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In this paper we show how the use of the Irving-Kirkwood expression for the pressure tensor 
leads to expressions for the pressure difference, the surface tension of the flat interface, and the 
Tolman length which agree with the expressions found using microscopic sum rules. The use of 
the Schofield-Henderson expression for the pressure tensor for a particular contour different 
from the contour that leads to the Irving-Kirkwood expression is found to give incorrect 
results for the pressure difference and, in particular, also for the Tolman length. The distance 
between the so-called mechanical surface of tension and the Gibbs dividing surface is found not 
to be given by Tolman's length. Using an approximate expression for the pair density it is 
possible to find values for the location of the mechanical surface of tension and for Tolman's 
length which are in reasonably good agreement with values found by Nijmeijer et al. in 
molecular dynamics simulations. 

I. INTRODUCTION 

The description of the influence of curvature on the 
thermodynamic properties of interfaces dates back to 
Gibbs 1 and some 40 years ago a statistical mechanical treat
ment of the influence of curvature was given by the work of 
Kirkwood and Buff.2

•
3 Due to the introduction of the rigid

ity constants and the spontaneous curvature of an interface 
by Helfrich4 in 1973, the importance of the influence of cur
vature has, in recent years, been more clearly recognized. An 
important formula in the description of spherical surfaces is 
the Laplace equationS which relates the pressure difference 
between both sides of the surface of the droplet to the surface 
tension u and the equimolar radius of the droplet R, 

2u 
/1P=R"' (Ll) 

where /1p = PI - Pg withpi andpg the pressure in the liquid 
and gas region. For droplets with small radii, Eq. (1.1) is 
only approximately valid and this formula should be seen as 
the lowest-order term in an expansion of /1p in the reciprocal 
radius. The first-order correction to Eq. (1.1) defines the so
called Tolman length /5 (Ref. 6) 

/1p = ~ (1 - !) . ( 1.2) 

If the droplet is large enough compared to the thickness of 
the interfacial region, the values of P I and P g may be identi
fied as the "bulk" pressures in the center of the droplet and 
far outside the droplet, respectively. If the droplet is smaller 
one may question the possibility to give a satisfactory defini
tion of the pressure in the center of the droplet as a bulk 
pressure. In order to uniquely define the pressure difference 
even for small droplets, /1p is defined as the pressure differ
ence between a bulk liquid and bulk gas calculated from the 
given temperature and chemical potential. Important in this 
context is that /1p is a unique function of f-L and T and does 
not depend on the choice of the position of the dividing sur
face. Such a different choice of the position of the dividing 

surface and thus the value of the radius R, rearranges the 
terms on the right-hand side of Eq. (1.2) but does not 
change /1p. A lot of effort has been made to calculate /5 using 
molecular dynamics (MD) simulations7

•
8 of Lennard-Jones 

fluids but up till now no consensus has been reached whether 
/5 has a finite or a zero value. The most recent and extensive 
calculations8 indicate that within the error /5 cannot be dis
tinguished from zero. The first statistical mechanical expres
sion for /5 was given by Kirkwood and Buff2 who argued 
that, as the surface tension is given by the zeroth moment of 
the excess pressure in the interfacial region, /5 should be giv
en by the first moment. On the basis of this consideration 
they proposed a microscopic expression for /5 found from 
their formula for u by multiplying the integrand with the 
distance to the surface. 

An alternative route to obtain expressions for u and /5 is 
to use a microscopic expression for the pressure tensor in an 
inhomogeneous system. The first such expression for the 
pressure tensor was given by Irving and Kirkwood.9 Later, 
Schofield and Henderson 10 pointed out that it is not possible 
to define the microscopic pressure tensor uniquely and they 
proposed a more general expression which reflects this non
unique nature. Recently, the merit of their alternative defini
tions has been the subject of some discussion. II

-
13 For an 

interface one may calculate the surface tension as an integral 
over the normal coordinate of the pressure difference paral
lel and orthogonal to the surface. Similarly, one obtains an 
expression for /5 by integrating the pressure difference times 
the normal coordinate. A brief review of some of these mat
ters is given in Sec. II. 

In a previous paper14 expressions were derived using 
statistical mechanics for the surface tension u(R) and cur
vature term C(R), i.e., the partial derivative of the free ener
gy with respect to the radius R, of a spherical liquid-vapor 
interface. The coefficients in an expansion to second order in 
the reciprocal radius of the interface of u(R) and C(R) are 
related to the surface tension of the flat interface u, the spon
taneous curvature of the interface Co, the rigidity constant 
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associated with Gaussian curvature k, and the rigidity con
stant of bending k. The resulting formulas give these coeffi
cients as expressions in terms of integrals of the pair density 
p(2) (r l ,r2 ) and the derivative of the interaction potential 
u'(r). The Laplace equation in terms of u(R) and CCR) can 
be derived from an analysis of the total change in free energy 
under changing the radius of the droplet. S The resulting 
expression can again be expanded in powers of the reciprocal 
radius 

From Eqs. (1.2) and (1.3) it is clear that Tolman's length is 
given by 

£5 = - kCo/u. (1.4) 

