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THE FACTORIZATION OF THE NINTH FERMAT NUMBER

A. K. LENSTRA, H W LENSTRA, JR , M S MANASSE, AND J M POLLARD

Dedicated to the memory of D H Lehmer

ABSTRACT. In this paper we exhibit the füll pnme factonzation oi thc nmth
Fermat number F9 = 2512 + l It is thc product of three pnme factois that
have 7, 49, and 99 decimal digits, We found the two largest pnme factors by
means of the number field sieve, which is a factormg algonthm that depends on
anthmetic m an algebraic number field. In the piesent case, the number field
used was Q(v̂ 2) · The calculaüons were done on approximately 700 Worksta-
tions scattcred around the world, and in one of the final stages a Supercomputer
was used The entire factonzation took four months.

INTRODUCTION

For a nonnegative integer k , the kth Fermat number Fk is defined by Fk

22* + l . The ninth Fermat number F9 = 2512 + l has 155 decimal digits:

F9 = 1 3407 807929 942597 099574 024998 205846 1 27479 365820 592393

377723 561443 721764030073 546976 801874298166 903427 690031

858186486050 853753 88281 1 946569 946433 649006 084097 .

It is the product of three prime numbers:

F9 — Pl · P49 · P99 ,

where Pl , p49 , and p99 have 7, 49, and 99 decimal digits:

ρΊ = 2424833,

P49 = 7455602 825647 884208 337395 736200 45491 8 783366 342657 ,

p99 = 741 640062627530801524787141 901937474059940781 097519

023905 821316 144415 759504 705008 092818 71 1693 940737 .

In binary, ρΊ , p49 , and p99 have 22> 163' and 329 digits:
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ρΊ = 1001 010000000000000001 ,

p49= 1010001 100111 110000110010110001010011001111001101

101100111111001101 101001 111101000010001111 101010110010

101101 010111 100000 110001 010011 001001 010101 000010 100000

000001,

p99 = 10101 101100110110001111010110100000010011 100101010000

101110011110100011001010111000110001 111001 100101 110011

010011000110111110011000100110010101001011000101 100110

011110000110110010000110111011001010010110001100001011

1 1 1 1 1 1 111001001000101010101001 111010100011001001 111010

010100000000101101 101010111001000100110001 101101 100000

000001

The binary representation of F9 itself consists of 511 zeros surrounded by 2

ones.

In this paper we discuss several aspects of the factonzation of the nmth Fer-

mat number. Secüon l is devoted to Fermal numbers and their place in number
theory and its history. In §2 we address the general problem of facto ring mte-
gers, and we descnbe the basic technique that many modern factonng methods
rely on. In §3 we return to the nmth Fermat number, and we explam why previ-
ous factonng attempts of Fg failed We factored the number by means of the
number field sieve This method depends on a few basic facts from algebraic
number theory, which are reviewed m §4 Our account of the number field
sieve, m §5, can be read äs an introduction to the more complete descriptions
that are found in [28] and [10] The actual sieving forms the subject of §6 The
final stage of the factonzation of Fg, which involved the solution of a huge
linear System, is recounted in ^7

l FERMAT NUMBERS

Fermat numbers were first considered in 1640 by the French mathemati-
cian Pierre de Fermat (1601-1665), whose interest in the problem of factonng
mtegers of the form 2m ± l arose from their connection with "perfect", "ami-
cable", and "submultiple" numbers [47, 48, Chapter II, ijIV] He remarked that
a number of the form 2m + l where m is a positive integer, can be pnme
only if m is a power of 2, which makes 2'" + l a Fermat number A Fermat
number that is pnme is called a Fermat pnme Fermat repeatedly expressed
his strong behef that all Fermat numbers were pnme Apparently, this behef
was based on his observation that each pnme divisor p of Fk must satisfy a
strong condition, namely p = l mod 2A + 1 In present-day language, one would

formulate his proof of this äs follows If 22 Ξ -l mod p , then (2 mod/?)

has multiphcative order 2k+[ , and so 2k + ] divides p - l , by Fermat's own

"httle" theorem, which also dates from 1640 It is not clear whether Fermat

was aware of the stronger condition p = l mod 2k+2 for pnme divisors p of

F/f , k > 2 To prove this, it suffices to replate (2 mod D) , in the argument

abovc, by its square root (22* 2(22 ' - 1) mod p), which has ordei 2A+2 (It is
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amusmg to note that also (F/i_l mod .p) has ordei 2λ42 because its squaie is

an odd power of (2 modp) ) Incidentally, from the binary icprcsentations of

the pnme factors of 7-9 we see that

ora^ipi - 1) — 16, ord2(/?49 — 1) — 11 , 0̂ 2(̂ 99 - 1) — 11 ,

where οτάι counts the number of factoi s 2

The hrst five Fermat numbers FQ - 3 , F\ - 5, F2 = 17, FT, — 257, and

7*4 = 65537 are mdeed pnme, but to this day these remam the only known

Fermat pnmes Nowadays it is considered more hkely, on loose probabihstic

grounds, that there are only fimtely many Fermat pnmes It may well be that

FQ through 7*4 are the only ones On similai giounds, it is considered hkely

that all Fermat numbers are squarefree, with perhaps fimtely many exceptions

As for 7<<i, Fermat knew that any pnme divisor of 75 must be among 193,

449, 577, 641, 769, , which is the sequence of pnmes that are l mod 26 ,

with 7*3 = 257 omitted (distinct Fermat numbeis are cleaily relatively pnme)

Thus it is difficult to understand how he missed the factor 641, which is only

the fourth one to try, among those that are l mod 27, it is the first' One is

led to believe that Fermat did not senously attempt to venfy his conjecture

numerically, or that he made a computational error if he did The factor 641

of F5 was found by Euler m 1732, who thereby refuted Fcrmat's belief [18]

The cofactor 7̂ /641 = 6700417 is also pnme

Gauss showed in 1801 that Fermat pnmes aie of importance m elementary

geometry a regulär «-gon can be constiucted with rulcr and compasses if and
only if n is the product of a power of 2 and a set of distinct Fermat pnmes
[19J

Since the second half of the mneteenth Century, many mathematicians havc
been mtngued by the problem of findmg pnme factors of Fermat numbei s and
more generally, numbers of the form 2'" ± l Somewhat later, this interest was
extended to the larger class of Cunningham numbets bm ± l (with b small
and m large) [16, 7] The best factormg algorithms were usually apphed to
these numbers, so that the progress made in the general area of factormg large
mtegers was reflected m the factonzation of Fermat and Cunningham numbers

The effort required foi the complete pnme factonzation of a Fermat number
may be expected to be substantially larger than for the precedmg one, since the
latter has only half äs many digits (rounded upwaids) äs the foimer in several
cases the factonzation could be accomphshed only by means of a newly mvented
method In 1880, Landry factored Fb , but his method was never published (see
[25, 17, Chapter XV, p 3/7, 20 50]) In 1970, Moinson and Bnllhart found
the factonzation of Ρη with the contmued fraction method [36] Brent and the

fourth author factored F» m 1980 by mean:, of a modificd version of Pollard's

rho method [6] In 1988, Brcnt used the elliplic curvc method to factoi /n

(see [4, 5]) Most recently, 7-9 was factored in 1990 by means of the mtmbci

field sieve
Unhke methods previously used, the numbei ficld sievc is far more cflcctive

on Fermat and Cunningham numbeis than on general numbers Factoring gen-

eral numbers of the order of magnitude of 7 9 with the number field sievc—or

with any othei known method—requnes currcntlv subslantially more time and

financial resources than were spent on 79 and lactonng general numbers of

the order of magnitude of 1015/9 is not yct practically teasible
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The fact thal the numbcr held sieve performs abnormally well on Fermat
and Cunnmgham numbers imphes that these numbers are losmg Iheir value äs
a yardstick to mcasure progrcss in factonng One wonders which class of num-
bers will take their place Good test numbers ior factonng algonthms should
meet several conditions. They should be defined a priori, to avoid the impres-
sion that the factored numbers were generated by multiplymg known factors
They should be easy to compute They should not have known anthmetic prop-
erties that might be exploited by a special factonzation algonthm For any sizc
ränge, there should be enough test numbers so that one does not quickly run
out, but few enough to spark competition for them They should have some
mathematical significance, so that factonng them is a respectable activity The
last condition is perhaps a controversial one, but do wc want to factor numbers
that are obtamed from a pseudorandom number geneiator, or from the digits
of π (see [2, 44])*? The values of the partition function [i] meet the conditions
above reasonably weil, although they appear to be too highly divisible by small

primes. In addition, their factonzation is financially attractive (see [42]) We

offer them to future factorers äs test numbers. Nonctheless, factonng Fermat
numbers remains a challenging problem, and it is hkely to exercise a special
fascmation for a long time to come.

