
M van den Dries ArtifJcially intelligent archaeologists: 
fundamentals, facts and fictions 

Artificial computing techniques can be very useful tools 
for archaeological research and education, hut they are not 
nwc/i being applied yet. In this paper the abilities oftwo of 
llie.se techniques, i.e. expert Systems and neural networks, 
are described and compared. With hoth techniques an 
application nas heen built for the analysis of use-wear 
traces on flim implements. 

1. Introduction 
Computers started to be used by archaeologists in the 

early l%()s. At first they were only used as facilities for 
the storage and statistical analysis of large data sets (e.g. 
Kendall 1963). In the 1970s the 'New Archaeology' clearly 
affected the \\a\ in which mathematics and computers were 
used. Gradually their use became more differentiated. They 
evolved from data-describing aids to process-modelling, 
hypothesis-generation and data-explaining aids (Doran/ 
Hodson 197?). With this shift of attention came a need for 
more advanced problem-solving techniques that could 
utili/c specialist knowledge, i.e. artificial intelligence 
techniques. Doran even expected knowledge utilization to 
become fundamental in archaeological data analysis (Doran 
1974, 70). However, it was not until the 1980s that artificial 
intelligence technology reached a sufficiently high level to 
enable the first archaeologists to build their own expert 
system applications. This development was part of a 
process in which computing techniques were integrated in 
all kinds of archaeological research — a process which was 
made possible by the introduction of the personal computer 
and the subsequent explosive growth of the amount of 
software available. The archaeological world swiftly adopted 
many of the new computing techniques, for instance 
geographical information systems, but the same does not 
hokt lor artificial intelligence techniques. Despite the facts 
thal several successful expert systems have been developed 
(cf Bishop/Thomas 1984; Brough/Parfitt 1984; Francfort 
1991: Grace 1989; Lagrange/Vitali 1992; Patel/Stutt 1989) 
and that several researchers have pointed out their potential 
value for archaeological research {cf. Baker 1987; Doran 
1987, 1988, 1990; Voorrips 1990; Wilcock 1986), they have 
been neither readily accepted nor developed and applied on 
a large scale. Their usefulness is still being discussed. 

This lack of popularity of expert systems in archaeology 
is a rather strange phenomenon. Expert systems offer 
means for modelling and formalising subjective and 
heuristic expert knowledge and for making that knowledge 
accessible to and usable for non-experts. As most of our 
knowledge is subjective, there are certainly abundant 
potential applications in archaeology. The lack of 
popularity in archaeology is also strange in view of the great 
amount of attention that is being paid to this technology in 
many other scientific research disciplines, and also 
commercially; numerous applications are operational in all 
kinds of fields. 

According to Gibson this lack of popularity is 'due 
perhaps to the limited potential of expert systems in host 
disciplines' (1992, 263). But, in my opinion, their lack of 
popularity is due mainly to their supposed limited potential 
rather than to their actual limited potential. When 
archaeologists are asked about their opinion on these 
techniques, they are very interested. Ignorance and 
threshold fear, however, keep them from exploring their 
abilities. They either do not think of these techniques as 
potential aids for their research because they simply don't 
know the abilities of these techniques, or they hesitate to 
use them because of some fictions they have heard or 
because of prejudice. In other words, as long as they are not 
repeatedly confronted with useful applications and good 
results they will not start using or developing them. 

The aim of this paper therefore is to show how these 
techniques can be useful for, for instance, educational and 
research purposes. Only expert systems and neural networks 
will be discussed below, because they are the two artificial 
intelligence techniques that simulate human reasoning for 
the purpose of problem solving. First, some fundamentals of 
both techniques will be given to demonstrate their specific 
abilities. Secondly. the functionalities of these techniques 
will be compared by means of two applications that have 
been developed for the analysis of use-wear traces on flint 
artefacts. The results of a test-case in which both 
applications were involved will be presented. Finally, an 
attempt will be made to separate some facts from fictions 
regarding these techniques and artificial intelligence in 
general. 
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2. Artificial intelligence applications 
Expert systems and neural networks were developed by 

the research discipline called Artificial Intelligence. This 
discipline is concerned with the development of computer 
techniques that enable the simulation of human intelligence. 
The artificial intelligence research has yielded several tech
niques, each specialised in imitating aspccts of human 
behaviour, speech or reasoning. Examples of these are robotics, 
(visual) pattern recognition. natural language processing, 
speech recognition, expert systems and neural networks. 

Both expert systems and neural networks are computer 
programs that simulate human reasoning processes. If they are 
provided with human knowledge and problem-solving 
methods. they can solve highlv specialised problems or 
execute complex reasoning tasks.1 The aim of these techniques 
is to offer an opportunity to organise human expert knowledge 
into a form in which it can be used by non-experts. 

Apart from their background and aim, expert systems and 
neural networks have nothing in common. They have 
different architectures and use specific knowledge storing 
and processing methods. Furthermore, they work with 
different data formats. Expert systems can process non-
numerical (symbolic) knowledge, whereas neural networks 
are based on numerical data. The most important difference, 
however, concerns the type of knowledge they can handle. 
Whereas expert systems require explicit knowledge 
(e.g. decision rules), neural networks can work with 
examples which contain knowledge implicitly. Those 
differences imply that the two techniques should be used 
lor tliHerent purposes. Expert systems are successful in 
simulating heuristic methods and techniques. Neural 
networks, on the other hand, are capable of detecting 
(hielden) relationships between the properties that describe 
patterns within large and complex data sets. They can 
therefore be employed in analyzing problems of which the 
relations between the variables are unknown. 

2.1 EXPERT SYSTEM FUNDAMENTALS 

An expert system consists of three components, i.e. a 
knowledge base, an inference mechanism and a user 
interface (fig. 1). In a way, a knowledge base can be 
compared with a data base in that both are storage facilities. 
A knowledge base, however, consists of knowledge instead 
of raw data. The inference mechanism can be seen as the 
central nervous system. It applies the knowledge and 
controls the reasoning process. The latter means that it 
makes sure that the appropriate knowledge is applied at the 
appropriate moment. The communication between the 
system and its users is handled by the user interface. 
It serves as an intermediate between the two sides by 
receiving and translating their respective messages. 