The purpose of this paper is to compare the microscopic 
formula for 6.p to second order in the reciprocal radius, de
rived in a previous paper,14 to the one obtained using the 
microscopic expression for the pressure tensor of the spheri
cal interface. In particular, we want to clarify the somewhat 
confusing discussion about its proper definition by establish
ing to what extent the expressions found using the various 
pressure tensors agree with the sum rules obtained exactly. 
In Sec. III we find that the expression for 6.p found using the 
Irving-Kirkwood expression for the pressure tensor is iden
tical to the one found using the rigorous microscopic expres
sions for u( R) and CC R). A similar analysis using the Scho
field and Henderson definition of the pressure tensor for an 
alternative choice of the integration contour, which features 
in their expression, is done in Appendix A and gives an in
correct result for 6.p and in particular for the Tolman length. 
The alternative contour we use reduces to the one which may 
be used to obtain the expression for the pressure tensor given 
by Harasima's for a flat interface. Furthermore we find, see 
Sec. IV and Appendix B, that both expressions for Tolman's 
length mentioned earlier are incorrect. The underlying rea
son is the fact that the Tolman length differs from the dis
tance between the mechanical surface of tension and the 
Gibbs dividing surface. It also follows from the MD results 
for droplets ofNijmeijer et al. 8 that the distance between the 
mechanical surface of tension and the Gibbs dividing surface 
is considerably different from Tolman's length which, in 
fact, is found to be equal to zero within the error. The nu
merical value for the location of the mechanical surface of 
tension and the fact that Tolman's length is zero is further 
discussed using an approximate expression for the pair den
sity. It should be noted that Tolman uses a different defini
tion of the surface of tension which he defines by6 

I1p=2uJR, = 2u(R, + 28) - I. Comparing with Eq. (1.2) 
one then sees that R, - R = - 8 so that its distance to the 
equimolar surface is given by (minus) the Tolman length. 
That these two definitions may lead to confusion is most 
apparent in the commonly accepted statement that the loca
tion of the mechanical surface of tension relative to the equi
molar surface, will give the Tolman length2 which, as we will 
show, is not correct. A summary of results is given in Sec. V. 

II. THE LAPLACE EQUATION 

We briefly review the most important results of the ther
modynamic analysis of a spherical interface which is used to 
derive the Laplace equation which includes the contribution 
due to the curvature term. Using Helfrich's expression for 
the curvature dependent surface tension we then proceed to 
give the pressure difference to second order in the curvature. 
In the last part of this section we also present the derivation 
of I1p using the pressure tensor. Both routes to obtain I1p are 
well known and we refer the reader to the excellent reviews 
of Row lin son and Widoms and Ono and Kondo '6 for a more 
extensive discussion. 

The change in excess free energy P' of a spherical inter
face with radius R is given by 

dF' = - SSdT + fldNs + u(R)dA + C(R)AdR, 
(2.1) 

where Tis the temperature, S' is the excess entropy, fl is the 
chemical potential, N S is the excess number density, u(R) is 
the radius dependent surface tension, A the surface area, and 
C(R) is the coefficient of the curvature term. The excess of 
an extensive quantity is defined as the difference between the 
total amount of that quantity and the integral over the divid
ing surface extrapolated bulk densities of this quantity. The 
excess number density is thus given by 

N S = N - f dV(p/)1 + p g 8g ), (2.2) 

where PI and Pg are the number densities in the liquid and 
gas phase, the characteristic function 81 is defined to be equal 
to one on the liquid side of the dividing surface and zero on 
the gas side, furthermore 81 + 8g == 1. From this equation it 
is clear that N S depends on the choice of the position of the 
dividing surface. For simplicity we will take the Gibbs divid
ing surface, or equimolar surface, for which N S == 0, through
out this paper. We stress that other possible choices of the 
position of the dividing surface lead to the same results for all 
measurable quantities as, for instance, the pressure differ
ence I1p. With N S = 0, Eq. (2.1) reduces to 

dF'= -ssdT+u(R)dA+CCR)AdR. (2.3) 

Integration over extensive variables yields 

F' =u(R)A. (2.4 ) 

The resulting Maxwell equation relates u(R) and C(R) by 

C(R) = au(R) I . (2.5) 
aR T 

The Laplace equation for a spherical interface is most 
conveniently derived by considering the change in the total 
free energy of the system due to a notional changeS of the 
radius 

[dPJ = - PI [dVd -Pg [dVg ] 

+u(R)[dA] +C(R)A [dR]. (2.6) 

The square brackets denote a change as a consequence of a 
different choice of the radius and not a physical change in the 
radius of the droplet. Of course the free energy cannot de-
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pend on this choice, [dF] = 0, so one finds from Eq. (2.6) 
that 

!1p = 2cr(R) + C(R), 
R 

(2.7) 

where we have used that [dVJ] =- [dVg ] =A [dR 1 and 
[dAl = (2A IR) [dR]. This equation is the Laplace equa
tion generalized to include higher-order curvature correc
tions. 

In general, the surface tension depends on the two prin
cipal radii of curvature R I and R2 of the surface. Helfrich2 

introduced the following expansion of the surface tension to 
second order in the inverse radii: 

cr(R p R 2) =/0 +~(_1_+_1_+Co)2 +kR lR ' 
2 RI R2 I 2 

(2.8) 

where Co is called the spontaneous curvature, k is the rigid
ity constant of bending, and k is the rigidity constant asso
ciated with Gaussian curvature. The coefficient/o is related 
to the surface tension of the planar interface by 
/0 + (k 12)C~ = cr, One may question the possibility to ex
pand the surface tension in the curvatures. Arguments have 
been given which imply that cr(RI ,R2) is not an analytic 
function. In the expansion this shows up as a logarithmic 
divergence in the microscopic expressions for the expansion 
coefficients. In the previous paper we discussed this matter 
and concluded that as long as the interaction potential de
cays as 1/r,7 or faster, the expansion is correct to second 
order. Use of Helfrich's formula for the surface free-energy 
yields for the spherical interface where R I = R2 = R 

1 ( 1 )2 cr(R) =cr+2kCo R + (2k+k) Ii ' 

au I ( 1 )2 - (1)3 C(R)=aR T=-2kCoIi -2(2k+k)Ii . 