In addition to the more 01 less general methods mentioned above, a very
special method has been used to search for factors of Fermat numbers It
proceeds not by fix mg k and searching for numbers p dividmg Fk , but by
fixing p and searching for numbers k with Fk = 0 mod p . To do this, one
first chooses a number p — u · 21 + l , with u odd and / relatively large, that is
free of small prime factors, one can do this by fixing one of u, l and sievmg
over the other. Next one determmes, by repeated squarings modulo p, the

residue classes (22 mod p), k = 2, 3, . . . From whal we proved above about
prime factors of Fermat numbers it follows that if no value k < l — 2 is found

with 22* = -1 mod p , then p does not divide any Fk , k > 2 ; in this case p is

discarded. If a value of k is found with 22/< ΞΞ -l mod p—which one expects,
loosely, to happen with probabihty l/u, if p is prime—then p is a factor of

Fk . The primahty of p is then usually automatic from knowledge that one may

have about smaller prime factors of Fk or, if p is sufficiently small, from the

fact that all its divisors are l mod 2k~*2

Many factors of Fermat numbers have been found by the method just

sketched. In 1903, A. E. Western [15] found the pnme factor p7 =· 2424833 =

37 · 216 + l of F9. In 1984, Keller found the prime factor 5 · 2234" + l of

-^23471 > tne latter number is the largest Fermat number known to be composile.

If no factor of Fk can bc found, one can apply a pnmahty test that is es-

sentially due to Pepin [37]: for k > l , the number Fk is prime if and only if

$(Fk-\)/2 = _i mocj pk jhis congruence can bc checked in time 0((logF/()3),

and in time O((log/-A.)2+t) (f°r anY positive ε) if one uses fast multiphcation

techniques. One should not view Pepin's test äs a polynomial-time algonthm,
however. In fact, the mput is k , and from logF/{ « 2k log 2 we see that the time
that the test takes is a doubly cxponential function of the length (log k)/ log 2 of
the mput. Pepin's test has mdeed been apphed only for a very limited collection
of values of k .
Known factors of Fk can be investigatcd for pnmahty by means of general
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pnmality tests In this way, Bnllhart [22, p 110] found in 1967 that the number
/9/24248S3, which has 148 decimal digits, is composite In 1988, Brent and
Moram found that F\ \ divided by the product of four relatively small pnme
factors is a pnme number of 564 decimal digits, thereby completmg the pnme
factonzation of F\ i

The many results on factors of Fermat numbers that have been oblained by
the methods above, äs well äs bibhographic Information, can be found m [17,
Chapter XV, 16, 7, 41, 23] For up-to-date Information one should consult the
current issues of Mathematics of Computation, äs well äs the Updates to [7] that
are regularly pubhshed by S. S. Wagstaff, Jr. We give a bnef summary of the
present state of knowledge.

The complete prime factonzation of Fk is known for k < 9, for k ~ 1 1 ,
and for no other k One or more prime factors of Fk are known for all k < 32
except k = 14, 20, 22, 24, 28, and 31, äs well äs for 76 larger values of k,
the largest bemg k = 23471 . For k = 10, 12, 13, 15, 16, 17, and 18 the
cofactor is known to be composite. No nontnvial factor is known of F\4 or
jp2o , but rt is known that these numbers are composite. For k = 22, 24, 28, 31 ,
and all except 76 values of k > 32, it is unknown whether Fk is prime or
composite.

The smallest Fermat number that has not been completely factored is F\o
Its known prime factors are

11131 ·212+ l =45592577,

395937-2I4 +l =6487031809

The cofactor has 291 decimal digits. Unless it has a relatively small factor, it is
not hkely to be factored soon.

The factonzation of Fermat numbers is of possible interest m the theory of
finite fields. Let m be a nonnegative integer, and let the field K be obtamed by
m successive quadratic extensions of the two-element field, so that # K — 22'",
an elegant explicit descnption of K was given by Conway [14, Chapter 6] and
another by Wiedemann [49] It is easy to see that the multiphcative group of
K is a direct sum of m cychc groups of Orders F0, F{, . . , Fm^{ . Therefore,
knowledge of the prime factors of Fermat numbers is useful if one wishes to
determme the multiphcative order of a given nonzero element of K , or if one
searches for a primitive root of K.

1. FACTORING INTEGERS

In this section, n is an odd integer greater than l It should be thought of
äs an integer that we want to factor mto pnmes We denote by Z the ring of
mtegers, by Z/«Z the ring of mtegers modulo n , and by (Z/«Z)* the group
of units (i.e., invertible elements) of Z/«Z

2.1. Factoring with square roois of l The subgroup {x e Z/nZ · x2 = 1}
of (Z/«Z)* may be viewed äs a vector space over the two-element field F2 =
Z/2Z, the vector addition bemg given by multiplication Many facionng algo-
nthms depend on the elementary fact that the dimension of this vector space is
equal to the number of distinct pnme factors of n In particular, if n is not
a power of a prime numbci, then there is an element v e Z/nZ, χ Φ ±1 ,
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such that x2 — l Moreover, exphcit knowledge of such an element χ ,

say χ = (y mod n) , leads to a nontnvial factonzation of n Namely, from

y2 = l mod n , y φ. ±\ mod n , it follows that n divides the product of y - l

and y+l without dividing the factors, so that gcd(y - l , n) and gcd(y + l , n)

are nontnvial divisors οί η They are m fact complementary divisors, so that

only one of the gcd's needs to be calculated, this can be done with Euchd's

algonthm We conclude that, to factor n , it suffices to find χ €· Z/nZ with

2 2 Repeated prime factors. The procedure just sketched will fail if n is a
prime power, so it is wise to rule out that possibihty before attempting to factor
n m this way To do this, one can begm by subjecting n to a pnmahty test,
äs m [27, §5] If n is prime, the factonzation is fimshed Suppose that n is
not prime One still needs to check that n is not a prime power This check
is often omitted, since in many cases it is considered highly unhkely thal n is
a prime power if it is not prime, it may even be considered highly hkely that
n is squarefree, that is, not divisible by the square of a prime number For
example, suppose that « is the unfaclored portion of some randomly drawn
integer, and one is certain that it has no prime factor below a certam bound
B Then the probabihty for n not to be squarefree is O(l/(B\ogB)) , in a
sense that can be made precise, and the probabihty that n is a proper power
of a prime number is even smaller A similar Statement may be true if n is the
unfactored portion of a Cunnmgham number, since, to our knowledge, no such
number has been found to be divisible by the square of a prime factor that was
difficult to find Whether other classes of test numbers that one may propose
behave similarly remams to be seen, if the number n to be factored is provided
by a "fnend", or by a colleague who does not yet have sufficient understandmg
of the anthmetical properties of the numbers that his computations produce, it
may be unwise to ignore the possibihty of repeated prime factors

2 3 Squarefreeness tests. No squarefreencss tests for mtegers are known that
are essentially faster than factormg (see [9, fj7]) This is often contrasted with
the case of polynomials in one variable over a fteld K , m which case it suffices
to take the gcd with the derivative This illustrates that for many algonthmic
questions the well-known analogy between Z and K[X] appcars to break down
Note also that for many fields K , mcludmg finitc fields and algebraic number
fields, there exist excellent practical factormg algonthms for K[X] (see [26J),
which have no known analogne m Z
There do exist factormg methods that become a httle faster if one wishes

only to test squarefreeness, for example, if n is not a square — which can easily
be tested — then to determme whethei or not n is squarefree it suffices to do
tnal division up to n1/3 mstead of n1/2

There is also a factormg method that has greal difficulties with numbcis n
that are not squarefree Suppose, for example, that p is a large prime for which
p - \ and p + l both have a large pnme factor, and that n has exactly two
factors p The factormg method descnbed m [43] which depcnds on the use
of "random class groups", does not have a leasonable chance of finding am
nontnvial factor of n , at least not within the time that is conjectured m [43]
(see [32, fjll])
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2.4. Recognizing powers. Rulmg out that n is a pnme powei is much easier
than testmg n for squarefreeness. One way to proceed is by testmg that n is
not a proper power. Namely, if n = m1 , where m , l are mtegers and / > l ,
then m > 3, 2 < / < [(log«)/ log 3] , and one may assume that / is pnme.
Hence, the number of values to be considered for / is quite small, and this
number can be further reduced if a better lower bound for m is known, such
äs a number B äs m §2 2. For each value of / , one can calculate an inleger TOO
for which \rrio - n1/') < l , usmg Newton's method, and test whether n = mL ,
this is the case if and only if n is an /th power. One can often save time by
calculatmg m0 only if n satisfies the conditions

n'~l = l mod/2 (mod8if/ = 2)

and

for several small pnmes q with q = l mod / These are necessary conditions
for a number n that is free of small pnme factors to be an /th power, if / is
prime.

2.5. Ruling our prime powers. There is a second, less well-known way to
proceed, which tests only that n is not a pnme power. It assumes that one
has already proved that n is composite by means of Fermat's theorem, which
states that a" = a mod n for every integer a , if n is pnme Hence, if an
integer a has been found for which a" φ a mod n , then one is sure that n is

composite. If n is a prime power, say n - pk , then Fermat's theorem imphes

that ap Ξ a mod p and hence also that a" = ap ~ a mod p , that is, p divides

a" - a , so it also divides gcd(a" -a, n) This suggests the followmg approach

Havmg found an integer a for which (a" - a mod n) is nonzero, we calculate

the gcd of that number with n . If the gcd is l, we can conclude that n is not

a prime power. If the gcd is not l, then the gcd is a nontnvial factor of n ,

which is usually more valuable than the Information thal n is or is not a pnme

power.