For an expert system to be able to simulate expert 
reasoning it must be provided with specific expert 
knowledge. Usually. this is heuristic knowledge. which has 
been extracted from the expert himself. Such knowledge is 
based on formal facts and theories (gained through 
education) and on subjective rules-of-thumb and intuition 
(gained through experience). Before the extracted 
knowledge can be stored in a computer, it must be 
modelled, formalised and translated. The extraction, 
formalising and modelling of knowledge is called the 
acquisition phase. It is the most delicate phase of the expert 
system development process. Due to the subjective nature 
of the knowledge involved, it is for instance difficult to 
retrieve the expert's underlying reasoning processes. 
Moreover, it may be hard to have this kind of knowledge 
represented by means of explicit representation methods 
such as (IF-THEN) decision rules.: Eventually, the 
acquisition yields a formal knowledge model that consists 
of all the knowledge and procedures necessary for solving a 
specific problem. The knowledge model can be translated 
by means of a computer language and subsequently 
implemented into a computer. Nowadays, the actual 
development of the expert system can be facilitated by 
iising an expert system shell. A shell is a program which 
provides all the facilities of an operational expert system 
but leaves the knowledge base empty. 

An expert system uses its knowledge either to interpret 
information or to validate hypotheses. Such systems are 
called data-oriented (forward-reasoning) and goal-oriented 
(backward-reasoning), respectively. A data-oriented 
system 'reasons' in a forward direction, which means that 
it has no predefined goal. Instead, the reasoning process 
reacts to information that the system receives from the 
external world.1 The system will try to interpret this 
information by searching in its knowledge base for 
conclusions that can be drawn from it. For instance, if a 
user indicates that his data are 'red, round, and small', and 
the system has a rule saying 'IF red and round and small 
THEN it is a cherry', the system will conclude that the 
data represent 'a cherry'. 

A goal-oriented system does the opposite, it 'reasons' in 
a backward direction in order to confirm a predefined goal. 
This means that such a system tries to retrieve the 
information that is required to confirm that goal. For 
instance, if a user indicates that his hypothesis is that 'it is a 
cherry', and the system has a rule saying TF it is a cherry 
THEN (it must be) red and round and small', the system 
will ask whether the characteristics 'red and round and 
small' are indeed present. Such a goal-oriented system 
cannot only retrieve the required information by questioning 
its user but also by consulting its knowledge base or 
another external data source, such as a data base. 
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Figure 1. An expert system versus a neural network regarding their architecture and the composition of their knowledge. 

As data-oriented systems can be used to interpret data or 
to react to (changes in) incoming information, they are most 
suitable for applications with analyticaJ and educational 
purposes, especially for those that require an immediate 
reaction of a 'master'. A goal-oriented system can be 
applied to situations in which a user wants his hypothesis 
verified or wants to obtain a second opinion due to 
uncertainties. 

Used in either of these two ways, an expert system can 
only be applied to tasks that can be clearly defined and 
thal are of a restricted extent and complexity. As far as the 
complexity is concerned, a directive may be that a human 
expert must be able to solve a particular task or problem 
within a couple of hours. Of even greater importance is 
that the required knowledge can be represented by means 
of explicit methods. However, some expert knowledge can 
hardly be formalised because of its subjective character; 
experts may have difficulties in describing their 
knowledge explicitly and in explaining the underlying 
reasoning processes which they apply (Kidd 1987, 3). 
Moreover, some problems are so complex that it is nol 
possible to determine the relations between their variables. 
This means that sucli lasks cannot be simulated by means 
of the expert system technique. For those cases a neural 
network application may be a suitable alternative 
approach. 

2.2 NEURAL NETWORK FUNDAMENTALS 

The architecture of a neural network is deduced from the 
biological structure of the human brain. The brain is a very 
complex organ that is made up of ten to one-hundred billion 
cells. called neurons. Neurons are special cells that are 
capable of receiving. storing and sending information. 
Each neuron is connected to approximately ten thousand 
other neurons and together they form a complex network. 

Via the connections (dendrites) they send electrical and 
chemical signals through which they communicate with 
each other. Since these signals can be transferred 
simultaneously, thousands of impulses can pass the neurons 
per second (Carling 1992). That way the network structure 
enables a massive neuron activity. This implies that the 
brain can process enormous amounts of information and, 
thus, adequately respond to the situations it is confronted 
with. 

An artificial neural network is a computer program that 
tries to simulate the principle of a biological neural network 
by means of a mathematical model. Like the human brain, 
an artificial network consists of neurons, i.e. smal] 
processing elements that can receive, process and send 
signals. These neurons are arranged in at least three layers: 
an input layer, one (or several) hidden layer(s), and an 
output layer. The neurons of the input layer represent the 
variables describing a problem. The output neurons 
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represent the solution that is associated with it. The neurons 
of the hidden layer act as an intermediate between the input 
neurons and the output neurons. They are invisible to both 
the applieation developer and the user for they have no 
direct connection to the outside world. 

As with the human brain, the neurons of a neural 
network are connected to one another, although not 
physically. They can pass Information to one another 
through programmed instructions. Each neuron in one layer 
is connected to those of another layer (fig. 2). A network's 
knowledge is distributed among these connections. It is not 
stored within the neurons. 

The principle of a neural network is that it can be 
instructed with examples of a problem to enable it to solve 
similar problems. It searches for relationships between the 
variables of a reference data set in order to apply these to 
similar data. The network translates these relationships as 
connections between the neurons. Each connection has a 
specific weight, a numeric value. The collection of weights 
is stored as a data matrix. 

The configuration of the connections is based on the 
results of calculations and has been established through a 
process of repetition of examples. Creating the right 
weights is a complex and time-consuming process, which 
can take a long period of training. Training means that a 
network is provided with a large set of examples which 
consist of input and output patterns, which the network tries 
to simulate in order to construct the connections and their 
weights between the various input and output neurons. For 
instance. the input for a network that has to recognise fruit 
would be 'red, round, small' and the output 'cherry' or 
'yellow, round, large' and 'melon'. Both the connections 
between the input and output and the weights are entirely 
programmed by the network software. They are constructed 
by means of predefined mathematical functions and the 
network developer has hardly any influence on this process. 
The network starts its training by giving an arbitrary output 
to a specific input of an example. It compares this output 
with the expected output of the example. The arbitrary 
outputs are of course predominantly wrong. However. the 
network evaluates these mistakes and subsequently adjusts 
the connections or the weights of the connections until 
the network is able to generate all the outputs correctly. 
In other words, it 'learns' by experience. 