(2.9) 

When we insert these expressions into the Laplace equation, 
Eq. (2.7), we find 

2cr ( 1 )2 
!1p=R+ 2kCo Ii . (2.10) 

Notice that the contribution due to the second-order term in 
the expansion of the surface tension vanishes. This has lead 
several authors in the past to conclude that such an expan
sion in the reciprocal radius is not possible beyond first order 
for the spherical interface.5

,11 As the surface tension (excess 
free energy) contains these contributions and they not only 
contribute to the pressure difference for all other surface 
shapes but it is also possible to derive exact expressions for 
the coefficients k and k analogous to the Kirkwood-Buff 
formula for the surface tension,14 we do not agree with this 
point of view. 

We now turn to a description of an inhomogeneous sys
tem using a position-dependent pressure tensor. Due to the 
spherical symmetry of the system this position-dependent 
pressure tensor has only two independent components, nor
mal and tangential to the interface 

(2.11 ) 

where 1 is the unit tensor, er =:r/lrl is the unit vector in the 
direction rand r=: Irl. Far from the surface the normal and 
tangential component of the pressure tensor become identi
cal and reduces the pressure tensor to a constant scalar pres
sure. When no external field is present the requirement that 
the droplet is in mechanical equilibrium imposes the follow
ing condition on the pressure tensor: 

V'p(r) = O. (2.12) 

Inserting Eq. (2.11) in this equation yields the following 
relation between the components of the pressure tensor 

PN(r) = ~ [PT(r) - PN(r)], 
r 

(2.13) 

where the prime indicates a differentiation with respect to its 
argument. Integration of the above expression from the in
side to the outside of the droplet yields 

i
oo 

1 
!1p=2 dr-[PN(r) -PT(r)]. 

o r 
(2.14 ) 

The local pressure tensor at a certain point r in an inho
mogeneous fluid comprises two terms. The first term is iso
tropic and equals the familiar expression for the pressure in 
an ideal gas. The second term is due to pair interaction be
tween the particles. Irving and Kirkwood give the formula9 

1 f il 

r l2 r I2 , per) = kBTp(r)l- - dr l2 da --u (rI2 ) 
2 0 712 

(2.15 ) 

where r l2 =: Ir I2 1,p(r) is the number density andp~2)(rl ,r2 ) 

is the pair density of the spherical surface. On the basis ofthe 
non unique nature of the pressure tensor it has been argued 
by Schofield and Henderson 10 that the integration over a in 
Eq. (2.15) can be replaced by a line integral along an arbi
trary path from 0 to r 12 

Pap (r) = kB Tp(r)oaP - 2-f dr l2 f dip r l2,a u' (rl2 ) 
2 r l2 

(2.16) 

where a,/3 = x,y,z and oaP is the Kronecker delta. This is an 
equivalent expression for the pressure tensor in the sense 
that its divergence is said 10 to be equal to the divergence of 
the expression in Eq. (2.15). Recently, Baus and Lovett II 
argued that one may impose an additional condition on the 
pressure tensor which eliminates the ambiguity in the defini
tion of the pressure tensor. It is tentatively concluded that 
the Irving-Kirkwood definition of the pressure tensor given 
by the straight line integral in Eq. (2.15), is the only correct 
choice. 17 As it has subsequently been argued by Rowlin
son 12 that the Baus-Lovett condition on the pressure tensor 
implies that the condition leads to a vanishing surface ten
sion, an argument which, in our opinion, has not really been 
convincingly refuted by Baus and Lovett,13 this matter is as 
yet unclear. 

III. CALCULATION OF THE LAPLACE EQUATION 
USING THE PRESSURE TENSOR 

In this section we calculate the pressure difference from 
Eq. (2.15) using the Irving-Kirkwood expression from Eq. 
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(2.14) to second order in the reciprocal radius. The normal 
and tangential component of the pressure tensor are then 
given by 

1 f i l 
(r'e )2 PN(r)=kBTp(r)-- drl2 da 12 r u'(r12 ) 

2 0 r 12 

Xp!2) (r - ar l2 ,r + (1 - a)r12 ), 

Pr(r) = kB Tp(r) 

1 f i l 
rT2 - (r12 'er )2 , - - dr l2 da u (rI2 ) 

2 0 2rl2 

Xp!2l(r-ar12 ,r+ (1-a)r I2 )· (3.1 ) 

For convenience we choose the z axis along r so that r = z Z 
and er = Z. The difference between the normal and tangen
tial component of the pressure tensor is then given by 

[PN - Pr] (z) = ! f dr l2 fda u'(r)r( 1 - 3r) 

Xp~2)(zz-arI2'ZZ+ (l-a)r12 ) 

(3.2) 

with s=cos e12 and r=r I2 . Due to the spherical symmetry 
of the system the pair density can be written as 

(3.3) 

so that the full expression for the difference between the nor
mal and tangential component of the pressure tensor is equal 
to 

[p,v - Pr] (z) = ! f dr l2 f da u'(r)r( 1 - 3r) 

xp~2)(lzz-ar12I,lzz+ (l-a)r12 l,r). 
(3.4 ) 

I 

We now make an expansion to second order in the reciprocal 
radius of the droplet of the integrand in Eq. (3.4). The 
expression for the pressure difference I:l.p to second order can 
then be obtained by integrating the resulting expression over 
z, cf. Eq. (2.14). The resulting formula for I:l.p from this 
analysis can be found in Eq. (3.13). If one is more interested 
in the discussion rather than in the explicit derivation of this 
result, it is possible to continue reading after Eq. (3.13). 