Nowadays one often proves compositeness by usmg a variant of Fermat's

theorem that depends on the Splitting

where n - l = u · 2' , with u odd and t = ord2(« - 1) Hence, if n is prime,

then for any integer α one of the t + 2 factors on the nght is divisible by n

This variant has the advartage that the converse is true in a strong sense if n

is not prime, then most mtegers a have the property that none of the factors on

the nght is 0 mod n (sec [40] for a precise Statement and proof), such mtegers

a are called witnesses to the compositeness of n . Currently, if one is suie that

the number n to be iactored is composite, it is usually because one has found

such a witness. Just äs above, a witness α can be used to check that n is m

fact not a prime power calculate a" - α (mod n) , which one docs most easily

by first squanng the number a"'2' (mod n) that was last calculated, if u is

nonzero, one venfies äs before that gcd(ö" - a , n) = l , and if n is zero then
one of the t + 2 factors on the nght has a nontnvial factor m common with n ,
which can readily be found (In the latter case, n is in fact not a prime power
smce the odd parts of the t + 2 factors are pairwise relatively pnme )



326 A K LENSTRA 11 W Π NSl R\ IR M S M<\N\SS[ \\D J M POI l ARD

As we mentioned m ijl, the number /g/2424833 was provcd to bc composite

by Bnllhart m 1967 We do not know whether he or anybody eise proved that it

is not a prime power until this facl became plain Irom its pnme factonzation

We did not, not because we thought it was not worth our time, but simply

because we did not thmk of u If it had been a pnme powei, our method would

have failed completely, and we would have feit greatly embarrassed towards the

many people who helped us in this project One may beheve that the nsk thal

we were unconsciously takmg was extremely small, but until the number was

factored this was indeed nothing moie than a bchef In any case, it would be

wise to mclude, in the witness test descnbed abovc, thc few extra hnes that prove

that the number is not a prime power, and to exphcitly publish this Information

about a number rather than just saymg that it is composite

26 A general scheme. For the rest of this section we assume that n , besides

bemg odd and grcater than l, is not a pnme power We wish to factor n into

pnmes As we have seen, each χ E Z/«Z with x2 = l , χ / ±1 grves nse to a

nontnvial factor of n In fact, it is not difficult to see that the füll factonzation
of n into powers of distinct prirne numbers can be oblamed from a set of
generators of the F2-vectoi space {x 6 Z/«Z v2 = l} (If we make this vector
space into aßoolean nngv/nh \fv = (\+x \~y- \v)/2 äs multiphcation, thcn
a set of ring generators also suffices ) The question is how to determme such
a set of generators Several algonthms have been proposed to do this, mosl of
them followmg some refinement of the following scheme

Step l Selectmg the factor base Selcct a collection of nonzero elements
ap E Z/nZ, with p ranging over some finite mdex set P How this selection
takes place depends on the particular algonthm, it is usually not done randomly,
but in such a way that Step 2 below can be performed m an efficient mannei
The collection (ap)p€P is called the factoi base We shall assume that all a,,
are umts of Z/nZ In practice, this is likely to be truc since if n is difficult
to factor, one does not expect one of its prime factors to show up in one of the
ap 's, one can venfy the assumption, 01 find a nontnvial factor of n , by means
of a gcd computation Denote by Zp the additive abehan group consisting of
all vectors (t)p)p£p with vp E Z, and let / Zp —> (Z/«Z)* be the group homo-
morphism (from an additively to a multiphcatively wntten group) that sends

(vp)pff to YlpcP^p This maP 1S surjective if and only if the elements ap
generate (Z/«Z)* For the choices of ap that are made in practice that is usu-
ally the case, although we are currently unable to prove this (In general, hardly
anythmg has been ngorously oroved about practical factoring algonthms )

Step 2 Collecting relatwns Each element u = (i>fl)p&P of the kernel of /

is a relation between thc ap, in the sense that FLe?0// - ' *n tnc seconct
step, one looks for such relations by a method that depends on the algonthm
One stops äs soon äs the collection V of relations that have been found has
shghtly more than #P elements One hopes that V gcncrates the kernel of /,
although this is agam typically beyond proof Note that the kernel of / is of
finite mdex in Zp, so that by a well-known theorem from algebra it is frecly
generaled by #P elements, therefore the hope is not entirely unreasonable

Step 3 l·indmg dependenat"* Forcach u (- V , let υ e (Z/2Z)P Fp be thc

vector that one obtains from υ by reducing its coordmates modulo 2 Sincc

# V > #P, the vectors 77 are linearly depcndent ovei l··, In Step 3, one hnds
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exphcit dependencies by solvmg a linear System The matnx that descnbes the

System tends to be huge and spatse, which imphes that special methods can be

apphed (see [24]) Nevertheless, one usually employs ordmary Gaussian ehm-

mation The size of the matnces may make it desirable to modify Gaussian

ehmmation somewhat, see §7 Each dependency that is found can be wntten

in the form ^vewv = 0 for some subset W c V , and each such subset gives

rise to a vector w = (Σ,,̂  v)/2 e ̂  f°r which 2 · w belongs to the kernel

of / Each such w , m turn, gives nse to an element χ = f(w) e (Z/«Z)*

satisfymg x2 = f(2 -w) = \, and therefore possibly to a decomposition of n

into two nontrivial factors If the factonzation is trivial (because χ = ± l),

or, more generally, if the factors that are found are themselves r-ot pnme pow-

ers, then one repeats the same procedure starting from a different dependency

between the vectors v Note that it is useless to use a dependency that is a

linear combination of dependencies that have been used earher Also, if several

factonzations of « into two factors are obtamed, they should be combmed into

one factonzation of n into several factors by a few gcd calculations One stops

when all factors are pnme powers, if indeed / is surjective and V generates

the kernel of /, this is guaranteed to happen before all dependencies between

the v are exhausted

2 7 The rational sieve and smoothness. A typical example is the national sieve

In this factonng algonthm the factor base is selected to be

P = (p p is prime, p < B},

ap = (p mod n) (p e P),

where B is a suitably chosen bound Collecting relations between the ap is

done äs follows Usmg a sieve, one searches for positive integers b with the
property that both b and n + b are B-smooth, that is, have all their pnme
factors smaller than or equal to B Replacmg both sides in the congruence
b = n + b mod n by their prime fadonzations, we see that each such b gives
nse to a multiphcative relation between the ap The mam ment of the icsult-
mg factonng algonthm—which is essentially, the number field sieve, with the
number field chosen to be the field of rational numbers—is that it illustrates the
scheme above concisely The rational sieve is not recommended for practical
use, not because it is inefficient in itself, but because other methods are much
faster

The choice of the "smoothness bound" B is very important if B , and hence
#P, is chosen too large, one needs to generate many relations, and one may end
up with a matnx that is larger than one can handle m Step 3 On the other
hand, if B is chosen too small, then not enough integers b will be found foi
which both b and n -t- b are Z?-smooth The same rernarks apply to the other
algorithms that satisfy our schematic descnption

In practice, the optimal value for B is determmed empmcally In theory,
one makes use of results that have been proved about the function ψ defined

by

ψ(χ, v] = #{m e Z 0 < m < χ m is y-smooth},

so ψ(\ , y)/[x] is equal to the probabihty that a random positive integer < \

has all its prime factors < y Brief summaries ot these lesults which are
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adequate for the purposes of factonng, can be found in [38, <j2, 27, f;2 A and

(3 16)]

Not surpnsmgly, one finds that both from a practical and a theoretical pomt

of view the optimal choice of the smoothness bound and the performance of the

factonng algonthm depend mamly on the size of the numbers that one wishes

to be smooth The smaller these numbers are, the more likely are they to be

smooth, the smaller the smoothness bound that can be taken, and the faster the

algonthm For a fuller discussion of this we refer to [10, § 1 0]

In the rational sieve, one wishes the numbers b(n + b) to be smooth, and

since b is small, these numbers may be expected to be «1+°(1> (for n — » oo)

The theory of the ^-function then suggests that the optimal choice for B is

2) (n

and that Ihe runnmg time of the entire algonthm is

exp((v/2 + o(l))(logrt)1/2(loglog«)1''2) (n -κ»)

(This assumes that the dependencies m Step 3 are found by a method that is

faster than Gaussian ehmination )

2 8 Oiher factoring algorithms. A big improvement is brought about by the

contmued fractwn method [36] and by the quadratic sieve algonthm [38, 45],

which belong to the same family In these algorithms the numbers that one

wishes to be smooth are only «1/2+°(1) This leads to the conjectured runnmg

time

exp((l + o(l))(log«)I/2(loglogn)1/2) (n -» oo) ,

the smoothness bound bemg approximately the square root of this Although

the quadratic sieve never had the honor of factoring a Fermat number, it is

still considered to be the best practical algonthm for factonng numbers without

small prime factors

In the number field sieve [28, 10], the numbers that one wishes to be smooth

are no(1) , or more precisely

exp(0((logn)2/3(loglog«)1/3)),

and both the smoothness bound and the runnmg time are conjccturally of the

form

exp(0((log«)1/3(log!og«)2/3))

This leads one to expect that the number field sieve is asymptotically the fastest

factonng algonthm that is known It remains to be tested whether for numbers

m reahstic ranges the number field sieve beats the quadratic sieve, if one does

not restnct to special classes of numbers hke Fermat numbers and Cunmngham

numbers

It is to be noted that the runnmg time estimates that we just gave depend only

on the number to be factored, and not on the size of the factor that is found

Thus, the quadratic sieve algonthm needs just äs much time to find a small
prime factor äs to find a large one There exist other factoring algorithms, not
satisfymg our schematic description, that are especially good at findmg small
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pnme factors of a number Ί hese mclude tnal division, Pollard's p ± l method,

Pollard's rho method, and the elhptic curve method (see [27, 31,3, 34])

