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1. - Introduction.

A quantum point contact (QPC) is a short constriction of variable width,
comparable to the Fermi wavelength, usually defined using a split-gate tech-
nique in a high-mobüity two-dimensional electron gas (2DEG). QPC's are best
known for their quantized conductance at integer multiples of 2e2//i[l-3]. In
addition, they have proven to be versatile probes for the study of electrical con-
duction in the ballistic and quantum Hall effect regime[3j. Recently, we have
used QPC's in studies of thermal conduction and of thermo-electric cross-phe-
nomena. Our results are reviewed in this lecture.

Electrical conduction in linear response can be understood using the Lan-
dauer-Büttiker formalism [4, δ], which relates the conduction to transmission
probabilities. This scattering formalism has been generalized to thermal and
thermo-electric transport properties by SIVAN and lMRY[6] and by Bur-
CHER[7]. STREDA[8] has considered specifically the problem of the thermopow-
er of a QPC. He found that the thermopower vanishes whenever the conduc-
tance of the point contact is quantized, and that it exhibits peaks between
plateaux of quantized conductance. Within this theoretical framework one can
show that the thermal conductance κ and the Peltier coefficient Π should exhib-
it quantum size effects similar to those in the conductance G and the ther-
mopower S, respectively. We review the theory in sect. 2.

(*)Present address: Department of Physics, University of Nottingham, Nottingham NG7
2RD, U.K.
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An experimental difficulty in the investigation of thermal and thermo-elec-
tric properties in the ballistic transport regime is that appreciable temperature
differences have to be created on a length scale of the mean free path, which is a
few um. A current heating technique[9] has enabled us to realize temperature
differences on such short length scales. Our work on the quantum oscillations in
the thermopowerflO, 11] is reviewed in subsect. 3Ί. Because of the sizable
thermopower, a QPC can be used äs a miniature thermometer, to probe the lo-
cal temperature of the electron gas. We have exploited this in a series of novel
devices containing multiple QPC's, with which we demonstrate quantum steps
in the thermal conductance äs well äs quantum oscillations in the Peltier coeffi-
cient of a QPC. The results of these experiments are presented in subsect. 3'2
and 3'3. Concluding remarks are given in sect. 4. The text of this lecture is
based on ref. [12], updated to include improved experimental results on the
Peltier coefficient.

2. - Theoretical background.

21. Scattering formalism for tkermo-electricity. - We consider the electri-
cal current / and heat current Q between two reservoirs at electrochemical po-
tentials Er and Ey + Δμ and temperatures T and T + ΔΤ. For small differences
Δμ and ΔΤ the currents 7 and Q satisfy the linear matrix equations [13]

(D
G
M ΔΓ

The thermo-electric coefficients L and M are related by an Onsager relation,
which in the absence of a magnetic field is

(2) M= -LT.

Equation (1) is often rearranged with the current 7 rather than the electro-
chemical potential difference Δ,α on the right-hand side[13]:

(3)
Q

R S
Π -κ Δ71

The resistance R = l/G is the reciprocal of the conductance G. The thermo-
power 5 is defined äs

(4) s =^- = -L/G.
7 = 0

The Peltier coefficient Π, defined äs

(5)
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is proportional to the thermopower in view of the Onsager relation (2). Finally,
the thermal conductance κ is defmed äs

(6) κ
The term between brackets in eq. (6) is usually close to unity.

The thermal and thermo-electric coefficients were related to the transmis-
sion probabilities for a multi-terminal geometry in ref. [6] and [7]. Here we will
only use the two-terminal expressions, for which the derivation is outlined in
the appendix. We find the following expressions:

(7)

L _
h e J 3# kKT

K 2e2

(9) T

These Integrals are convolutions of the total transmission probability t(E} at
energy E through a kernel of the form ε™ά//άε, m = 0, 1,2, with ε = (Ε-
- EF )/&B T, and / the Fermi function

(10) /(e) = (exp[e] \-i

Plots of these kernels are given in fig. 1.
The conductance and thermal conductance are approximately proportional

to t(Ef), while the thermo-electric cross-coefficients are approximately propor-
tional to the derivative dt(E)/dE at E = EF . This follows from a Sommerfeld ex-
pansion of the integrale (7)-(9), valid for a smooth function t(E) to lowest order
in kBT/EF[7]:

(11) G~

h

(13) K~ -
fl

Here L0 = ks~2/3e2 is the Lorentz number. In this approximation K = -L0TG,
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Fig. 1. - From top to bottom: Fermi-Dirac distribution function/, and ε'"ά//άε, for m = 0,
l, 2, äs a function of ε = (E - EF)/kBT. These functions appear in the expressions (7)-(9)
for the transport coefficients.

so that for S2«L0 one finds from (6) the Wiedemann-Franz relation

(14Ί κ-χΤ 7Y7\±rzj K. — .L/Q L \J .