Once this training is finished, the applieation building is 
finished. The network can then be employed for the 
interpretation of 'new' situations or problems that resemble 
those it has learned. With a neural network this means that 
a user only has to select the input variables that represent 
the properties of the problem. With reference to the prior 
example, the neurons 'yellow', 'round', and 'small' could 
lor instance be selected. These activated neurons 

subsequently send a signal to the hidden layer. As each 
hidden neuron is connected to each input neuron, it will 
always receive several signals. These incoming signals are 
of various weights, because they come from various 
connections. The hidden neuron calculates its activation 
strength by summing up the incoming signals. Only if a 
certain activation level is reached, does a hidden neuron 
pass a signal on to the neurons of the output layer. Again, 
the strength of these signals and the weight of the 
connections are responsible for the degree in which the 
neurons of the output layer are activated. Finally, the 
combination of the activated output neurons represents the 
network's interpretation of the information that was 
presented by the user (Lawrence 1991). 

From a developer's point of view, the development of a 
neural network is far less time-consuming than that of an 
expert system. Although it probably seems quite 
complicated, building a neural network is fairly simple. The 
connections and the weights matrix are programmed by the 
network software on the basis of predefined mathematical 
functions.4 The knowledge acquisition phase consists only 
of selecting the input and output variables and collecting 
sufficiënt examples (fig. 1). As for the implementation, the 
developer's task is twofold. First, he makes the network 
structure, i.e. he defines the input and output neurons and 
the number of hidden layers. Then he provides this network 
with a large set of examples. So, unlike with an expert 
system, the knowledge does not have to be made explicit 
before it can be implemented into a network. The developer 
has to build decision rules (IF-THEN) for an expert system, 
whereas the neural network deduces the relations from the 
examples and builds the decision 'rules' itself. The only 
requirement is that the examples must be representative 
descriptions of the various situations (and the associated 
solutions) that have been experienced within the problem 
domain; they must cover the range of variability exhibited 
by the real world. 

3. Two applications5 

In 1990, a project was launched at the Institute for 
Prehistory of Leiden University to develop an expert system 
applieation for the analysis of use-wear tracés on flint 
artefacts. This applieation was intended to support both 
students and experienced use-wear analysts in the analysis 
of use-wear traces and in the evaluation of interpretations, 
respectively. 

The reason for launching this project was the desire to 
study the possibility of formalising use-wear analysis for 
the purpose of computer-assisted instruction. Since the use-
wear expert at Leiden University6 spends much time on the 
training of students, it was decided to develop an expert 
system that would be able to providc support in this task; 
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Figure 2. Neuron and layer 
structure of a neural network. 
Each neuron (N) in one layer is 
connected to each neuron of 
another layer. 
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hidden layer 
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il parts of the expert's task were to be taken over by an 
educational system. the expert would be able to spend more 
time on research. Moreover, unlike a human expert such an 
artificial expert is available at any moment and is easily 
duplicated. That means that both the research and the 
educational capacity of the human expert can be increased. 
Using an expert system can be advantageous for students as 
well. They can control the pace and the direction of their 
leuning and they have the opportunity to work with 
advanced computing technology. 

Another advantage of developing an expert system was 
that it would offer an opportunity to formalise and 
standardise the method of analysis. Formalising a method 
improves its scientific acceptance while standardised 
procedures yield less subjective results. Moreover, once the 
knowledge is in a formalised format, it can be evaluated in 
order to tracé deficiencies. 

The project has resulted in a system called WAVES.7 At 
present this system is partly operational. The working parts 
have been tested and one of these tests will be discussed in 
the next section. While this application was being 

developed, the neural network technology was introduced 
into the archaeological world. Neural networks were 
launched as 'a superior alternative' (Gibson 1992, 263) to 
expert systems, whose major functional disabilities they 
overcame. In order to verify these statements and to make a 
comparison with the achievements of the expert system, it 
was decided to develop such a system for use-wear analysis 
as well. A neural network application1* could be realized 
with relatively little effort by using the knowledge source 
used for the expert system. Moreover, if both systems were 
to be based on the same knowledge source, it would be 
possiblc to compare their analyzing qualities. 

3.1 THE EXPERT SYSTEM APPLICATION 

As WAVES is meant to be used by two different groups of 
users, it consists of two independent parts. One part executes 
the analysis method as a step-by-step process. In this way 
students can be trained to execute the required procedures. 
While supervising the process of analysis, the program also 
tries to arrive at an interpretation. This means that it reacts to 
the information given by the user. It is data-oriented. 
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The other part evaluates interpretations in order to 
support the experienced analyst who is already familiar with 
the procedures but not very confident of his or her 
interpretations. This part is goal-oriented; it tries to confirm 
the interpretation by questioning the user. The following 
description and test-case refer to the analyzing part only. 

As the analyzing part of the WAVES application not 
only steers the direction of the process of analysis, but 
also interprets the observed wear traces, it needs detailed 
information on the characteristics of the wear. This is 
obtained via a question-and-answer game. It means that the 
system will ask the user for a description of the analyzed 
implement and of the observed wear traces. In order to 
make sure that the system receives the appropriate 
information, the answers to the questions are of multiple-
choice format. This means that for each answer (variable) a 
lists of possible answers (values) is given (fig. 3). The user 
chooses a value that corresponds best to the traces 
observed. Whenever the user is uncertain about his answer, 
he can ask for background information on the meaning of 
certain questions or of variables and values. This 
information consists of descriptions, photos or schematic 
drawings that explain the differences between the values. 

The system's method of analysis resembles that of the 
expert. It starts by verifying whether an implement is 
analyzable and whether the observed wear traces can be 
ascribed to use.9 This is foliowed by the actual analysis of 
the use-wear traces. The analysis is divided into two parts: 
one for the interpretation of use retouch and the other for 
polish, edge rounding and striations. These parts work 
independently of one another and can be employed 
separately. The reason for this division is that the various 
wear categories are either not always simultaneously 
present or not equally diagnostic. In such cases it should be 
possible to arrive at an interpretation that is based on either 
one of the categories. An advantageous side-effect of the 
division is that two independent interpretations can be 
obtained if all wear categories are present. The system's 
final questions relate to the morphological aspects of the 
implement. This information can be used to verify whether 
the result of the analysis is in accordance with the 
implement's morphology. 