3 THB NINTH FERMAT NUMBER

As we mentioned m §1, A E Western discovered m 1903 the factor 2424833

of Fg, and Brillhart proved m 1967 that F9/2424833 is composite In this

section we let n be the number _F9/2424833 , which has 148 decimal digits

n = 5529373746539492451469451709955220061537996975706118

061624681552 800446 063738 635599 565773 930892 108210210778

168305399196915314944498011438291393118209

We review the attempts that have been made to factoi n

We do not believe that the possibihty of factonng n by means of the qua-

dratic sieve algorithm was ever seriously considered It would not have been

beyond human resources, but it would have presented considerable financial

and organizational difficulties

Several factonng algonthms that are good at finding small pnme factors had

been applied to n Richard Brent tned Pollard's p ± l method and a modified

version of Pollard's rho method (see [27]), both without success He estimates

that if there had been a pnme factor less than l O20, it would probably have

been found by the rho method The failure of the rho method is simply due

co the size of the least pnme factor p49 of n The p ± l method would have

been successful if at least one of the four numbers p49 ± l , p99 ± l had been

built from small pnrne factors The failure of this method is explamed by the

factonzations

p49- 1=2"· 19-47-82488781 - 1143 290228 161321

-43226490359557706629,

p4g + l = 2 · 3 · 167 982422 287027

• 7397205338652138126604651761 133609,

/799- l =2" · 1129-26813-40 044377- 17338437577121

- 16975143302271505426897585653131 126520

182328037821729720833840187223,

p99 + l = 2 · 32 · 83

-496412357849752879199991 393508659621 191392758432

074313 189974 107191 710682 399400 942498 539967 666627

These facton/ations were found by Richard Crandall with the p~\ method and

the elhptic curve method (He used a special second phase that he developed m

collaboration with Joe Buhler, that is similar to the second phase given m [3] )

Several people, mcluding Richard Brent, Robert Silverman, Petei Monl-

gomery, Sam Wagstaff, and ourselves, altempted to factor n usmg the elhp-

tic curve method, supplemented with a second phase Brent tned 5000 elhp-

tic curves, his first-phase bound (i e the bound B\ fiom [34]) langmg fiom

240000 to 400000 This took 200 houis on a Fujitsu VP 100 Robert Silvei-

man and Peter Montgomery tried 500 elhptic curves each, with a fiist-phase

bound equal to 1000000 We tried appioximately 2000 clliptic curves with
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first-phase bounds ranging fiom 300000 to l 000000, durmg a one-week run

on a network of approximately 75 Firefly Workstations at Digital Equipment

Corporation Systems Research Center (DEC SRC) The elliptic curve method

did not succecd m f'ndmg a factor Our expenence indicates that if there had

been a pnme factor less than l O30 , it would almost certamly have been found

If there had been a factor less than l O40 we should probably have contmued

with the elliptic curve method Our decision to stop was justified by the final

factonzation, which the elliptic cuive method did not have a reasonable chance

of findmg without major technological or algonthmic improvements

The best pubhshed lower bound for the pnme factors of n that had been

ngorously estabhshed before n was completely factored is 247 κ, l 4· 1014 (see

[21, Table 2]) We have been mformed by Robert Silverman that the work

leadmg to [35] imphed a lowei bound 2048 · l O10 , and that he later impioved

this to 2048 · l O12 The best unpublished lower bound that we are aware of is

251 « 2 25 · 1015, due to Gary Gostm (1987)

If we had been certam—which we were not—that n had no pnme factor less

than l O30 , then we would have known that n is a product of either two, three,

or four pnme factors Among all composite numbers of 148 digits that have no

prime factor less than l O30 , about 15 8% are products of three primes, about

0 5% are products of four primes, and the others are products of two primes

We expected—nghtly, äs it turned out—to find two prime factors, but some of
us would have been more excited with three large ones

4 ALGEBRAIC NUMBER THEORY

We factored Fg by means of the number field sie\e, which is a factormg algo-
nthm that makes use of rings of algebraic mtegers The number field sieve was
mtroduced in [28] äs a method for factormg Cunnmgham numbers Meanwhile,
a variant of the number field sieve has been mvented that can, in principle, fac-
tor general numbers, but it has not yet proved to be of practical value (see
[10])

In this section we review the basic properties of the ring Z[\/2], which is
the ring that was used m the case of Jhg A more general account of algebraic
number theory can be found in [46], and for computational techniques we refer
to[ll]

4 l The number field Q(\/2) and the norm map. The elements of the field

Q(>/2) can be written uniquely äs expressions ]ζ4 0q,̂ /2 , with q, belonging

to the field Q of rational numbers For computational purposes we identify

these elements with vectors ronsisting of five rational components q0 , q\ , q2

#3, <?4 , and addition and subtraction m the field are then just vectoi addition

and subtraction From the rule \f2 = 2 one readily deduces how elements of

the field are to be multiphed Exphcitly, multiplymg an elemenl of the field by

ß — Σ?=ο <?/̂ 2~' amounls to multiplymg the correspondmg column vector by

the matnx
q0 2ι?4 2<73 2q2 2q\ \

q\ q() 2q4 2<?3 2q2

q^ qi q(i 2q4 2q^

qi q2 q\ <?o 2</4

<?4 <?3 <72 (l\ (iü
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The norm N(ß) of β is defined to be the determmant of this matnx, which

is a rational number Note that Ihe norm can be wntten äs a homogeneous
fifth-degree polynomial in the q, , wilh integer coefficients We have

Ν(βγ) = Ν(β}Ν(γ) for β , γ e Q(̂ 2) ,

because the matnx belongmg to β γ is the product of the two matnces belongmg

to β and γ Applymg this to γ — β"1 , and usmg that N (l) = l , we find that

N(ß) φ 0 whenever β ̂  0 .

The norm is one of the prmcipal tools for studymg the multiplicative structure

of the field, and almost all that the number field sieve needs to know about

multiphcation is obtamed from the norm map. In particular, for the purposes

of the number fieid sieve no multiphcation roulme is needed

Below it will be useful to know that

(4.2) N(a

One proves this by evaluatmg the determmant of the corresponding matnces

Division in the field can be done by means of linear algebra, smce finding

γ/ β is the same äs solvmg the equation β · χ = γ , which can be written äs a
System of five linear equations in five unknowns. There exist better methods,
but we do not discuss these, smce the number field sieve needs division just äs
httle äs it needs multiphcation.

4.3. The number ring Z[v/2] and smoothness. The elements Ŷ =0t,̂ 2.' of

Q(̂ 2) for which all r, belongto Z form a subnng, which is denoted by Z[\f2]
If β belongs to Ζ[ν̂ 2] , then the matnx associated with β has integer entnes,
so its determmant N(ß} belongs to Z . If B is a positive real number, then
a nonzero element β of Z[\/2] will be called B-smooth if the absolute value
\N(ß)\ of its norm is 5-smooth m the sense of §2.7 We note that \N(ß}\ can
be interpreted äs the mdex of the subgroup ßZ[\̂ 2] = {βγ γ & Z[\X2]} of

(4.4) \N(ß)\ = #(Z[v/2]/yßZlv/2]) for β & Z[̂ 2] , β ± 0 .

This follows from the followmg well-known lemma in linear algebra if A is a

k χ k matnx with integer entnes and nonzero determmant, and we view A äs
a map Zk -> Zk , then the mdcx of AZk m Zk is fimte and equal to \ det/4

4.5 Ring homomorphisms We will need to know a httle about ring ho-
momorphisms defined on Z[\/2] Let R be a commutative ring with l if
ψ: Z[\/2] -̂  R is a ring homomorphism, then the element c — ψ(\/2) of R

clearly satisfies c5 = 2, where 2 now denotes the element 1 + 1 of R Con-

versely, if c € R satishes c5 = 2 , then there is a umque ring homomorphism
ψ . Z[\/2] -+ R satisfymg ψ(Ϋ2) = c , namely the map defined by

here the r, on the right are interpreted äs elements of R , just äs we put 2 = 1 + 1
above We conclude that givmg a ring homomorphism from Ί\\/Ί\ to R is the

same äs givmg an element c of R that satisfies c5 - 2
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Example. Let « = (2512+l)/2424833 , and put R = Z/nZ and c = (2205modn)

We have 2512 Ξ —l mod n , and therefore

c5 = (21025 mod n) = (2· (2512)2 mod n) = (2 mod n)

Hence, there is a ring homomorphism φ Z[v/2] -> Z/nZ with (̂v̂ ) =

(2205 mod n) This ring homomorphism will play an important role in the

following section

4 6 Fifth roots of 2 in finite fields. One of the first thmgs to do if one wishes

to understand the arithmetic of a ring like Z[\/2] is to find ring homomorphisms

to finite fields of small cardmahty As we just saw, this comes down to findmg,

for several small pnme numbers p , an element c that lies in a finite extension of

the fieid Fp = Z/pZ and that satisfies c5 = 2 First we consider the case thal c

lies in Fp itself Each such c gives nse to a ring homomorphism Z[v/2] —> Fp ,

which will be denoted by ψρ c The first seven examples of such pairs (p , c)

are

(47) (2,0) ,(3, 2), (5, 2), (7, 4), (13,6), (17, 15), (19, 15)