As discussed below, the thermal and thermo-electric coefficients of a QPC may
exhibit significant deviations from eqs. (12)-(14). The inadequacy of the Som-
merfeld expansion is a consequence of the strong energy dependence of t(E)
near EF. In addition, S2«L0 does not hold for a QPC close to pinch-off.

2'2. Quantum point contact äs ideal electron waveguide. - In this subsection
we calculate the thermal and thermo-electric properties of a QPC by modelling
it äs an ideal electron waveguide, which is coupled reflectionless to the reser-
voirs at entrance and exit. In this model the transmission probabüity has a
step-function energy dependence

(15) t(E)=
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The steps in t(E) occur at the threshold energies En of the one-dimensional sub-
bands or modes in the waveguide. The energy integrals in eqs. (7) and (8) for
the conductance and the thermopower can be evaluated analytically. By Substi-
tution of eq. (15) into eq. (7), one finds for the conductance

9fl2 ^
(16) G= ^- 2,/(e„),

f l n = l

with εη = (En - EF)/k$T. This reduces to G = (2e2/h)N at low temperatures
(Nis the number of occupied subbands at energy EF). Similarly, using the
identity

(17)

we find

e t>
(18) L= &- -J-,

n, e »=1

The thermopower S = -L/G and the Peltier coefficient Π = TS = -TL/G fol-
low immediately from eqs. (16) and (18). At low temperatures the thermopower
vanishes, unless the Fermi energy is within kE T from a subband bottom. In the
limit T = 0 one finds from eqs. (16) and (18) that the maxima are given by

(19) 5 = - · ' XEY = EN,N>2.

(Note that at EY = EN one also has G = (2e2/h)(N - 1/2). ) Equation (19) was
first obtained by STREDA[8]. For this ideal waveguide model the width of the
peaks in the thermopower äs a function of EF is of order /CB T, äs long äs
\T « T.

Plots of the transport coefficients äs a function of Fermi energy, calculated
from eqs. (7)-(9) and (15), are given in fig. 2 for T = l K. The values for En are
those for a parabolic lateral confinement potential V(y) = V0 + (1/2)ιηω^2,
with fküy - 2.0 meV. We draw the following conclusions from these calculations.
1) The temperature T affects primarily the width of the steps in G and of the
peaks in S, leaving the value of G on the plateaux, and the height of the peaks in
S essentially unaffected. 2) The thermal conductance κ (divided by L0T) ex-
hibits secondary plateaux near the steps in G, in violation of the Wiedemann-
Franz law. At 4 K the secondary plateaux in κ are even more pronounced than
those which line up with the plateaux in the conductance. These secondary
plateaux are due to the bimodal shape of the kernel ε2ά//άε (see fig. 1). 3) The
difference between κ and K (cf. eq. (6)) is usually negligible, except in the vicin-
ity of the first step in G.

24 - Rendiconti S.I.F. - CXVH
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S 2
d"

Fig. 2. - Calculated conductance G (füll curve), thermal conductance K/L0 T (dashed curve)
and thermopower S (dotted curve) for a QPC with step function t(E) äs a function of Fermi
energy at l K. The Peltier coefficient Π = TS differs only by a constant factor from 5.
A parabolic confmement was assumed in the QPC, with subband sph'tting ίΐων =
= 2meV.

3. - Experiments.

3Ί. Thermopower. - We have previously reported[10, 11] the observation
of quantum oscillations in the thermopower of a QPC using a current heating
technique. We review the main results here. The experimental arrangement is
shown schematically in fig. 3α). By means of negatively biased split gates, a
channel is defined in the 2DEG in a GaAs-AlGaAs heterostructure. A quantum
point contact is incorporated in each channel boundary. The point contacts l and
5 face eaeh other, so that the transverse voltage Vi - V& (measured using Ohmic
contacts attached to the 2DEG regions behind the point contacts) does not con-
tain a contribution from the voltage drop along the channel.