We now proceed to make an expansion of the pair den
sity in the ratio of the intermolecular distance and the radius 
of the droplet, i.e., rl R, to second order. As was discussed 
before, the use of such an expansion in the integrand is possi
ble when the interaction potential is sufficiently short 
ranged, cf. Ref. 14 for a more extensive discussion of this 
point. The arguments of the pair density, Iz z - ar l2 1 and 
Iz z + (1 - a)r I2 1, are up to second order in rlz given by 

Iz z - arl2 1 = z -asr + J:.. a 2r (1 - r) 
2z 

1 (1)2 + '2 -; a 3rs(1- r), 

1 (1)2 3_3 2 -'2 -; (l-a) rs(l-s). 

(3.5) 

It should be realized that the integrand in Eq. (3.4) only 
differs from zero when z lies in the interfacial region, i.e., 
zzR, so that the expansion in rlz is, in fact, an expansion in 
riR. We now want to expand the pair density itself in riR. 
This is done by making an expansion of the pair density 
around the pair density with the first and second argument 
replaced by the first two terms in Eq. (3.5), 

+ +p:f)(~ a 2?(1 -sZ) r + pg)(~ a 2r(1 - S2) )(~ (1 - a)2r(1 - S2») + ~ pg)(~ (1 - a)2r(l - S2) r 
(3.6) 

The subindices of the pair density indicate partial differentiation with respect to its first or second argument, e.g., 
pl2l = (a lat) p!2) [t,z + (1 - a)sr,r] It=z- asr' We furthermore did not write the explicit dependence of the pair density on 
its arguments for the higher order derivatives. The proper explicit dependence is given in the first term in the above expansion. 
It should be noted thatpl2) andp~2) are of order l/randp\~),pg), andpg) of order l/r relative top~2). As a result Eq. (3.6) is 
the proper way to expand the pair density so that higher-order terms in the above expansion correspond to higher powers in 
rl Rj this would not be the case if one expands around z. We write the partial differentiation with respect to the first and second 
argument in terms of a differentiation with respect to s and a 
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(2) _ - 1.!!...- (2) _ (1 - a) d (2) 

PI - -- d Ps d Ps , 
r s rs a 

(2) _ 1 d (2) a d (2) 
P2 ---Ps ---Ps 

r ds rs da 

(2)_ 1 d 2 (2)+2(l-a) d 2 
(2) (1-a)2 d 2 

(2) 2(l-a) d (2) 

PII - --;:; d~ Ps rs ds da Ps + r~ da2 Ps - rs2 da Ps 
(3.7) 

P
(2)_-=--!.d2 

(2) (2a-l) d 2 
(2) a(l-a) d 2 (2)+(l-2a) d (2) 

12 - r d~ Ps + rs ds da Ps + rs2 da2 Ps r~ da Ps , 

(2) _ 1 d 2 
(2) 2a d 2 

(2) + a 2 d 2 
(2) + 2a d (2) 

P22 - --;:; d~ Ps - rs ds da Ps r~ da2 Ps r~ da Ps . 

Using Eqs. (3.6) and (3.7), to second order in r/R, Eq. (3.4) becomes equal to 

[PN - PT] (z) = ! f dr l2 f dau'(r)r(l- 3~) {I + r(l; ~) 

X((l- 2a) ~!£.+ a(a - 1) d _~ (1- 3a + 3a2 )!£. + 2. a (l- 2a)(l-a)~) 
r ds rs da z ds z da 

+ r(l-.i)2 [(l-2a)2~+2a(l-2a)(1-a) 2.~(2._!£.) 8r d~ s da s ds 

+ - p~2)(z-asr,z+ (l-a)sr,r). a 2(1 a)2 d 2
]} 

~ da2 
(3.8) 

After partial integration over a and s this reduces to 

[PN -prJ (z) =2.fdrI2 t dau'(r)rp~2)(z-asr,z+ (l-a)sr,r)[(l- 3~) +--.C... (l-2a)(l +4~-9s4) 
4 Jo ~ 

+ ~ ( 1 - 3a + 3a2
) (~- 24s4 + 30s6

) - (1 - 2a)2(5~ - 42s4 + 45s6
) 

4~r 

+ (1 - 6a + 6a2) (1 + 3~ - 13s4 + 9S6 »)]. (3.9) 

Writing z-=R + ZI' where R is the equimolar radius and using Eq. (2.14) together with the above equation, we arrive at the 
following expression for the pressure difference across the spherical drop: 

b.p = 2~ f dZI f dr l2 f dau'(r)rp~2)(R +ZI -asr,R +ZI + (1- a)sr,r) 

X (1 - 3~) 1 - - + - + - - (1 - 2a) (1 + 4~ - 95) 1 --[ ( 
Zl zi ) 1 r 4 ( 2z1) 
R R2 R2s R 

+ (2.)2 ~ « 1 _ 3a + 3a2) (~ _ 24s4 + 3056
) 

R 4~ 

- (1 - 2a)2(5~ - 42s4 + 45s6
) + (1 - 6a + 6a2

) (1 + 3~ - 13s4 + 9s6 »] • (3.10) 

The first and second argument of the pair density measure the distance from the center of the droplet. Notationally it is more 
convenient to take the distance to the equimolar surface as a parameter for the pair density so that from now on R drops from 
the expressions for the first and second argument in the pair density. In the expression for b.p in Eq. (3.1) we now shift the inte
gration over ZI over a distance asr, i.e. ZI .... ZI + asr. Care has to be taken in doing this as the boundaries in this shift are itself 
integration parameters. One therefore has to subtract from the integrand in Eq. (3.10) the extrapolated integrand from the 
bulk regions. This is done by subtracting the extrapolated bulk pair density p;,ti (ZI ,r) which equals the liquid pair density 
p;,~) (r) for ZI < 0 and the gas pair density p;,;) (r) for ZI > 0, from the pair density in the interfacial region. Equation (3.10) 
then can be written as a sum of two terms: 

b.p= 2~ f dZI f dr l2 f dau'(r)r[p~2)(zl,zl +sr,r) -p;,7,i(zl,r)] 