For example, the presence of the pair (17, 15) on this list means that 155 Ξ

2 mod 17 , and the absence of other pairs (17, c) means that (15 mod 17) is

the only zero of X5-2 in F17 Note that the pnme p = 11 is skipped, and that

all other pnmes less than 20 occur exactly once on the hst In general, each prime

p that is not congruent to l mod 5 occurs exactly once To prove this, let p

be such a pnme and let k be a positive integer satisfymg 5k = l mod (p - l)

Then the two maps /, g ¥p —>· Fp defined by f(x) = x5, g(x) — xk are

inverse to each other Hence, there is a umque fifth root of 2 in Fp, and it is

given by (2fe mod p) For a prime p with p = l mod 5 the fifth-power map

is five-to-one Therefore, such a prime either does not occur at all, or it occurs

five times For example, p = 11 does not occur, and p = 151 gives rise to the

five pairs

(48) (151, 22), (151, 25), (151, 49), (151, 90), (151, 116)

Asymptotically, one out of every five pnmes that are l mod 5 is of the second

sort

The case that c lies m a proper extension of Fp is fortunately not needed

in the number field sieve It is good to keep m mind that such c 's neverthcless

exist For example, in a field F81 of order 81 the polynomial (X5-2)/(X~2) =

X4 + 2X3 + X2 + 2X H l has four zeros, these zeros are conjugate over F3,

and they are fifth roots of 2 In the field F361 = F19(z) (with i2 - -1), the

polynomial X5 - 2 has, in addition to the zero (15 mod 19) from (4 7), two

pairs of conjugate zeros, namely 11 -t 31 and 10 ± 11

4 9 Ideals and prime ideals. We recall from algebra that an ideal of Z[\/2]

is an additive subgroup b c Z[v/2] with the property that β γ 6 b for al) β e b

and all γ e Z[v̂ 2] The zero ideal {0} will not be of any mterest to us The

norm Nb of a nonzero ideal b c Ζ[ν̂ 2] is defined to be the index of b in

Z[\/2], that is, Nb = #(Z[v/2]/b), this is finite, smce b contams ßZ[Y2] for

some nonzero β , and ßZ[\/2} has already finite mdcx (see (4 4))
We also recall from algebra that a subset of Z[\/2] is an ideal if and only

if it is the kernel of some ring homomorphism that is defined on Z[\/2] We
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call a nonzero ideal a pnme ideal, or bnefly a pnme of Z[\/2], if it is equal

to the kernel of a ring homomorphism from Z[v/2] to some finite field, and if

that finite field can be taken to be a pnme field Fp , then the ideal is called a

first-degree pnme Thus (4 7) can be viewed äs a table of the "small" first-degree
pnmes of Ζ[·Ϋ2]

If p is a first-degree prime, correspondmg to a pair (p, c), then the map

ψρ t induces an isomorphism Z[̂ 2]/p ̂  Fp , and therefore Np is equal to the

prime number p Conversely, if p is a non/ero ideal of prime norm p , then

p is a first-degree pnme, this is because Ζ[λ/2]/ρ is a ring wilh p elements,

and therefore isomorphic to fp

In general, the norm of a prime p is a power pf of a pnme number p , and

/ is called the degree of p For example, the conjugacy classes of fifth roots

of 2 m F8i and F36i mdicated above give nse to one fourth-degree pnme of

norm 81 and two second-degree pnmes of norm 361 These are the smallest

norms of pnmes of Z[\/2] that are of degree greater than l

4 10 Generators of Ideals. Most of what we said so far about the ring Z[\/2]

is, with appropnate changes, vahd for any ring that one obtams by adjoinmg

to Z a zero of an irreducible polynomial with integer coefficients and leadmg

coefficient l At this point, however, we come to a property that does not hold

m this generahty Namely,

(4 J1) [̂ν7̂ ] is a pnncipal ideal domam ,

which means that every ideal b of Ζ[·Ϋ2] is a pnncipal ideal, that is, an ideal

of the form ßZ[&2], with β e Z[A/2] If b = ßZ[Y2], then β is called a

generator of b

For the proof of (4 11) we need a basic result from algebraic number theory

(cf [46, §102]) It imphes that there is a positive constant M , the Minkon \ki

constant, which can be exphcitly calculated m terms of the ring, and which has

the followmg property if each prime ideal of norm at most M is pnncipal,

then every ideal of the ring is prmcipal In the case of the ring Z[v/2] one finds

that M — 13 92, so only the pnmes of norm at most 13 need to be looked at

From 13 < 81 we see that all these primes aie first-degree pnmes

We conclude that to prove (4 11) it suffices to show that the first-degree primes

correspondmg to the pairs (2,0,, (3,2), (5,2), (7 4), and (13 6) are

pnncipal This can be done wnhout the help of an electromc Computer äs
follows Trymg a few values tor a, b and / in (4 2), one finds that the

element l - v7̂  has norm 7 By (4 4) the ideal (l - Ϋ?)Ζ[·Ϋ2] has norm
7, so it is a first-degree pnme, correspondmg to a pair (p c) with p = 7

But there is only one such pair, namely the pair (7 4) We conclude that

the pnme correspondmg to the pair (7 4) is equal to (l - \X2 )Z[\/2] and

therefore pnncipal Tbe argument obviously generahzes to an\ pnme number

p that occurs exactly once äs the norm of a pnme in ovher words if p is a
pnme number with p ̂  l mod 5 and p is the unique pnme of norm p , then

for π e Z[\y2] we have

(412) ρ=πΖ[ν/2]<=Φ \Ν(π)\ =ρ

Applymg this to π - \Π ρ = 2 we find that the pnme coricsponding to

(2, 0) is pnncipal The pnme of norm 3 is taken caie of by π - l 4 \/2 the
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prime of norm 5 by π = l + \/2 , and the pnme of norm 13 by π = 3 — 2\/2
This proves (411)

It will be useful to have a version of (4 12) that is also vahd for pnmes that

are l mod 5 Let p be a first-degree pnme of Z[\/2], corresponding to a pair

(p , c), and let π e Z[\/2] Then we have

(413) ρ = πΖ[\/2] ̂ ψρ c(n) = 0 and \Ν(π)\-ρ

To prove => , suppose that p = πΖ[\̂ 2] Then we have π e p, and p is the

kernel of ψρ c , so ψρ t(n) = 0 Also, from (4 4) we see that \Ν(π)\ - Np - p

To prove <=, suppose that ψρ Γ(π) = 0 and \Ν(π)\ = p Then π belongs

to the kernel p of ψρ c, so πΖ[̂ 2] is contamed m p Since they both have

index p in Zfv7̂ ], they must be equal This proves (4 13)

Example. The number π — l + ¥2 — 2\/2 is found to have norm -151

Substitutmg successively the values c = 22, 25 , 49 , 90, 116 listed in (4 8) for

\f2 , we find that only c = 116 gives nse to a number that is 0 mod 151 Hence,

π generates the prime corresponding to the pair (151 , 116) (Alternatively,

one can determme the correct value of c by calculatmg the gcd of X5 - 2 and

l +Χ2-2χΐ m ¥]5}[X], which is found to be X - 116 )

4 14 Unique factorization. A basic theorem in algebra asserts that prmcipal

ideal domains are unique factonzation domains Thus (411) imphes that the

nonzero elements of Ζ{̂ 2] can be factored mto prime elements in an essentially

unique way More precisely, let for every prime p of Z[v/2] an element πρ

with p — πρΖ[ν/2] be chosen Then there exist for every nonzero β 6 Z[\/2]

umquely determmed nonnegative mtegeis m (p) such that m (p) = 0 for all but

fimtely many p, and such that

p

where ε belongs to the group Z[\̂ 2]* of units of Z[\/2], and where the product

ranges over all pnmes p of Ζ[\/2] We have m (p) > 0 if and only if β e p,

and in this case we say that p occurs, m β We shall call m (p) the number oj

factors p in β Note that we have

(415) \N(ß)\ = Π Npm(p),

p

because \Ν(πρ)\ - Np and \N(c)\ = l , both by (4 4)

Examples. First let β = - l + \/2 The norm of β is 15, so from (4 15) we see

that only the pnmes of norms 3 and 5 occur in β , each with exponent l Usmg

the generators l + v/2 and l l- \/2 that we found above for these pnmes, we

obtain the pnme factonzation

i-, -(l

where ε\ — -l f v^ Note that ε, is mdeed a umt, by N(i}) = l and (4 4)

Similarly, one finds that the prime factonzation of the element l + \Π of noi m

9 is given by

l + v-T* = «2· (l +
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where ε2 = -l + v^ - \/2 + \/T . The factorization of the number 5 is quite

special: it is given by

(4.16) 5 = ε3·(1 + v¥)5,

where ε3 = ef ε^~2 .

4.17. Units. The Dirichlet unit theorem (see [46, §12.4]) describes the unit

groups of general rings of algebraic integers. It implies that the group Zfv̂ ]*

of units of Z[v̂ 2] is generated by two multiplicatively independent units of

infinite Order, together with the unit SQ — - 1 . We found that we could take

these two units of infinite order to be the elements ε ι and £2 from the examples

just given, in the sense that every unit ε that we ever encountered was of the

form

ε = ε̂ (0)£;(1)ε2υ(2), with v(Q),v(l),v(2) e Z.

We never attempted to prove formally that every unit is of this form, although

this would probably have been easy from the material that we accumulated.

There exist good algorithms that can be used to verify this (see [8]).