On the basis of the received information, the system 
subsequently attempts to identify the nature of the materials 
and the motions that may have caused the observed traces. 
As different contact materials may sometimes have caused 
similar wear attributes and as similar materials may have 
resulted in different wear patterns (e.g. Unrath et al. 1986), 
it is often difficult to identify the exact contact material and 
motion. Moreover, a tooi may have been used on several 
materials. Hence. it would be wrong to focus on the 
Identification of one contact material only. Therefore, the 

result of the system's interpretation consists of a list of all 
the materials and motions that may have caused the wear 
and the probabilities of those materials and motions actually 
being responsible for the observed traces (fig. 4). These 
probabilities are expressed by means of scores, which are 
the results of the calculation of the indications suggesting 
a specific contact material.10 They also give an indication 
of the value of the interpretation; traces that are not 
diagnostic, such as a generic weak polish, will not yield 
interpretations with high scores. If, on the other hand, the 
wear characteristics are indicative of only one contact 
material then this material will have a higher score than the 
others. Furthermore, the system's interpretation is 
accompanied by pictures showing the wear traces that the 
system associates with the result of the analysis. With the 
aid of these pictures, the user can verify whether the 
system's interpretation corresponds to his observations. 

The knowledge on which WAVES is based was derived 
from the results of an experimental programmc consisting 
of 301 experiments with replicated flint artefacts (Van Gijn 
1989, 168-174). It was believed that these results could 
serve as a reference collection from which knowledge rules 
could be deduced. A detailed analysis of these data revealed 
what combinations of the wear attributes are diagnostic of 
specific contact materials and motions (Van den Dries/Van 
Gijn in press). 

The main reason for using a reference collection as the 
basic knowledge source was that it is very difficult to build 
a knowledge model with knowledge extracted from human 
experts directly and from research reports (Van den Dries 
1994). Such expert knowledge often covers predominantly 
the category of the diagnostic wear traces, whereas the 
category of the exceptions and uncertainties is underrepre-
sented. A knowledge model used for educational purposes 
should cover this variability. It was therefore believed that a 
reference collection would include parts of both categories 
and that expert knowledge could be used to supplement the 
knowledge derived from such a collection. 

3.2 THE NEURAL NETWORK APPLICATION 

The reference collection that formed the basis for the 
knowledge of the expert system was also used to train a 
neural network application. The difference between 
WAVES and the network is that the knowledge was 
translated into a different format: into decision rules for the 
expert system and into presence/absence scores for the 
network. Furthermore, the decision rules were deduced 
from the raw data, whereas the network was trained with 
the aid of unaltered data. 

Up till now, this application has only been trained to 
interpret polish. As only 161 examples of the reference 
collection showed traces of polish, this was a relatively 
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WAVES - Wear Analysing and Visualising Expert System 

Figure 3. Example of a screen of 
the expert system application. It 
enables the user to choose the 
wear-attribute that corresponds best 
with the observed traces. 

Figure 4. Screen of the expert 
system application showing the 
results of the polish analysis. 
By clicking on a "picture'-button 
photographs of the associated use-
wear are being displayed. The 
other buttons give access to the 
results of the retouch analysis and 
of the motion analysis. 
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particular contact-material. They are often seen 
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very deep initiation and a short and wide shape. 
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small training set. It took the network upproximately one 

huur (650 runs through all examples) to 'learn' the input 

and output patterns of the examples. 

The network's input layer consists of 31 neurons and the 

output layer of 15 neurons (fig. 5). The input neurons 

represent the attributes of the five variables that describe 

the characteristics of the polish. The neurons of the output 

layer represent the contact materials that may have caused 

the polish. As with the output of the expert system, several 

of the output neurons may be active at the same time il the 

traces analyzed indicate several contact materials. However, 

the degree of activity of these neurons may differ. This 
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Figure 5. The only screen of the 
neural network application. The lett 
hand side shows the input neurons 
(the polish distribution, texture, 
brightness, topography, and width), 
the other side the output neurons 
(the associated contact-material). 
The user chooses the five input 
neurons that correspond to the 
observed wear-traces and the 
system shows the contact-materials 
that may have caused that specitic 
wear pattern. 
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degree of activity is an indication of the certainty of the 
interpretation. 

Whenever a user consults the network, he only has to 
select five of the input neurons which correspond to the 
characteristics of the use wear traces observed. The network 
compares this Information with its reference matrix and 
calculates the degree of activity of the output neurons. 
Because a network consists of compiled data matrices only, 
a processing session takes less than a second. 

Since the application was intended for studying the 
potentials of a neural network, it was not provided with a 
user-friendly interface; it is not suitable for computer-
assisted instruction. However, it can certainly be used for 
its achievements comparing to those of an expert system. 
It can also be a useful tooi for a professional use-wear 
analyst who is interested in studying the diagnostic value of 
specific attributes. It may be interesting to observe the 
consequences for the output of manipulation of the input. 
If the preliminary results are promising, this application 
may be trained to interpret other use-wear categories as 
well. 

4. A test-case 
The expert system and neural network application 

described above have been applied to a test-case to enable 
comparison of their achievements. This comparison referred 

to the interpretation of polishes only, because the network 
had been trained for this purpose only. 

The test-case consisted of the analysis of 16 replicated 
flint artefacts used for experimental purposes and of 10 
archaeological artefacts from the Dutch Linearbandkeramik 
site of Elsloo, Limburg, the Netherlands. The traces on 
these implements were entirely new to both systems as 
none of them had been used to compose their knowledge. 

For the purpose of studying the reaction of both systems, the 
test set was composed of implements displaying polishes that 
were difficult to interpret. For instance, three experimental tools 
(346, 378, 385) were included that had been used on materials 
of which it was known beforehand that neither system would 
be able to identify them. Many of the other experimental tools 
were selected because they displayed slightly different polishes 
although they had been in contact with similar materials 
and because they showed less diagnostic wear patterns. 

Because the contact materials of the tools that had been 
used in the experiments were known, the interpretations for 
these tools could be evaluated as a 'blind test'. The 
interpretations for the prehistorie polishes were more 
difficult to evaluate because the worked material was, of 
course, unknown. Therefore, these results were compared 
with those given by a professional human use-wear 
analyst." The assumption was that in the case of dissimilar 
interpretations the human expert would be right. 