X{(1-3~)[I-! (ZI +asr)+(!Y(ZI + asr) 2] 
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+ ~ ~ (l - 2a) (l + 4s'2 - 9s4 )(1 - ~ (Zl + asr») + ~ [( 1 - 3a + 3a2) (2s'2 - 24s4 + 30s6
) 

R 2s R 4s2R 2 

- (1 - 2a)2(Ss'2 - 42s4 + 4Ss6
) + (1 - 6a + 6a2) (1 + 3s'2 - 13s4 + 9s6

)]} 

+ 2~ J dZ I J dr l2 f dau'(r)r[p~~.i(zl,r) -P~ti(ZI +asr,r)]{O-3S
2
)[I- ~ (Zl +asr) 

+(~r(ZI +asr)2] + ~ ~O-2a)(1+4s'2-9s4)(I- ~ (Zl +asr») 

+ ~ ( 1 - 3a + 3a2) (2s'2 - 24s4 + 30s6
) - (1 - 2a)2(Ss2 - 42s4 + 4Ss6

) 
4s'2R 2 

+ (1 - 6a + 6a2
) (1 + 3s'2 - 13s4 + 9s6

) )}. 

The second term in Eq. (3.11) vanishes after subsequently integrating over Zl' a, and s, 

2~ J dr l2 f dau'(r)r[p~~)(r) -p~~)(r)]{ -as(1-3s'2)[ 1- ~; ++(a~rr] 

-- (1- 2a)(1 + 4s- _9s4) 1-- --- [(1- 3a + 3a2)(2s2 - 24s4 + 30h ar ..2 (asr) ar 
~ R ~2 

- (1 - 2a)2(5s'2 - 42s4 + 45s6
) + (1 - 6a + 6a2

) (1 + 3s'2 - 13s4 + 9s6
)] } 
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(3.11 ) 

= 4~ 2fT J dr J~l dsu'(r)r4[p~~)(r) -p~7)(r)](3S3_S) + 6~ (1+6s'2-15s4
) + ;:2 (1 + 17s'2-3S4») =0. 

(3.12) 

In the first term ofEq. (3.11), the integration over a can be carried out so that we are finally left with the following expression 
for the pressure difference which follows from the Irving-Kirkwood choice for the pressure tensor: 

6.p=_l_JdZI JdrI2U'(r)rp~2)(ZI'Z2,r)[(1- 3s'2)(1- Zl +Z2 + ZIZ2) + rs2 (3 -Ss'2)], 
2R 2R R2 2R2 

(3.13) 

where Z2 =Zl + sr. 
In a previous paper it has been rigorously shown that 14 

O'(R) = ~ J dZ I J dr 12 u'(r)rp;2) (ZpZ2,r) [(1 - 3S2)( 1 + Z~Z:) + ;;22 (3 - 5s'2)]. 

C(R) = 4~ J dZI J dr 12 u'(r)rp;2)(zl ,z2,r) [ - (1 - 3s'2)( Zl ; Z2 ) + ::2 (3 - 5S2)]. (3.14 ) 

If one substitutes these expressions into the Laplace equa
tion (2.7) one obtains Eq. (3.13) for the pressure difference 
directly. This shows that the Irving-Kirkwood expression 
for the pressure tensor leads to a correct expression for the 
pressure difference to third order in the inverse equimolar 
radius. Using a path different from the straight line integral 
in expression (2.16) for the pressure tensor of Schofield and 
Henderson, we calculate the resulting pressure difference in 
Appendix A. The path we choose leads to the so-called Har
asima expression for the pressure tensorl5 of a planar inter
face. The resulting expression for l1p of a curved interface, 
however, differs from the expression given in Eq. (3.13). 
Although the zeroth-order term in the expansion of l1p, 
which gives the surface tension of the flat interface, is the 
same for both routes, the first-order terms are different. It is 
clear that even though there may be some ambiguity in the 
definition of the pressure tensor the pressure difference, be
ing a measurable quantity, cannot depend on the choice of 
the pressure tensor. It must therefore be concluded that the 

Schofield-Henderson expression is not correct for an arbi
trary choice of the contour. 

IV. COMPARISON WITH PREVIOUS RESULTS AND 
COMPUTER SIMULATIONS. 

In this section we want to compare previous derived 
expressions for the radius dependent surface tension and 
curvature term with the rigorous expressions given in Eq. 
(3.14). In particular, we will compare the different expres
sions that have appeared in the literature for Tolman's 
length. In Ref. 14 we derived, on the basis of the expression 
for C(R) given in Eq. (3.14), an expression for kCo which 
gives, upon substitution in Eq. (1.4), the following formula 
for Tolman's length: 

0= ;; J dZI J dr I2 u'(r)r(1 - 3s'2) 

(4.1 ) 
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The subindex/indicates the pair density of the fiat interface. 
The familiar Kirkwood-Buff expression for the surface ten
sion ofthe planar interface2 is similarly found by comparing 
the zeroth-order terms in the expansion of O"(R) in Eqs. 
(2.9) and (3.14), 

0" = ! f dZl f dr 12 u'(r)r(l - 3,s2)PY)(Zl ,z2,r).(4.2) 

Equation (4.1) together with Eq. (4.2) gives a rigorous 
expression for the Tolman length. One may also derive an 
expression for 0 using the expression for the pressure differ
ence (2.14). Substituting r=R +ZI into Eq. (2.14), and 
subsequently expanding to first order in the reciprocal radi
us, it can be seen that8 

6.p= ! [f dzdpN -Pr]j(Zl) 

- ~ (f dZ1Zl [PN -Pr ]j(Zl) 

-f dzdpN - Pr]S,l (Zl»)]' (4.3 ) 

Here the difference of the normal and tangential component 
of the pressure tensor has been expanded to first order in the 
reciprocal radius 

[PN - Pr] (Zl ) = [PN - Pr ]j(Zl) 

1 
+'R[PN-Pr]S,l(Zl)' (4.4) 

From Eq. (4.3) we then get for the surface tension of the 
planar interface 

0" = f dZl [PN - Pr]j(Zl)' 

and for Tolman's length 

0= ~ f dZ1Zl [PN -Pr ]j(Zl) 

- ~ f dZl [PN - Pr ],,1 (Zl ). 