Given a unit ε , one can find the integers v (i) in the following way. Itiseasily

checked that Ν(ε0) = -l and that τν(ε,) = Ν(ε2) = l . Hence, N (ε) = ε̂ (0} =

(-1)υ(°) , and this determines v(0) (mod 2) . Next let d = exp((log2)/5) and

c-i -- exp((27r/ + log2)/5) ; these are complex fifth roots of 2. Denote by ψ, the

ring homomorphism from Z[\/2] to the field of complex numbers that maps

v̂ 2 to ο,,ΐοτ i =1,2. Then we have

A direct calculation shows that log \ψ\(ε\ )| log |(//2(£2)|-log \ψ{ (ε2)| log \ψ2(ει)\ /

Ο , so υ (1) , ν (2) can be solved uniquely from a system of two linear equations.

Since the v (i) are expected to be integers, we can do the computation in limited

precision and round the result to integers. The inverse of the coefficient matrix

can be computed once and for all.

4.18. A table of first-degree prinres. The table (4.7) of first-degree primes of

norm up to 19 was, for the purpose of factoring F9 , extended up to 1294973 ;

see §6 for the considerations leading to the choice of this limit. We made the

table by treating all prime numbers p < 1294973 individually. For primes p

that are not l mod 5 we found c with the formula c = 2k mod p given in §4.6.

For primes p that are l mod 5 we first checked whether 2^~'>/5 = i mod/? ,

which is a necessary and sufficient condition for 2 to have a fifth root modulo p .

If this condition was satisfied— which occurred for 4944 primes, ranging from

151 to 1294471 — then the five values of c (mod p) were found by means of a

Standard algorithm for finding zeros of polynomials over finite fields (see [26]).

The entire calculation took only a few minutes on a DEC3100 Workstation. We

found that there are 99500 first-degree primes of norm up to 1294973, of which

the last one is given by (1294973, 1207394) .

4.19. A table of prime elemenis. For each of the 99500 primes p in our

table we also needed to know an explicit generator πρ . These can be found by

means of a brute-force search, äs follows. Calculate the norms of all elements
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Ŷ =0r,\/2 € Z[v̂ 2] for which the mtegers \r,\ are below some large bound,
since the norm is a polynomial of degree five in the r, , one can use a difference
scheme m this calculation Whenever an element is found of which the absolute
value of the norm is equal to p for one of the pairs (p , c) in the table, then one
knows that a generator of a pnme of norm p has been found If p ̂  l mod 5
then c is umquely determmed by p , and the pair (p , c) can be crossed off the
hst If p = l mod 5 , then we use (4 13) to determme the correct value of c
for which (p , c) can be crossed off the hst
What we actually did was slightly different We did not search among the

elements =̂0r,\/2 äs just descnbed, but only among the elements that be-

long to the subnng Z[a] of Z[v̂ 2] , where a = -\Π This enabled us to

use a program that was wntten for a previous occasion We considercd all

1092846526 expressions Σ,-ο̂ /α' e Z[o] for which the sl have no common

factor, for which sl > 0 if s,+i through s4 are 0, and that he m the "sphere"

E?_osi226'/5 - 1500° In this way we determmed 49726 ofthe 99500 genera-
tors For the other 49774 first-degree pnme ideals p the same search produced

generators for the ideals ap of norm 8 · Np , so that we could determme the

proper generators by dividing out α The whole calculation took only a few

hours on a single Workstation

We found it convement to have Ν(πρ) > 0 for all p To achieve this, one

can replace πρ by — πρ , if necessary

5 THE NUMBER FIELD SIEVE

As in §3, we let n be the number 7-9/2424833 The account of the number

field sieve that we give in this section is restncted to the specific case of the

factorization of the number n

To factor n with the number field sieve, we made use of the ring ϊ\\Γλ\

that was discussed in the previous section As we saw m i;4 5, there is a ring

homomorphism φ Z[v/2] -* Z/wZ that maps \/2 to 2205 mod n An im-

portant role is played by the element a = -\ίϊ- , which has the property that

φ (a) = (-2615 mod n) = (2103 mod «) What is important about this is that

2103 is very small with respect to n , it is not much bigger than \fn Note that

for any α , b e Z we have

(51) <p(a + bn) = <p(a + 2mb) (m Z/nZ)

This equahty plays the role that the congruence b Ξ n + b mod n played in the

rational sieve from ij2 7

In the rational sieve, the factor base was formed by all pnme numbers up to a

certain hmit B In the present case the factor base was selected äs follows Let
theset PcZtv^] consistof (i) the 99700 pnme numbers p< B\ = 1295377
(n) the three generating units EO EI , and r2 (see fj4 17) (in) the generators πρ
ofthe 99500 first-degree pnmes p of Z[\X2] with Np < B-, = 1294973 (see

iji{4 18 and 4 19) For each p e P, lel ap = φ(ρ) e Z/«Z These formed the

factor base

Relations were found in several wa>s In the first place there are relations

that are already valid in Z[v/2] befort φ is apphed Threc such relations are

given by c^ = l 2 = \Γλ and 5 = i ?*, '( l + ̂2 )5 (see (4 16)) but wc did not
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use these (the first one is in fact useless). In addition, ihere is one such reiation

for each of the 4944 prime numbers p = l mod 5 that occur five times in the

table of pairs (p, c) from §4.18. Such a prime number p factors in Z[\X2] äs

(5.2) ρ = ε

where ε is a unit and p ranges over the five primes of norm p . To see this,

observe that from ψρ,ε(ρ) = 0 it follows that each of these p 's occurs in p .

Since this accounts for the füll norm p5 of p (cf. (4.15)), we obtain (5.2).
The unit ε occurring in (5.2) can be expressed in ε\ and ε2 by means of the

method explained in §4.17 (the unit eo does not occur. since p and the πρ

are of positive norm). Note that for this method we do not need to know the

unit ε itself, but only the numbers log|̂ ,(e)| for / = l , 2, and these can by

(5.2) be computed from the corresponding quantities for p and π,, . The 4944

reiation s found in this way constituted no rnore than 2.5% of the ~ 200000

relations that we needed.

We found the remaining ~ 195000 relations between the ap by searching

for pairs of integers a , b , with b > 0 , satisfying the foliowing conditions:

(5.3) gcd(fl,6) = l;

(5.4) a + 2I03Z>| is built up from prime numbers < B\ and at most

one larger prime number p\ , which should satisfy B\ < p\ <

108;

(5.5) \as-8b5\ is built up from prime numbers < B2 and at most one

larger prime number p2 , which should satisfy B2 < p2 < l O8 .

If the large prime p\ in (5.4) does not occur, then we write p\ = l , and likewise

for p2 in (5.5). Pairs a, b for which p\ = p2 = l will be called füll relations,
and the other pairs partial relations.

We note that the number a5 - S/?6 equals the norm of a + b<\ , by (4.2).
Hence, condition (5.5), with p2 = l , is equivalent to the rcquircment that
a + bot be £2-smooth, in the terminology of §4.3.

Before we describe, in §6, how the search for such pairs was performed, let
us see how they give rise to relations between the a,, . Wc begin with a lemma
concerning the prime factorization of elements of the form a + Λα .

Lemma. Let a , b e Z , gcd(ft , Λ) = l . Then all primes p that occur in a + b<\

are first-degree primes.

Proof. Suppose that p occurs in a + Λα , and let ψ bc a ring homomorphism

from Z[\/2] to a finite field F such that p is ihe kcrnel of ψ . Let /; be the

characteristic of F , so that F;, is a subficld of F . We havc a + Λα e p , so

ψ (a + Λα) — 0 , and therefore

(5.6) <//(α) =

Note that ψ(α) and v(b) belong to F,, , bccause a , h e Z . If <//(/?) =-- 0, thcn

by (5.6) wc havc ψ (a) = 0 äs weil, so b and a are bot h divisiblc by p , which
contradicts that gcd(tf , h) - l . Hence, ψ(Ιι] ̂  0. and from (5.6) we now see

that ψ (n) - - ψ(α)/ψ(1ι) also bclongs to F,, . We ciaim that ψ(\/2) belongs to
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¥p äs well. If p - 2 , we have ψ(\ί2}̂  - ψ (2) - Ο , so ψ(\ίϊ) = Ο, which does

belong to F2 . If p / 2 , then «2 = 2\/2 imphes that (̂ν̂ 2) = ψ (α)2 1 ψ (2) ,

which belongs to ¥p . From (̂\/2) e Fp it follows that y/ rnaps all of Z[\/2]

to Fp . Hence, p is the kernel of a rmg homomorphism from Z[\/2] to ¥p ,

which by defimtion means that it is a first-degree pnmc. This proves the lemma.

The lemma reduces the factonzation of a + ba , with gcd(a , b) — l , to

the factonzation of its norm a5 - 8Ä5 , äs follows. Let p be a pnme number
dividmg a5 - 865 . If p φ l mod 5 , thcn p is the norm of a unique pnme

p , and the number of factors p in a + ba must be cqual to the number of

factors p m a5 - 8/?5 . If p Ξ l mod 5 , then we have to determme which

fifth root c of 2 (mod p) is mvolved. By (5.6), we must have (c mod p)3 =

(a modp)/(b mod p) , and this umquely determmes c , smcc c3 = c'3 mod p

gives 2c = 2c' mod p upon squarmg. Once we have determmed c , we know

which p occurs in a + ba , and agam the number of factors p in α + ba is

equal to the number of factors p m a1 - 8o5 .