243 M. VAN DEN DRIES - ARTIFICIALLY INTELLIGENT ARCHAEOLOGISTS 

Table 1. The actually worked materials versus the interpretation of the expert system and the neural 
network. 
* Both systems have not been provided with knowledge about these materials. 

tooi nr. worked material expert system interpretation neural network interpretation 

UI soaked ant lei- -

$45 medium hard hard wood/ 

wood* soft wood 
v | (> shell* -
150 soft wood soft wood 

351 soaked antler -
352 soft wood soft wood 

$60 soft wood -
363 soft uoml -
»67 fresh hide fresh hide 

(70 fresh hide fresh hide 

)71 fresh hide fresh hide 

578 hide with ochre* -

)83 soft wood soft wood 

»85 dry clay* soaked antler 

386 fresh hide fresh hide 

388 dry bone butchering 

dry antler/ 
fresh bone 
soft wood 

soft plants 
soft wood 
hard wood 
dry hide 
fresh bone 
fresh bone 
fresh hide 
fresh hide 
fresh hide 
solt wood/ 
dry antler 
soft wood 
soaked antler/ 
soft wood 
fresh hide 
fresh bone/ 
dry antler 

The test procedure consisted of two steps. First, the 
characteristics of the wear traces were described by an 
expei'ienced analyst. Theii these descriptions were presented 
to the two systems. The reason tor this was that the test was 
intended to validate the knowledge. An experienced analyst 
was used to exclude the possibilitj of a system's pooi 
achievements being ascribed to a user's lack of experience — 
something which otherwise may very well have happened 
because with both systems the actions of the user were not 
yet perfectly controlled. 

4.1 THE EXPERT SYSTEM'S ACHIEVEMENTS 

The results oblained lor the experimentally produced 
polishes (tab. I)'2 show that the expert system could not 
identify the traces of 6 tools (344, 346, 351, 360, 363, 378). 
This is a rather large part of the test set. There are two 
possible explanations for this. First of all, the traces 
analyzed may have differed from the traces on which the 
system has knowledge. This is due to the fact that this 
knowledge was derived from experimentally produced 
traces. An experimental programme cannot cover the entire 
range of possible tracés. K\perience lias show n that some 
traces occurring abundantly on archaeological tools cannot 
be replicated on experimental tools. An example of such 
traces is what has been termed polish '23' (Van Gijn 1989, 
85). This type of polish (bright, plant-like on one side, hide-

like on the other) has been observed by several analysts 
(Cahen et al. 1986; Van Gijn 1989; Juel Jensen 1989; 
Keeley 1977), but its origin has not yet been experimentally 
determined. Such problems reveal one of the limitations of 
expert systems. If a situation or problem differs too much 
from those from which the knowledge was derived, a 
system may be unable to deal with it. For this application it 
is therefore very important that the knowledge base is 
supplemented with expert knowledge. Only the human 
expert has knowledge about the variability of the traces 
exhibited by the archaeological record. 

The second possible explanation has to do with the 
subjective nature of the variables used to describe the wear 
traces. Most of the descriptions are based on relative 
'measurements'. It is, for instance, difficult to decide 
whether a polish looks 'bright' or 'very bright'. This 
implies that the descriptions of the wear characteristics 
given by the analyst need not necessarily match those given 
by the expert, on which the system is based. This may 
cause discrepanties between the descriptions, yielding 
information the system cannot interpret correctly. 
Presumably, this problem will be eliminated when the 
system will be expanded with more photographs and 
schematic images giving examples of the attributes. As 
pictures give a much better impression of what is meant, 
they will facilitate the selection of attributes. 
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In one case (tooi 385) the system gave an incorrect 
interpretation. However, this implement had been used for 
an entirely new experiment (carving dried clay), of which 
the system had no knowledge. The fact that the system did 
come up with an interpretation means that, according to the 
system. the observed traces bore some resemblance to those 
produced in working soaked antler. For a use-wear analyst 
this may be a strange misinterpretation. It can however be 
explained by the fact that the observed traces were non-
diagnostic and happened to look like other non-diagnostic 
traces (produced in cutting soaked antler) which were 
included in the knowledge base. 

This example of a misinterpretation illustrates the 
problem of identifying non-diagnostic wear pattems. 
Even though some similar problems may be avoided by 
expanding the application with expert knowledge and by 
enlarging the experimental reference collection, it is 
likely that no system will ever have sufficiënt knowledge to 
exclude all such misinterpretations. Non-diagnostic wear 
and especially generic weak polish is very difficult to 
interpret, even for the best professional analysts. 

In two other cases (tools 345, 388), the system's 
interpretation was acceptable because it approached the right 
answer sufficiently. In some cases this may be justified 
because different activities may cause similar traces.11 

As already mentioned before, the results of the analysis 
of the prehistorie polishes (tab. 2) are less easy to validate. 
Although the expert system could not analyze all the 
artefacts, the results obtained for those that it could are in 
accordance with those given by the human analyst. This is 
promising and it is encouraging that the system can already 
do this while its knowledge is still based on the results of 
experiments only. 

4.2 THE NEURAL NETWORK'S ACHIEVEMENTS 

A major difference between an expert system and a 
neural network is that the latter will always generate an 
answer, even if it is a very unsure one.14 This explains why 
the network made more mistakes in interpreting the 
experimentall} obtained polishes (tab. I). Mosl of these 
mistakes concerned precisely those tools (344, 346, 351, 
360. 363, 378) which the expert system could not identify 
either. The network tried anyhow and failed. It searched 
for the material that came closest. Unfortunately, in the 
case of a use-wear analysis the resultant answer is often 
misleading rather than helpful. But in some cases it may 
give a correct indication of the hardness category of the 
contact material. The problem, however, is that you never 
know when the answers are reliable; misinterpretations that 
are not due to a lack of knowledge cannot be explained. 
This is because the reasoning process of neural networks is 
invisible. 

The network correctly interpreted the traces of six tools 
(350. 367, 370, 371, 383, 386). The interpretation of tooi 
345 was accepted as being correct, because the system has 
no output neuron for medium hard wood. only for hard 
wood and for soft wood. In two cases (tools 344, 388) the 
network's interpretation was almost correct. It turned out 
that the network had some difficulties distinguishing 
between materials showing comparable traces, like hard 
animal materials such as bone and antler. However, this is 
not surprising. Professional analysts may also have 
difficulties in such cases. 