(4.5) 

(4.6) 

cial region in this equation, before shifting the integration 
over Zl over a distance asr. Substituting z; = Zl + asr and 
subsequently dropping the prime one finds 

Zs = 4~ f dZl f dr 12 .r dau'(r)r(1 - 3,s2) 

X (Zl + asr)pY) (Zj ,z2,r) 

+ 4~ f dZ j f dr j2 f dau'(r)r( 1 - 3,s2) 

X (Zl + asr)[p}7.~ (Zl ,r) - p}~,~ (Zj + asr,r) ]. (4.9) 

In the first term we can carry out the integration over a, 
while in the second term we subsequently integrate over Zj' 

a, and s. We find 

Zs = 8~ f dZ j f dr 12 u'(r)r(1 - 3s
2
) 

X(ZI +Z2)P?>(zl,z2,r) 

+ :5: f dru'(r)r[p};>(r) -p}~)(r)]. (4.10) 

With the use of Eq. (4.1) we see that Zs = - 0 + A where 

( 4.11) 

As A is, in general, unequal to zero, unlike a term of a similar 
origin which appeared in the expression for the pressure dif
ference [cf. Eq. (3.12)], this result shows that Tolman's 
length does not give the location of the mechanical surface of 
tension. 

The molecular dynamics results from Nijmeijer et al.8 

for Tolman's length and the location of the mechanical sur
face of tension at one particular temperature (with a scaled 
value of 0.90) are 

0= - 0.3 ± 0.9, Zs = - 2.5 ± 0.1. (4.12) 

These lengths are scaled with the Lennard-Jones radius. 
Their value for 0 is obtained from a direct calculation of !:J.p 
for a number of droplet radii as well as from a microscopic 

The first term in this expression gives the position of the so- _ calculation of the integral in Eq. (4.6) for a large number of 
called mechanical surface of tension configurations. Their value for Zs (l '(' in their notation) is 

found by a microscopic calculation of the integral in Eq. 
Zs == ~ -f dZ1Zl [PN - Pr ]j(Zl ). (4.7) (4.7) for a large number of configurations. Within the error 

v they clearly find that the distance between the mechanical 
In the literature2

,3.5.16 it is common to make no distinction 
between the mechanical surface of tension and the surface of 
tension defined by Tolman. This would imply that 0 = - Zs 

so that the second contribution in Eq. (4.6) must be equal to 
- 2zs. As we will show later this is not correct. Substituting 
the planar limit of [PN - Pr] (Zl ) given in Eq. (3.9) into 
Eq. (4.7) gives 

Zs = 4~ f dZl f dr 12 .r dau'(r)r(l - 3,s2)Zl 

X{PY)(ZI -asr,zl + (l-a)sr,r) -P);7.~(zl,r)}. 
(4.8) 

As was discussed in Sec. III it is important to subtract the 
extrapolated pair density from the pair density in the interfa-

surface of tension and the Gibbs surface is not given by Tol
man's length. 

-- Using a simple model for the pair density that was also 
used in a previous paper to calculate the spontaneous curva
ture and the rigidity constants, we now calculate 0 and A 
from Eqs. (4.1) and (4.11). The model assumes the pair 
densi.ty to be of the form 

(4.13 ) 

where g(r) is the pair correlation function in the uniform 
liquid. For the density profile we consider the classical van 
der Waals profile 

p(z) =Pc - t:.p tanh(z/2s), (4.14) 
2 
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wherepc =~(Pl + pg), Ap=(PI - pg), and Sis the bulk cor
relation length, which is a measure of the thickness of the 
interface. We note that Eq. (4.14) fulfills the requirement 
that the excess number density is zero. Using Eqs. (4.13) 
and (4.14) into the expression for the Tolman length we 
show in Appendix B that, on the basis of the symmetry of the 
model pair density, 8 = O. This is in agreement with the val
ue of Nijmeijer et al. (8 = - 0.3 ± 0.9). For A one finds 

-41T J A = --PcAp dr u'(r)rg(r). 
450' 

(4.15 ) 

Substituting the same model for the pair density into Eq. 
(4.2) for the surface tension and assuming that t is large 
compared to the interaction range, an assumption most ap
propriate close to the critical point, the surface tension is 
shown to be given by 

O'=~~JdrU'(r)rg(r) (4.16) 
t 45 

in Ref. 14. Combining Eqs. (4.15) and (4.16) it follows that 
close to the critical point, A is given by 

( 4.17) 

From this equation one directly obtains the scaling behavior 
as a function of the reduced temperature of A close to the 
critical point. As Ap - t {3 and 5- t - v it follows that 
A - t - {J - \'. For the temperature considered in the MD cal
culations of Nijmeijer et al. it seems not unreasonable to 
obtain an approximate value for A using Eq. (4.17). From 
Nijmeijer et al. we find for Ap = 0.62 ± 0.005 and 
Pc = 0.36 ± 0.005 in reduced units. The thickness 
t = 0.90 ± 0.05 can be obtained by fitting their density pro
files with the tanh profile. The resulting value for the loca
tion of the mechanical surface of tension then becomes, 
8=0, 

z, = A = - 2.1 ± 0.1. (4.18) 

In view of the assumptions made in the calculation of this 
number, the agreement with the value from molecular dy
namics (z, = - 2.5 ± 0.1) is rather satisfactory. 