Let us now first consider the case that a , b is a füll relation. Then the
factonzation of a + ba has the form

where e is a umt and p ranges over the first-degree pnmes of norm at most
ΒΪ - We just explamed how the exponents w(p) can be determmed from the

prime factonzation of a5 - 8ö5 . We can wnte

;(/),
i=0

where the <;(/) are determmed äs in *j4. 17; just äs with (5.2), it is not necessary
to calculate ε for this. Factoring a + 2l03b , we obtam an identity of the form

with p ranging over the pnme numbers £ BI and w(p) 6 Z>0 (if a + 210V; <

0, use -a, ~b mstead of a , b) . Now replace, m (5.1), both sides by their

factonzations. Then we find that

"(P)r \"' / j_ ĵ  r v · - μ / ιιτνί'/
;-0 P p

In this way, each füll relation a, b gives nse to a relation between the a,,.
With partial relations the Situation is a bit more comphcated. They give rise

to relations between the ap only if they are combmed into cycles, äs descnbed
m [30]. In each cycle, one takes an alternating product of relations (p(a + ba) =
(p(a+2](nb), m such a way that the large pnme ideals and prime numbers cancel
This leads to a relation between the ap , by a procedure that is completely similar
to the one above. It is not necessary to know gencrators ττρ for the large pnme
ideals, since these are divided out.
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If, m (5 5), we have p2 > l , then the additional pume ideal coiresponds to

the pair (p2, c modp2), where c = a2/(2b2) this is uniquely determined by

P2 unless p2 = l mod 5

6 SIEVING

The search for pairs a, b satisfymg conditions (5 3), (5 4), and (5 5) was

performed by means of a Standard sievmg tcchmque that is a famihai mgredient

of the quadratic sieve algonthm (see [38]) For a descnption of this technique

äs it is used in the number field sieve, we refer to [28] and [10, §§4 and 5]
We used 2 2 million values of b , all satisfymg 0 < b < 2 5 · l O6 For each b ,

we sieved \a + 2mb] with the pnmes < B\ , and we sieved \a5 - 8b5\ with the
pnmes < BI , each over l O8 consecutive α-values centered roughly at 8I/5·/;

The best values for a are those that are close to 81/5 · b If we take for

mstance b = l O6 , then for such a 's we are askmg for simultaneous smoothness

of two numbers close to l O37 and 8-1030,for b= l O7 this becomes l O38 and

8 · l O35 The quadratic sieve algonthm when apphed to n would depend on

the smoothness of numbers close to \fn times the sieve length, which amounts

to at least l O80 This is the main reason why the number field sieve performs

better for this value of n than the quadratic sieve The companson is still very

favorable when a is further removed from the center of its interval, although

the numbers become larger The tails of the interval are less important, so the

fact that centenng it at 0 would have been better did not bother us

Smalier έ-values are more hkely to produce good pairs a, b than larger ones

The best approach is therefore to process the 6-values consecutively startmg at

l, until the total number of füll relations plus the number of mdependent cycles
among the partial relations that have been found equals ~ 195000 One can
only hope that this happens before b assumes prohibitively large values Of
course, B\ and B2 must have been selected in such a way that one is reasonably
confident that this approach will succeed This is discussed below
We started sievmg m mid-February 1990 on approximately 35 Workstations

at Bellcore On the Workstations wt were usmg (DEC3100's and SPARC's)
each h took approximately eight rmnutes to process We had to spht up the
iz-mtervals of length l O8 mto 200 mtervals of length 5 · l O5, m order to avoid
undue mterference with other programs After a month of mostly mght-time
use of these Workstations, the first ränge of l O5 b 's was covered Mid-March,
the network of Firefly workstauons at DEC SRC was also put to work This
approximately tnpled our computmg power With these forces we could have
fimshed the sievmg task withm another seven months However, at the time,
we did not know this, since we did not know how far we would have to go with
b
Near the end of Maich it was rumored that we had a competitor After

attempts to jom forces had failed, we decided to accelerate a httle by followmg
the strategy descnbed m [29] We posted messages on vanous electronic bulletm
boards, such äs sei crypt and sei math, sohcitmg help A sievmg program, plus
auxihary driver piograms to run it, were made available at a central machine
at DEC SRC in Palo Alto to anyone who expressed an interest m helpmg us
After contactmg one of us personally, either by electronic mail or by telephone,
a possible contnbutor was also piovided with a unique ränge of consecutive
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/>-values The size of the ränge assigned to a particular contnbutor depended
on the amount of free computmg time the contnbutor expected to be able lo
donate Each ränge was sized to last for about onc week, after which a new ränge
was assigned This allowed us to distnbute the available b 's reasonably e\enly
over the contnbutors, so that the b 's were processed more or less consecutively

It is difficult to estimate precisely how many woikstations were enlislcd in um
way Given that we had processed 2 2 million b 's by May 9, and assummg that
we mostly got mght-time cycles, we must have used the equivalent of appioxi-
mately 700 DEC3100 Workstations We thus achieved a suslained performance
of more than 3000 mips for a penod of five weeks, at no cost (Mips is a umt
of speed of computmg, l mips bemg one million mstructions pei second ) The
total computational effort amounted to about 340 mips-years (l mips-year is
about 3 15 · l O13 mstructions) We refer to the acknowledgments at the end of
this paper for the names of many of the people and institutions who responded
to our request and donated computmg time

Each copy of the sieving program communicated the pairs a, b that it
found by electromc mail to DEC SRC, along with the corresponding pair p\ ,
Pi and, m the case pi > l , PI Ξ l mod 5, the residue class (a/b moo p2)
In order not to overload the mail System at DEC SRC, the pairs were sent at

regulär mtervals At DEC SRC, these data were stored on disk Notice that
the corresponding two factonzations were not sent, due to storage hmitations
These were later recomputed at DEC SRC, but only for the relations that turncd
out to be useful in producing cycles The residue class (a/b mod p2) could
also have been recomputed, but smce it simplified the cycle counting we found
it more convement to send it along Notice that (a/b modp2) dislinguishes
between the five pnme ideals of norm p2
When we ran the quadratic sieve factormg algonthm in a similai manner (see

[29]), we could be wasteiul with mputs we made sure that different inputs were
distnbuted to our contnbutors, but not that they were actually processed Wc
could afford this approach because we had milhons of inputs, each of which
was in pnnciple capable of producing thousands of relations Foi the numbei
field sieve the Situation is different each b produces only a small numbei
of relations, if any, and the average yield decreases äs b mcreases In order
not to lose our rather scarce and valuable "good" inputs (i e the small b-
values), we wanted to be able to monitor what happened to them after they
were given out For this reason, each copy of the sieving program also reported
through electromc mail which b 's from its assigned ränge it had completed
This allowed us to check them off from the hsl of b 's we had distnbuted Values
that were not checked off within approximately ten days were redistributed
Occasionally this led to duphcations, but these could easily be sorted out

By May 7 we had used approximately 2 l million b 's less than 2 5 million
and we had collected 44106 füll relations and 2999903 partial relalions The
latter gave rise to a total of 158105 cycles Smce 44106 + 158105 is well
over 195000 , this was already more than we nceded Neverlhelcss, to facilitate
fmdmg the dependencies, we went on for two more days By May 9, aftei ap-
proximately 22 million /;'s, we had 45719 füll reldtions and 176025 cycles
among 3114327 partial relations Only about one hflh of these 3114327 ic-
lations turned out to be useful in the sensc that they actually appeared in onc
of the 176025 cycles 1t took a few houis on a singlc Workstation to find the
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cycles in lerms of the a, b p\ , and p2 mvolvcd by rncans ot an algonihm

explamed in [30] The numbei of cycles of each length is given m lable l

TABLE l

cycle

length

2

3

4

5

6

7

8

9

10

number

of cycles

48289

43434

32827

22160

13444

7690

4192

2035

1055

1 cvcle

length

11

12

13

14

15

16

17

19

20

number

of cycles

473

243

100

55

14

8

2

2

2

This is what we hoped and more or less expected to happen, but ihere was no

guarantee that our approach would woik For any choice of B ι and B2 (and

size of fl-mterval) we could quite accuratcly predict how many füll and partial
relations we would find by processmg all b 's up to a certain reahstic limit This
made it immediately clear that values B\ and B2 for which füll relations alone
wouid suffice would be prohibitively large
Thus we were faced with the problem of choosmg B\ and B2 m such a

way that the füll relations plus the cycles among the partials would be hkely to
provide us with sufficiently many relations between the ap It is, howevcr hard
to predict how many partials are needed to pioduce a given numbei of cycles
For instance, the average number of cycles of length 2 resultmg fi om a given
number of partials can be estimated quite accurately, but the vanance is so large
that for each particular collection of partials this estimale may tui n out to be
far too optimistic or pessimistic An estimate that is too low is harmless but an
estimate that is too high has veiy senous consequcnces once b is sulficiently
large, hardly any new fulls or partials will be found and the only alternative is
to Start all over agam with larger Bt and B2 As a conscqucnce, we selected
the values for B} and B2 carefully and conservatively, we made sure that we
did not skip many ^-values, and we milked eath b foi all it was worth by using
an excessively long a-mterv?l

