 3a, the periodic conductance oscillations in a quantum
wire arise because of the natural formation of a conductance limiting segment
when the wire is close to pinch-off. On average, the gate changes the density
in the extended leads and the confined segment by an equal amount, because
the density of states per unit area is the same. For equidistant energy levels in
the confined segment we may then assume that Ef - EN has the same value

at each conductance peak. Eqs. (5) and (6) imply in this case a periodicity

wire. (7)

In the quantum dot geometry of Fig. 3b the gates affect primarily the density
in the dot, but not in the wide 2DEG regions. In one period EN changes by an

162

amount ΔΕ, while EF stays constant in this case. Eqs. (5) and (6) then imply

-^ 1 +
dot. (8)

The experimentally controlled variable is the gate voltage T'gate, which
is the electroc/iemico/ (rather than electrostatic) potential difFerence between
gate electrode and 2DEG reservoir. In the dot geometry (Fig. 3b) one has
AKgate = A(/>gato, because the Fermi level (or chemical potential) of the 2DEG
reservoirs is not affected by the gate. In the wire geometry (Fig. 3a) one has
AVgate = A^gate + ΔΕ/ae [27]. From Eqs. (7) and (8) it then follows that in
both geometries the periodicity in gate voltage is given by

ΔΕ

where CT is the thermodynamic capacitance (related to the electrostatic capac-
itance C by I/CT = 1/C + ΔΕ/e2). Since in the experiments C is not known
precisely, one can not easily infer the relative importance of size quantization

effects from the periodicity alone. McEuen et al. [15] have circumvented this
difficulty in an elegant experiment. They have been able to map out the energy
level spectrum of a quantum dot in a strong magnetic field, by exploiting the
fact that a magnetic field modulates ΔΕ and thus CT, but leaves C unaffected.

Quantum size effects are more easily observed from the temperature de-
pendence of the Coulomb-blockade oscillations. The temperature dependence
of the peak height is shown in Fig. 4 for a quantum dot with equidistant en-
ergy levels, all with the same tunnel rates Γ [24]. Also shown in Fig. 4 are the
minima of the oscillations, which are seen to merge with the maxima äs kT
approaches e2 /C. In the resonant tunneling regime kT < ΔΕ the peak height
increases äs the temperature is reduced, due to the diminished thermal broad-
ening of the resonance. In the classical regime e2/C 3> kT S> ΔΕ there is a
cancellation between the number of levels contributing to the conductance and
the degree of thermal broadening, leading to a temperature-independent peak
height [3]. At low temperatures the peak height saturates when kT < ΛΓ. The
maximum peak height is Gmax = e2/h for the case of equal tunnel barners. The
lineshape in the low-temperature regime kT < Λ.Γ becomes asymmetric because
of the Kondo effect [28,29]. This has not yet been observed experimentally.

The conductance minima Gmin depend exponentially on the temperature,
Gmin oc exp(-£act/fcr), with activation energy [24]

£act = ±(ΔΕ + ε2/Ο). (10)

This result holds for equal tunnel rates of the energy levels. The exponential
decay of the conductance at the miuima of the Coulomb blockade oscillations
results from the suppression of tunneling processes which conserve energy in the
intermediate state in the quantum dot. Tunneling via a virtual intermediate
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Figure 4: Temperature dependence of the maxima (max) and the minima
(min) of the Coulomb-blockade oscillations, for a quantum dot with equidis-
tant non-degenerate energy levels (at Separation Δ.Ε — Q.Qle2/C), all with the
same tunnel rates. The conductauce is normalized to the high-temperature
limit Goo = ε2Γ/2Δ,Ε, which is the conductance of the two tunnel barriers
added in series according to Ohm's law. (From Ref. [27].)

state is not suppressed at low temperatures, and may modify the temperature
dependence of the minima if hP is not much smaller than kT and AJE [6,7].

3 Experiments

In Fig. 5 the conductance versus gate voltage near pinch-off is shown for two
disordered quantum wires, labeled Dl and D2 [16]. At T = 1.5 K both wires
exhibit well-resolved conductance oscillations, which are periodic in the gate
voltage. The oscillations are superimposed on a background conductance of
approximately 0.1 e2/h, and have a period /\V$ite ~ 2.7 mV (Dl) and 2.1
mV (D2). As the gate voltage is increased the oscillations disappear gradually.
Whereas the two conductance traces are relatively similar at T — 1.5 K, this
is not the case at T = 50 mK. In wire D2 the oscillations become better
resolved at this low temperature, while the period is unchanged and the value
of the conductance at the maxima is also approximately the same. In contrast,
the oscillations in wire Dl are suppressed at 50 mK, and an irregulär pattern
of sharp conductance peaks is observed instead. It is likely that this sample-
specific effect reflects the presence of multiple segments in series in the quantum
wire [16].