V.SUMMARY 

The main results found in this paper are listed as fol
lows. 

The use of the Irving-Kirkwood expression for the pres
sure tensor leads to an expression for the pressure difference 
which agrees to third order in the reciprocal equimolar radi
us with the expression found using microscopic sum rules. In 

particular, the expressions for the surface tension of the flat 
interface and the Tolman length are found to agree. 

The use of the Schofield-Henderson expression for the 
pressure tensor for a particular contour different from the 
contour that leads to the Irving-Kirkwood expression, gives 
incorrect results for the pressure difference and in particular 
for Tolman's length. Clearly, the possible validity of the 
Schofield-Henderson expression for the pressure tensor de
pends on the choice of the contour. 

The distance between the mechanical surface of tension 
and the Gibbs dividing surface is not given by Tolman's 
length. The mechanical surface of tension does therefore not 
coincide with the surface of tension defined by Tolman. 

Using an approximate expression for the pair density it 
is possible to find values for the location of the surface of 
tension and for Tolman's length which are in reasonably 
good agreement with numerical values obtained by Nij
meijer et al. 8 

As a last remark we want to emphasize that, even 
though this paper may be considered as to support the 
soundness of the Irving-Kirkwood expression for the pres
sure tensor in an inhomogeneous system, the non unique na
ture of this quantity is still a matter of concern. Thus we 
consider it advisable not to use the pressure tensor whenever 
this can be avoided. 
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APPENDIX A: CALCULATION OF IIp TO FIRST ORDER 
IN 1/R USING A DIFFERENT PATH IN EQ. (2.16) 

The path we use to calculate the normal and tangential 
components of the pressure tensorin Eq. (2.16) is given by a 
line from r l = (rl./I ,Zl ) to (r2•11 ,Zl ) and then from (r2.11 ,Zl ) 
to r 2 = (r2.1I ,z2), 

1= (ar12./I'O) followed by 1= (r 12.II,asr) with O<a< 1, 
(AI) 

The normal and tangential component of the pressure tensor 
are then given by 

PN(Z) = kBTp(z) -! f dr 12 f da u'(r)ffp~2) (I (z - asr)z - r 12. II 1,1 [z + (1 - a)sr]zl,r), 

PT(Z) = kB Tp(z) - if dr12 fda u'(r)r( 1 - s'l)p;2) (Iz z - ar12•II I,1 (z + sr)z + (1 - a)r12./lI,r), (A2) 

where again the z axis has been chosen in the direction of r so that r = z z. The arguments of the pair density in the above 
expressions are, to first order in rlR, given by 
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l(z-asr)z-r12•11 1 =z-asr+ ~ (1-.r), 

I [z + (1 - a)sr]zl = Z + (1 - a)sr, 

Iz z - ar12•11 1 =Z + ~ a 2
(1 -.r), 

I (z + sr)z + (1 - a)r12•
11

1 = Z + sr + ~ (1 - a)2(1 - S2). 

(A3) 

We expand the pair densities around the pair densities with the first and second argument replaced by the first two terms in Eq. 
(A3), 

p~2)( I (z - asr)z - r 12•II I,1 [z + (1 - a)sr]zl,r) 

? 
= py) (z - asr,z + (1 - a)sr,r) + p~2) (z - asr,z + (1 - a)sr,r) - (1 - .r), 

2z 
(A4) 

Here, again, higher-order derivatives in the above expansion correspond to higher-order powers in r/ R and the subindices of 
the pair density indicate partial differentiation with respect to its first or second argument. The partial differentiation with 
respect to the first and second argument are written in terms of a differentiation with respect to sand z, 

p~2)(z-asr,z+ (1-a)sr,r) =-=--!.~p~2)(z-asr,z+ (1-a)sr,r) + (1-a) ~p!2)(z-asr,z+ (1-a)sr,r), 
r ~ ~ 

(2)( ) 1 d (2)( d (2) PI z,z+sr,r = --~Ps z,z+sr,r) +-Ps (z,z + sr,r) , 
r ds dz 

(AS) 

1 d 
pi2) (z,z + sr,r) = __ p;2) (z,z + sr,r). 

r ds 

We can now insert Eqs. (A4) and (AS) into the expressions for the normal and tangential component of the pressure tensor of 
Eq. (A2). The resulting expressions are inserted into the expression for Llp in Eq. (2.14). Writing again z=R + Zl we find 

LlPH = ~ J dZI (1 - ~ )[PN(ZI) - PT(ZI)] = 2~ J dr l2 J dZI fda u'(r)r 

X [- 2.r(1 _2 __ r_ (l-.r) ~+..c (1-.r)(1- a) ~ ~~(2)(Z - asrz1 + (1- a)srr) 
R 2R ds 2R dZ

I 
rs 
I' , 

(A6) 

The subindex H of the pressure difference indicates that this pressure difference is derived using the path in Eq. (AI) which 
leads to the Harasima expression for the pressure tensor of the flat interface. We can now perform the partial integration over s 
and Z I to yield 

LlPH = 2~ J dr l2 J dZI fda u'(r)r[ ( - y + y ~ - 2;S (1 - 2.r) )p!2) (Zl - asr,zl + (1 - a)sr,r) 

(A1) 

We shift the integration over Zl over a distance asr, i.e., Zl ->Zl + asr, in the first part of the first term of the above expression 
and simplify the second term. We then derive 
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I fd fd (d ' [ .... -2 2,s2 2rs .... _2][ (2) (2) ] + 2R rl2 ZI Jo au (r)r - ~ + R (ZI + asr) -T (I -~) Ps;l.g (ZI ,r) - Ps;l.g (Zt + asr,r) 