We decided to set the si/e of the factoi base approximately equal to 2 · l O5
only after expcnments had ruled out l 2· l O5, l 4· l O5, and l 6-1CP äs probably
toosmall, and l 8-105 äs too nsky For 2-10s we predicled ~ 50000 füll and
at least 3 million parüa! relations after the first 2 5 million b 's This piediction
was based on Figure l (next page) where the results of some pielimmaiy runs of
the sievmg program are presented For / i anging from i to 40 the total number
of relations (iulls plus partials) found for the 300 tonsecutivc /; 's staiting at
ι · l O5 is given äs a function of / The uppcr cuwe gives the >ield foi an
α-interval of length 108, the lower curve foi iength 2 · l O7

Our expenence with other number field sicve ldcton?ations made us hope

that 3 million partials would produce 150000 cvclcs which indccd turncd out
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FIGURE 1. The number of füll and parlial rclations found per
300 6's, for 2. l O7 and for l Ο8 α's

—l total
λ

Λ Cycles

pa r 1.1. a l s

FIGURE 2. The number of cycles and füll relalions äs a function
of the number of partial relations

to be the case. But even if 3 million partials had not been enough, we knew that
the b 's between 2.5 and 4 million would lead to at least another million partials,
and a good chancc to find enough cycles. in Figure 2 we give the number of
cycles, the number of füll relations, and their sum, that were obtained after we
had found a given number of partial relations. This does not include the initial
4944 relations.
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Now that we have seen how everything woiked out in this particular case wc

know that with the same B\ and ΒΊ and a much smaller α-interval we could

have produced 3 milhon partials m much less time aftei usmg mote b 's For

example, halvmg the length of the α-interval would reduce the aveiagc yield

per &-value by only 15% It would probably have been optimal to use about

l 5 · l O7 values of a per b , with b ranging up to about 5 5 milhon this would

have taken about 40% of the time that we actually spent Still, we cannot be

certam that this would have given nse to the same number of cycles

We could have profited a little from the known factor 2424833 of F9

by puttmg it m the factor base, along with the pnme ideal corresponding to

(2424833, 2205 mod 2424833), smce the pnme appears on the nght if and only

if the prime ideal appears on the left We realized this only after the third

author had found seven "awfully suspicious" pairs a, b, namely pairs with

p ι = p2 = 2424833 , while generating the cycles

To conclude the second Step, the füll relations and the cycles had to be
transformed mto relations between the ap To this end, we recomputed the
2 · 722241 factonzations corresponding to the 722241 (not all distinct) pajrs
a , b involved, and determmed the unit contnbutions This work was divided
over fifteen Workstations at DEC SRC, and it took about sixteen hours

7 FlNDING DEPENDENCIES

As a result of the computations descnbed in the previous section, we had
4944+45719+176025 = 226688 relations between 3+99700+99500= 199203
different ap 's To finish the factonzation of n , we had to determme a few
dependencies between the 226688 rowsofthe 199203-column matnx over F2
that one obtams by takmg the relations (i e , the exponents of the ap) modulo
2 A dense representation of this matrx would require more than 5 Gigabytes
(= 5 · 230 bytes) of storage, where one byte represents 8 bits Fortunately, the
matnx is sparse, because relatively few pnmes and pnme ideals appear in the
factonzations leadmg to the relations this Situation is shghtly worsened by the
fact that we obtamed many relatio.is by combming partial relations In any
case, there were only 11 264596 nonzero entnes in the matnx, for an average
of 49 7 nonzero entries per row Ί hus, the entire matnx could easily be stored

Fmdmg dependencies was still a challengmg task The sievmg step had posed

no problems that had not al.eady been solved for other numbers, except that

an unusually large amount of computmg time had to be arranged The matnx

step, however, presented a difficulty that had not been encountered in previous

factonzations Actually, the only reason that we had not embarked upon the

factonzation of F9 earlie' is that we did not know how to handle the matnx

The largest matnces that we had ever dealt with m previous factonzations

contamed approximately 80000 columns, and a few more iows Dependencies

modulo 2 among the rows were found m an entirely straightforward fashion

by means of ordmary Gaussian elimmation, with pivot-search from the sparse

side In this way some profit could be gamed from the sparseness, but not

much usually, the storage that one ullimatcly needs is about two thirds of what

it would have been m the dense case This fits in only 0 5 Gigabytes for an

80000 matrix, so that the elimmation task for such a matrix is more 01 less

tnvial foi someone with acccss to a laige supeiComputer At DEC SRC whcre
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Ihe computations were cained out, the only machinc with enough disk space that
could be devoted entirely to the elimination task was a four-processor Firefly
Workstation On this Workstation, elimination of a sparse 80000-matnx takes
approximately six weeks Here we should note that for two of the three 80000-
matnces we processed in this way, the resuitmg dependencies turned out to be
faulty In both instances a rerun (with another six-week wait1) was successiai
We suspect that m both first runs an irreproduuble cache rcad or wnte enor had
occurred Clearly, a smgle bit error can render the entire computation worthlcss

Extrapolation of these hgures to a 200000-matnx did not look piomismg
Even if our Workstation had enough disk space, 6 · (2 5)3 « 90 weeks is unac-
ceptably long, and the probabihty of a bit enor occurrmg would be unaccept-
ably large On a Supercomputer the figures still would have looked unattractive
Therefore, we mvestigated whether there was a better way to profil iiom the
sparseness of the matnx
Among the several existmg techniques for dealmg with sparse matnces, we de-

cided to attempt structured Gauisian elimination [24, 39] in structured Gauss-
lan elimination the columns of the matnx are partitioned mto heavy and sparte
columns Imtially, all columns are considercd sparse Roughly speakmg, one
does ehminations with pivots in sparse columns that cause fill-in only m Ihe
heavy columns of the matnx, thereby removmg the pivot rows and columns
from the matnx When this is impossible, one either moves some of the columns
from the sparse to the heavy part, or one removes some excess rows, if there
are any Next, one tnes agam This is repeated until no sparse columns are left
For reasons that are not yet understood it seems to be beneficial to have many
excess rows imtially
Dunng this proccss one does not keep track of what happens in the heavy

columns, but one remembers only which ehminations have been carned out
This Information can then be used to build the smaller but much denser matnx
corresponding to the heavy columns, and to convert dependencies among its
rows mto dependencies among the rows of the original matnx Dependencies
in the smaller matrix can be found by means of ordmary Gaussian elimination

It took us a few hours on a smgle Workstation to reduce our 226688-row and
199203-column matnx to a 72413-row and 72213-column matrix We kept 200
excess rows, to have a reasonable guarantee that one of the dependencies would
be useful It look shghtly more than one day to actually build the small matnx
and to venfy that all entries in the sparse and eliminated part were mdeed
zero The small matnx turned out to be entiiely dense In the small matnx we
included at regulär intervals rows that consisted of the sum (modulo 2) of all
previous rows, thus creating several spurious but predictable dependencies

We immediately set out to reduce this "small" matrix, usmg ordmary Gauss-
ian ehmmation and our familiär set-up at DEC SRC This time, however, we
had some protection agamst bit errors if one of the spurious dependencies
failed to show up, somethmg must have gone wrong recently Then we could
back up a few hundred rows, and restart the elimination from a pomt wherc
we were confident that everything was still correct We estmiate that the entire
elimination on this smgle Workstation would have taken less than seven weeks

While this process was makmg its slow progress, the third authoi, tired of
keepmg it alrve and not too confident of its outcome, contacted Roger Frye
and Mike McKenna at Thmking Machines and explamcd the pioblcm to them
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Afler a short while they had wntten a Gaussian ehmmation progiam for a
Connection Machme They estimated that their program, when cxecuted on a
65536-processor Connection Machme, could handle our 72000-maüix withm
thiee hours Jim Hudgens and George Marsagha at the Supercomputer Com-
putation Research Institute at Florida State Univcrsity arranged the Computer
time we needed We sent a box with ten tapes conlaming the dala for tne matnx
by Fedeial Express to Florida Jim Hudgens Consolidated these ten tapes mto
one "exotape" Dunng the evening of June 14 he mounted the exotape, so that
Roger Frye and Mike McKenna, remotely logged m from Thinking Machines
in Cambridge, Massachusetts, could lead the data äs one large sequential file,
and execute the program It solved the System m three houis, but then a crash
occurred, due to a mistake in the Output roulme The second run which agam
took three hours, produced a few hundred dependencies among the iows of the
dense 72000-matnx

In the early moimng of June 15, 1990, the dependencies were sent, clec-
tronically, to DEC SRC, where they weie conveited mto dependencies of the
original sparse 200000-malnx At least, that is what we hoped that the> would
turn out to be At 9 15 PDT we started our final piogram the attempt to fac-
tor n by processmg the dependencies sequentially until the factonzation was
found This led to the most exuting moment of the entire factonzation of /-9
at 9 45 PDT the program concluded that the first alleged dependency among
the rows of the sparse 200000-matnx was a true one This moment of great
relief could not be spoilt by the sobenng message, displayed at 10 15 PDT, that
the first dependency had just given nse to the trivial factonzation of n An
hour later, at 11 15 PDT (1815 GMT), the second dependency proved to be
luckier by findmg a 49-digit factor Both this factor and the 99-digit cofactoi
were announced pnme, because no witnesses to their compositeness could be
found among fave randomly chosen mtegers (see i)2)

Five minutes later the backup Gaussian ehmmation process, still crunching
along on a smgle Workstation, was termmated, hve days short of its goal Still
on June 15, Andrew Odlyzko used the first author's Cray X-MP Implementation
of the Jacobi sum pnmality test [12, i3] to prove that both factors were mdeed
pnme
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