A magnetic field has no known effect on single electron tunneling in met-
als. In contrast, we find a rieh variety of magnetic field effects in semiconductor
nanostructures. For example, a field of 5 T was found to enhance the amplitude
of the Coulomb-blockade oscillations in a quantum wire, whereas it reduced the
aperiodic fluctuations seen at low temperatures [17]. A similar effect is seen
in a quantum dot (Fig. 7, discussed below). Fig. 6a shows the temperature
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Figure 5: Two-terminal conductance versus gate voltage of two disordered
quantum wires (Dl and D2) at T = 1.5 K and 50 mK. (From Ref. [16].)
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Figure 6: (a) Single conductance peak of a disordered quantum wire (Dl) at
B = 6.66 T, for Γ = 110, 190, 290, 380, 490, 590, 710, and 950 mK, from
top to bottom. (b) Conductance oscillations versus gate voltage of a different
disordered quantum wire for T = 3.2, 2.5, 1.6, and l K, from top to bottom.

(From Ref. [16]).

dependence of one of the most pronounced peaks in the conductance of wire
Dl for B — 6.66 T. The peak height increases with decreasing temperature
and reaches a value of 0.6 e2/h at T = 100 mK. This behavior is charac-
teristic of Coulomb-blockade oscillations in the resonant tunneling regime, äs
discussed in See. 2. The opposite temperature dependence is found at higher
temperatures, äs shown in Fig. 6b. This confirms the transition to the liigh-
temperature classical regime where kT exceeds the average level-spacing

165



1.5-

Φ
Ο
CD

-t—»
Ο

Τ3

Ο
Ο

0.5-

-0.7 -0.6 -0.5 -0.4

vgaw (ν)
Figure 7: Conductance oscillations in a quantum dot in a GaAs-AlGaAs het-

erostructure, with a geometry äs in Fig. 3b. The temperature is 100 mK. (From
Ref. [17].)

of the conductance-limiting segment, and eventually approaclies e2/C (cf. Fig.
4). A quantitative analysis of tlie period and temperature dependence of the
Conductance oscillations in our experiments on disordered quantum wires has
shown that the regulär oscillations can indeed be described consistently by the
theory for Coulomb-blockade oscillations, in a regime where e2/C is larger than
ΔΕ by about a factor of four [16,27].

We now turn to a discussion of the Conductance of a quantum dot of the

design shown in Fig. 3b [17]. The device has two sets of gates to adjust the

transmission probability of each tunnel barrier, and a third set to vary the po-

tential ^ext of the dot. (Because of the proximity of the gates the adjustments

are not fully independent.) The tunnel barriers are formed by quantum point

contacts close to pinch-ofF. Representative traces of conductance versus gate

voltage at zero field and for B - 3.75 T are reproduced in Fig. 7. Quite spec-

tacular oscillations are seen. They persist up to relatively high temperatures

compared to the energy-level Separation in the quantum dot, which confirms

that they are Coulomb-blockade oscillations, rather than oscillations due to

resonant tunneling of non-interacting electrons. The period of the oscillations

and the maximum temperature at which they can be resolved are in reasonable

agreement with theoretical estimates [17].

Our experiments on a quantum dot are done in a Situation where the con-

ductance of the individual barriers approaclies e2/h, which means that virtual

tunneling processes have to be taken into account. Indeed, the conductance

minima are not exponentially suppressed at B = 0, see Fig. 7, even though the

temperature was low (100 mK). Experiments on a larger dot in the classical

regime by Glattli et al. [22] confirm the importance of higher order tunneling

processes. Unfortunately, these processes have not yet been studied theoreti-

cally for the quantum regime kT < ΔΕ of our experiment.

On application of an external magnetic field the background is suppressed,

and the peak height is enhanced up to e2/h. This effect is not yet understood.
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The period is not changed, consistent with the analysis given in See. 2, for

e2/C » ΔΕ.
In summary, semiconductor nanostructures present new possibilities for

physicists interested in single electron tunneling. The period of the Coulomb-

blockade oscillations is understood, äs is the temperature dependence of the
amplitude and lineshape in the resonant tunneling regime (aslong äs kT > /ιΓ).

The transition to the ballistic regime, the role of virtual tunnelling processes,

and the effects of a magnetic field reniain to be further elucidated.
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