It is peculiar that, like the expert system, the network 
interpreted the implement which had been used for carving 
dried clay (385) as used on soaked antler. This means that 
the observed traces must indeed have been comparable with 
those produced in working soaked antler. 

With no fewer than eight of the archaeological artefacts 
(3b, 5, 6, 10, 19, 20, 31, 34), the network's interpretation 
was similar to that of the human expert (tab. 2). In three of 
these cases (tools 6, 10, 31) the network's interpretation 
corresponded to that of the human analyst, whereas that of 
the expert system did not. The traces of only two 
implements were misinterpreted (tools 1, 3a). 

Table 2. Interpretation of polish on 10 Linearbandkeramik artefacts, 
given by a human analyst, the expert system and the neural network. 

tooi nr. analyst expert system neural network 

I dry hide - fresh hide 
3a dry hide - fresh hide 

3b bone butchering butchering 

5 hide ? fresh hide fresh hide 

6 bone - butchering 

10 fresh hide - fresh hide 

19 wood hard wood/ hard wood/ 

soft wood soft wood 
21) fresh hide fresh hide fresh hide 

31 hide - fresh hide 
34 antler soaked antler soaked antler 

4.3 CONCLUSION 

From a comparison of the achievements (tab. 3) it can 
be concluded that as far as the experimental tools are 
concerned, the expert system performed slightly better than 
the neural network. With respect to the interpretation of the 
archaeological implements, however, the network yielded a 
better result. This difference may be due to the composition 
of the test set. The selection of the replicated tools 
displayed relatively more wear patterns that were not very 
diagnostic. whereas the archaeological tools contained more 
diagnostic patterns.'5 If provided with the appropriate 
knowledge, expert systems may be better at interpreting 
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Table 3. Final comparison of the test results. 
* In this case true and talse means that the answer is respectively 
equal and unequal to the answer of the human analyst. 

interpretation of: expert system neural network 

experimental replica's (N=I6) 

l i n e 

talse 
none 

archaeological artefacts (N=IO)* 

true 
f al se 
none 

total (N=26) 

true 
l'alse 
none 

9 7 
l 9 
6 ~ 

5 8 
ii : 
5 -

14 15 
1 11 

11 -

exceptions than neural networks. When interpreting data, 
the latter focus on recognising similarities with the 
examples that they have learned. They try to relate new 
data — and thus also exceptions — to their generalised 
knowledge. Therefore, they can only interpret exceptions 
correctly if they have been provided with enough 'learn 
examples'. Unfortunately. the difficulty with exceptions is 
that there are only few examples. However, when it comes 
to reaJ exceptions that have never before occurred, the 
expert system will not be able to give an interpretation. 
It will simply lack the appropriate knowledge. A neural 
network, on the other hand, might be able to give an 
interpretation that is in the right direction (for example the 
right hardness category). 

From the results it can also be concluded that both 
s\ sterns, hul especially the expert system, can be useful if a 
human analyst wants a second opinion on his interpretation. 
For example, the analyst was uncertain about the traces on 
tooi number five, and both the expert system and the neural 
network confirmed the interpretation. It is, however, the 
expert system that is best suited to this purpose; no less 
than 93 percent (14 out of 15)lh of its interpretations 
endorsed those of the professional analyst. Moreover, in 
contrast to those of the neural network, the expert system's 
performances for the replicated tools and those for the 
archaeological implements show no significant difference. 
Because of this the expert system is the most reliable of the 
two applications. 

The final conclusion is that both applications already 
performed quite well. Especially in view of the fact that 
they were based on a rather small and unbalanced set of 

examples, their achievements were encouraging. The expert 
system interpreted 54 percent (14 out of 26 tools) correctly 
and the neural network 58 percent (15 out of 26 tools) — a 
difference in performance which seems small. However, if 
the wrong interpretations are also taken into consideration 
the difference is greater: 7 percent of the expert system 
versus 42 percent of the neural network. 

Nevertheless, it cannot yet be concluded that one of the 
techniques is more suitable for this kind of analysis than the 
other, because the misinterpretations of both applications 
are still due to insufficiënt knowledge rather than to 
inadequacies of the applied techniques. More tests will have 
to be carried out to obtain a more clearly defined picture of 
their specific potentials for the analysis of use-wear traces. 
Such tests should incorporate a comparison of the 
performances of all three 'types' of analysts. This means 
that both applications should be employed in a real 'blind 
test' in which human experts also participate. 

5. Some facts and fictions 
As mentioned in the introduction, it is not only ignorance 

that may discourage people from employing artificial 
intelligence techniques, but also threshold fear. This 
threshold fear is mainly due to the endless discussions on 
the potentials, applicabilities and threats of specific 
techniques as well as of artificial intelligence in general. 
Unfortunately, most of these discussions are either based on 
fictions or cause new fictions. In the following I will 
therefore concentrate on three major points of discussion 
and will attempt to divorce some facts from the fictions. 

A first point of discussion concerns the potentials of the 
techniques discussed above. It is said, for instance, that 
neural networks are superior to expert systems in terms of 
functional abilities and social acceptability (Gibson 1992. 
265). But, first of all, as this is comparing apples and 
oranges, it is, strictly speaking, tmpossible for either one to 
be superior to the other. If this were possible it would imply 
that a person who is specialised in reasoning through 
association is superior to a person who is specialised in 
reasoning through deduction. Furthermore, neither one is 
superior to the other since both techniques have their 
advantages as well as their disadvantages. They are 
equipped with different knowledge representational and 
reasoning methods, which implies that they may only be 
more suitable for specific purposes. It is a fact that expert 
systems perform best in tasks involving explicit 
knowledge and deductive reasoning, while neural 
networks perform best in recognising complex non-linear 
pattems or tasks in which the relations between the 
variables are unknown. Therefore, if both techniques are 
used for the kind of tasks they have been designed for, 
they are equally useful. 
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The same line of reasoning can be used for the idea that 
neural networks can overcome the major functional 
disabilities of expert systems. The functional ability of any 
system depends on whether the applied technique suits the 
task it is employed in and on the composition of the 
knowledge that is utilized. 