+ 2~ 2 f dr l2 f da u'(r)~( I -~) [ - (I - a)s2 + ~2 (I -~)] [p~~)(r) - p~~)(r)]. (AS) 

In the first term the integration over a can be carried out while in the second term we subsequently integrate over a and s. In 
the last term we integrate over a and s and combine the result with the result of the second term. We are then finally left with 

l!.PH = 2~ f dr l2 f dZ I U'(r)r[ (1 - 3~)(1 - ~) 

- rs (2-5~)]P(2)(Z Z +srr) -~fdrU'(r)r[p(2)(r) _p(2)(r)]. R s I' I , 9R 2 s,g Sol 
(A9) 

In order for us to compare this result with the previous derived result for the pressure difference using the Irving-Kirkwood 
expression for the pressure tensor we use the identity 

f dr l2 f dz lf(s)[p;2) (ZI ,ZI + sr,r) - p~t~ (ZI ,r)] = ~ f dr 12 srf(s) [p~~) (r) - p~}) (r)], (AW) 

where we require thatf(s) = - f( - s). This result can be derived using the fact that the pair density is symmetric under 
interchanging the first two arguments. Equation (A9) can then be written as 

tlpH = 2~ f dr l2 f dZIU'(r)r(1-3~)(I- ~)p~2)(ZI'ZI +sr,r) + 9;2 f dru'(r)r(p~;~)(r) -p~;7)(r». (All) 

This expression should be compared with the exact result for the pressure difference in Eq. (3.13) to first order in the 
reciprocal radius. We use Eq. (AW) to make the difference between the two expressions more transparent. The Irving
Kirkwood result for the pressure difference is then 

tlp = 2~ f dr l2 f dZI u'(r)r(1- 3~)(1- ~)p~2)(ZI'Zl +sr,r) - 1:;2 f dru'(r)r[p~;~)(r) -p~~)(r)]. (AI2) 

Although the first terms in Eqs. (All) and (AI2) are equal and thus lead to the same expression for the surface tension of the 
Hat interface, the last terms are clearly not equal. As is clear from the discussion in Sec. IV, the difference between the two 
expressions is proportional to A and therefore unequal to zero. 

APPENDIX B: CALCULATION OF TOLMAN'S LENGTH USING THE SIMPLE APPROXIMATION FOR THE PAIR 
DENSITY 

We will now show that (j becomes equal to zero when we insert the approximate expression for the pair density ofEq. 
(4.13) together with Eq. (4.14), into the formula in Eq. (4.1). Subtracting the extrapolated pair density in this formula gives 
us 

8 = ;01 
f dZ I f dr I2 u'(r)r( 1 - 3~) (2z1 + sr) [pf2)(ZI 'Z2,r) - P};7.~(ZI ,r)]. 

The term in square brackets, the excess pair density, can be written as the sum off our contributions 

p?) (ZI ,z2,r) - p};7.~ (Zt ,r) 

= (p; -jpcA,o[tanh(zl/25') +tanh(z2/25')] 

+ ~ tanh(zi /25')tanh(z2/25') )g(r) - ~~ - PcA,o sgn(zi ) + ~2 )g(r) 

- jpctlp [tanh(zi /25') - sgn(zi ) ]g(r) - jp.tlp [tanh(z2/25') - sgn(z2) ]g(r) 

- ~cA,o[sgn(z2) - sgn(zl) ]g(r) + A,02 [tanh(zl/25')tanh(z2/25') -1 ]g(r), 
4 

(BI) 

(B2) 

where sgn denotes the sign function which equals the sign of the argument. Inserting this equation in Eq. (B I) one finds 
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/j = _. -1-Pcl¥ J dz\ J dr 12 u'(r)rg(r) (1 - 3.r)(2z\ + sr) [tanh(z\ 12S") - sgn(z\ )] 
160" 

+-I-Pcl¥Jdz\ Jdr 12 U'(r)rg(r)(1-3.r)(2Z\ +sr){tanh[(z\ +sr)/2S"] -sgn(z\ +sr)} 
160" 

+ -1-Pcl¥ J dz\ J dr\2 u'(r)rg(r) (1 - 3.r)(2z\ +sr) [sgn(z\ + sr) - sgn(z\ )] 
160" 

- l¥2 JdZ\ Jdr 12 U'(r)rg(r)(1-3S2 )(2z\ +sr){tanh(z\/2S")tanh[(z\ +sr)/2S"] -t}. 
320" 

(B3) 

In the first term the integration over s can be carried out to yield zero. In the second term the integration can also be carried out 
after shifting z\, i.e., z\ ->z\ - sr. The result, again, is zero. The last term vanishes because of the symmetry of the profile; 
changing z\ ..... - z\ and s ..... - s and using tanh(x) = - tanh ( - x) we find that the integrand is antisymmetric under this 
operation. This term thus vanishes due to the symmetry of the density profile, if the density profile would not have the 
property of being antisymmetric, which is generally not the case, Tolman's length is not necessarily zero. The fact that the 
symmetry of the density profile leads to a vanishing Tolman length has also been found in density-functional calculations of /j 
by Fisher and Wortis. \8 The integration over z \ can be carried out in the third term in Eq. (B3), 

/j = ;0"1 Pcl¥ J dr 12 u' (r)rg(r) (1 - 3.r) (1- sr dz\2z\ + sr 1- sr dz\ ) = O. (B4) 

In this derivation we see that the sum of the two integrals in large parentheses in Eq. (B4) is equal to zero but that both 
integrals itself are not. Previous derived equations for Tolman's length2 have in the past led to nonzero values for /j using 
exactly the same model for the pair density due to the absence of the second term (sr) in the expression for /j in Eq. (Bl). 
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