One of the arguments that is used to demonstrate the 
superiority of neural networks is that they work well with 
incomplete data and that their performance at the edge of 
knowledge is far better (Gibson 1992, 265). This suggests 
that neural networks are able to interpret exceptional 
situations, which deviate from those they have learned. 
However, if the functional ability of a neural network were 
superior to that of an expert system, the results of the above 
test case would have demonstrated this. It is true that the 
network reacted more flexibly to exceptions, in the sense 
that it generated answers in all the cases that the expert 
system could not. But we have seen that these answers were 
not very reliable; 8 out of 11 were wrong. It is a fact that a 
neural network's interpretation is always an estimation. 
which means that it may be correct but it may also be very 
wrong. In other words, when a network has to perform at 
the edge of its knowledge its achievements are poorer. And 
the question is whether in such cases an unreliable answer 
is preferable to no answer and whether the latter must, 
therefore, be classified as a functional disability. 

Apart from this, the idea that neural networks can work 
well with incomplete or exceptional data is an example of 
wishful thinking. No artificial intelligence technique can 
work well with incomplete data as long as even humans 
have great difficulties interpreting situations they have 
hardly any knowledge of. 

Another argument for the superiority of neural networks 
is that they have the capacity to formulate their own 
representations of the expert's reasoning processes, without 
a designer having to make a knowledge model. However, 
the question is whether this is always an advantage. 
It makes a neural network a 'black box' and the user has 
very little influence on the composition of the internal 
knowledge. As a consequence, the user may have 
difficulties finding out exactly what a network has 
'learned'. It may have learned to distinguish the examples 
from one another on the basis of properties which are 
background noise and have nothing to do with solving an 
archaeological problem. Furthermore. if a network structure 
is not well designed, for instance if the hidden layer is 
composed of too many neurons, it may learn the examples 
by heart and may not be able to analyze any new problem 
(Lawrence 1991, 123). 

With expert systems, on the other hand, this is not a 
problem as they are 'transparent boxes'. Because their 
reasoning processes are based on a formal model, they are 

controlled by the designer and are visible to the user. The 
advantage of such a model is that it can be used to check 
the consistency of the knowledge, to localise performance 
deficiencies and to maintain a system. This means that if an 
expert system's knowledge needs to be maintained, its 
knowledge base can simply be adapted or extended. 
A network, on the other hand, must be trained all over 
again in such a case. 

However, working with a predefined model means that 
the development of an expert system application is far 
more time-consuming than that of a neural network. As it is 
often difficult to build a knowledge model, it is easier for 
archaeologists to develop a network application than an 
expert system application. 

This brings us to the point of the social acceptability. 
According to Gibson (1992, 264), this is problematic with 
expert systems as 'People tend to fear technology when it is 
professed to have qualities that humans have.' (Gibson 
1992, 264). Indeed, the social acceptability of expert 
systems has been far from satisfactory. However, this is not 
an inadequacy of an expert system itself. It has to do with 
the readiness of the potential users and I therefore doubt 
whether this will not be a problem with neural networks, 
too. It may even be worse. A network is also professed to 
have qualities that humans have. And on top of this, neural 
networks allow less human interference. The fact that they 
make their own 'rules' for handling the knowledge means 
that their composition cannot be controlled by the developer 
nor recovered by the user. Moreover, their internal 
processing is not only invisible to the user but also more 
complicated to understand than that of an expert system. 

One of the facts that may favour the social acceptability 
of neural networks is their processing speed. Since they 
have a neuron structure and a data matrix (representing the 
weights of the connections between the neurons), the 
analysis process amounts to nothing more than a calculation 
of the degree of neuron activity, which takes only a split 
second. Expert systems, on the other hand, involve lots of 
rules. During execution they must check all the rules, or at 
least those for retrieving the appropriate knowledge. That is 
why a neural network can be faster than an expert system. 

To summarize this discussion, I do not think that the 
neural networks' performance at the edge of their 
knowledge and their independence in knowledge modelling 
give reason to believe that their functionality is superior, 
nor that their ease of development and their processing 
speed will be crucial for an improvement of their social 
acceptability. 

A second major point of discussion concerns the 
suitability of archaeological knowledge for an artificial 
intelligence approach. It has for instance been said that 
archaeological knowledge does not lend itself well to 
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representation by means of an expert system due to its 
subjective and intuitive nature (<ƒ. Gibson 1992; Vitali/ 
Lagrange 1988; Wilcock 1986). Expert systems are claimed 
lo be inadequate for representing this kind of knowledge 
because it can hardly be translated into explicit rules. In my 
opinion. such scepticism is based mainly on disappointment 
following overoptimistic expectations of abilities. No 
technique can provide answers to all questions or handle all 
problcms. Moreover, these techniques are research and 
educational means instead of solution-generating tools. 
Their most important merit, however, is that they can play 
an important role in modelling knowledge (Doran 1990) 
and thus in understanding and improving it. And in that 
respect they can be applied to a vast range of archaeological 
research fields. 

Moreover, part of the criticism is momentary and not as 
absolute as it sometimes seems to be. The knowledge 
representational abilities of expert systems are not confined 
to rules. Since these techniques are relatively new they are 
still evolving. Each new development creates new know
ledge representational abilities or facilitates application 
building. 

Finally, I would like to comment on the use of artificial 
intelligence techniques in general. It is often thought that 
they can only be used by mathematically grounded 
archaeologists or that they should not be used at all because 
they threaten the position of human experts. First of all, the 
idea that artificial intelligence techniques are difficult to 
learn is a relic from the early days of computing. Until a 
few years ago. applications could only be developed with 
the aid of complicated computer languages. However, this 
is changing rapidly. Artificial intelligence technologies are 
still evolving and are already designed to be applied by 
different groups of users: many of these techniques are 
commereially available as user-friendly packages.17 The 
consequence is that application development no longer 
requires an awful lot of hardware or software knowledge. 

In this respect expert system technology in particular has 
evolved much. So-called expert system shells have been 
developed to l'acilitate application building, Shells are 
software packages which offer all kinds of knowledge 
representational and reasoning facilities. With those shells it 
is possible to build applications without having to program 
complex procedures. That means that archaeologists who 
have no experience whatsoever with sophisticated 
computing techniques can now build an application. 

Anxiety should not be an argument for not using artificial 
intelligence tools either. The fear of these tools becoming a 
substitute for human intelligence is probably due to the fact 
that the consequences of future developments cannot be 
known.18 The risk of a computer application threatening the 
work or position of an archaeologist is however entirely 

fictional. An artificial intelligence application can serve as 
an assistant only. It can simulate predefined reasoning 
processes but can certainly not generate intelligence19. 
In other words, an artificially intelligent archaeologist is 
artificial, not intelligent; it cannot replace an expert. On the 
contrary, it may even consolidate the expert's position, 
because it enables the expert to expand his knowledge and 
to exploit exactly those human abilities that a computer 
cannot simulate. 

6. Concluding remarks 
Since papers on computing techniques are often intended 

to show the disabilities rather than the abilities of artificial 
intelligence techniques, the majority of the potential users 
of these techniques among archaeologists have definitely 
been negatively influenced by this scepticism. They think of 
them as techniques with a limited potential or as too 
complicated. In spite of the scepticism surrounding these 
techniques, there is a lot of work they could do in 
archaeology. They offer a means for formalising and 
modelling subjective expert knowledge and they can make 
this knowledge accessible to and usable for non-experts. 
In that respect they can be useful tools for educational as 
well as research purposes. I hope that this paper will help 
archaeologists to think of ways of using artificial 
intelligence techniques to approach archaeological tasks or 
solve problems. Only by building or using an application 
will archaeologists be able to discover the abilities of 
artificial intelligence techniques and realize that there is a 
broad range of potential applications. 

However, both purposes and techniques must be selected 
with care. As argued above, neither one of the artificial 
intelligence techniques is more useful than the other. Each 
performs best when the principles of the applied technique 
suit the problem being tackled. There is, for instance, no 
sense in applying these techniques to problems having an 
algorithmic structure which leads to a clear solution. These 
problems are best handled by conventional programming 
techniques. But problems that can only be solved by 
searching for associations with similar situations are 
probably best tackled via a neural network application. 
Neural networks are good at recognizing patterns in non-
linear problems and at revealing relationships between a 
problem's input and output variables. However, they cannot 
be used for problems that require (mathematical) precision. 
The output of a network is always an estimation which is 
based on generalisations. The output of expert systems is 
based on rules of deduction. Because of this neural 
networks may be less accurate than expert systems. As the 
deduction process of expert systems is based on a formal 
model it is also more controlled. If such a model has been 
developed well, the interpretation of the application will 
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hence be accurate and reliable. Furthermore, an expert 

system may explain its reasoning process to its user, and 

thus show how its output was established. That is why 

expert systems can make better educational and hypothesis 

verifying applications than neural networks. 

The emphasis in this paper has been on the differences 

between these artificial intelligence techniques and their 

specilic abilities. However, this does not mean that they 

should only be used for different applications. In 

archaeology, many research fields involve several types of 

knowledge. The advantages of different techniques should 

be combined so as to make artificial intelligence a useful 

approach for these fields, too. Future discussions should 

therefore also concentrate on the possibilities of joining 

different techniques within single applications. 

notes 

1 Such tasks may be diagnosis, process control, instruction, 
prediction, classification, planning, etc. 

2 Knowledge can be represented by means of several methods, not 
only IF-THEN decision rules, but also Object-Value-Attribute 
triplets. Inheritance frames, Logic rules, etc. For more detailed 
information the reader is referred to Lucas/Van der Gaag (1988) or 
Payne/McArthur(1990). 

3 Information may consist of observations or facts. The external 
world may be. for instance. a human user. a database or an 
instrument. 

4 Many different types of neural networks are eommercially 
available. They all have different layer structures, learning 
algorithms. weight-processing and signal-transfer functions. etc. 
The interested reader is referred to Carling (1992) or Lawrence 
(1991) for detailed information. 

5 Both applications run on a stand-alone computer with a 80386DX 
processor. 

6 A.L. van Gijn 

7 WAVES stands for Wear Analyzing and Visualising Expert 
System. An expert system shell called LEVEL5 Object (version 2.5) 
is used for the implementation of this system. LEVEL5 Object is a 
registered trademark of Information Builders Inc. 

8 A software package called BrainMaker (version 2.3) is used for 
this appheation. Brainmaker is a registered trademark of California 
Seientific Software. 

9 For instance, polish may have been obliterated by post-
depositional processes and edge removals ma\ have been caused 
intentionally. 

10 For more information on the composition of the scores the 
reader is referred to Van den Dries (1994). 

I 1 M.J. Schreurs. 

12 The interpretations were evaluated exclusively on the basis of 
the materials that scored best. 

13 Sinee traces of butchering include traces of bone, the system's 
identification of either one of the two was accepted. 

14 An unsure interpretation was recongisable as an output showing 
several materials with low scores. 

15 Beeause of the diversity of the experiments the replicated tools 
showed a large variety of traces. including generic weak polishes. 
The archaeological tools analyzed, on the other hand. had been 
carefully selected. Tools without diagnostic traces could often not 
be analyzed. The remaining archaeological tools showed more 
diagnostic traces than the experimental tools and may therefore 
have been easier to interpret. 

16 This calculation included the interpretations of the implements 
used in the experiments beeause these interpretations were based 
on descriptions given by a human analyst. 

17 These packages are available for all kinds of computer systems 
at varying prices. 

18 Something similar happened when calculators were introduced: 
people were so afraid of loosing their jobs that they went on strike. 
It is natural for people to tend to look before they leap when 
innovations are introduced. especially when those innovations aim 
to unravel the key to humanity, intelligence. 

19 It has been said that a neural network can beat the human brain 
as far as the speed of signal interchange is concerned (Carling 1992). 
The speed of the interchanges in the human brain is restrieted by 
chemical processes whereas neural networks can exploit the 
advantages of using much taster electronical processes (Vuik 1993). 
Nevertheless. the processing capacity of an artificial network does 
not even approach that of a biologieal network. This is due to the 
facl that biologieal neurons can all be active at the same time 
whereas the activity of artificial neurons is restrieted by the 
hardware, which is only capable of sequential processing. 
Furthermore, a neural network has only few connections compared 
with the brain; some ten thousands versus billions. Only if it 
should prove possible to equip future computers with such massive 
parallel processing capabilities (or human brains) could the speed 
of the information transfer of artificial intelligence applications 
possibly defeat that of human beings. But even then, those 
computers would only be extremely fast, not intelligent. 
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