On passing a current / through the channel, the average kinetic energy of
the electrons increases, because of the dissipated power (equal to (// Wch )

2 p per
unit area, for a channel of width Wch and resistivity p). We have experimental
evidence that the net drift velocity in the channel between the QPC's is not es-
sential for the transverse voltage [10]. We, therefore, ignore this drift velocity
and model the distribution function in the channel by a heated Fermi function at
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100

Fig. 3. - α) Layout of the device used to demonstrate quantum oscillations in the ther-
mopower of a QPC by means of a current heating technique. The channel has a width of
4 am, and the two opposite quantum point contacts at its boundaries are adjusted dif-
ferently. b) Measured conductance and transverse voltage — (Vj - V5) äs a function of the
gate voltage defining point contact l (black gates), at a lattice temperature of 1.65 K and a
current of 5 μΑ. The gates defining point contact 2 (dashed) were kept at — 2.0 V.

temperature T + ΔΓ. This temperature difference Δ 71 gives rise to a thermovolt-
age

(20) Vl-V5 = (Si - S5)ΔΓ.

As dictated by the symmetry of the channel (see fig. 3α)), this transverse volt-
age vanishes unless the point contacts have unequal thermopowers Si ^ S5.

A typical experimental result[10] is shown in fig. 36). In the experiments,
the gate voltage on the black-painted gates in fig. 3α) (which define point con-
tact 1) is varied, while the voltage on the hatched gates (defining point contact
5) is kept constant. In this way, any change in the transverse voltage Vl - F5 is
due to variations in S\. (S5 is not negligible in this experiment, which is why the
trace for - (Vt — V5) drops below zero in fig. 36).) Also shown is the conductance
G of point contact l, obtained from a separate measurement. We observe strong
oscillations in Vi~Vs. The peaks occur at gate voltages where G changes step-
wise because of a change in the number of occupied 1D subbands in point con-
tact 1. These are the quantum oscillations of the thermopower predicted by
STREDA[8].

A detailed comparison of the oscillations in fig. 36) with the ideal electron
waveguide model (extended to the regime of finite thermovoltages and tem-
perature differences) has been presented elsewhere [10]. The decrease in ampli-
tude of consecutive peaks is in agreement with eq. (19). The largest peak near
G - 1.5(2e2 /h) has a measured amplitude of about 75 u.V. The theoretical result
eq. (19) predicts S~ - 40uV/K for this peak, which indicates that the tempera-
ture of the electron gas in the channel is λΤ~2Κ above the lattice temperature
T = 1.65 K.
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Fig. 4. - a) Layout of the device used to demonstrate quantum Steps in the thermal con-
ductance of a QPC, using another point contact äs a miniature thermometer. The main
channel is 0.5 μιη wide. b) Measured conductance and r.m.s. value of the second-harmonic
component of the voltage — (V\ - V4) äs a function of the gate voltage defining the point
contact in the main channel boundary (black gate), at a lattice temperature of 1.4 K and an
alternating eurrent of r.m.s. amplitude 0.6 uA. The gates defining the other point contact
(dashed) were kept at - 1.4 V, so that its conductance was G = 1.5(2e2//i).

We relate the increase in electron temperature to the eurrent in the channel
by the heat balance equation

with Cv = (n:2/B)(ksT/Ef)niks the heat capacity per unit area, ns the electron
sheet density, and τε an energy relaxation time associated with energy transfer
from the electron gas to the lattice. The symmetry of the geometry implies that
Vi ~ ^5 should be even in the eurrent, and eq. (21) implies more specifically that
the thermovoltage difference Υλ - V5 « Δ71 should be proportional to 72—at
least for small eurrent densities. This agrees with our experiments [10, 11] (not
shown). Equation (21) allows us to determine the relaxation time r. from the
value Δ71 ~ 2 K deduced from our experiment. Under the experimental condi-
tions of fig. 36) we have T = 1.65 K, / = 5 μΑ, Wch = 4 μηι, p = 20 Ω. We thus find
τε ~ 10 ~10 s, which is not an unreasonable value for the 2DEG in GaAs-AlGaAs
heterostructures at helium temperatures [14].

3'2. Thermal conductance. - The sizable thermopower of a QPC (up to - 40
uV/K) suggests its possible use äs a miniature thermometer, suitable for local
measurements of the electron gas temperature. We have used this idea to mea-
sure with one QPC the quantum steps in the thermal conductance of another
QPC.

The geometry of the device is shown schematically in fig. 4α). The main
channel has a boundary containing a QPC. Using eurrent heating, the electron
gas temperature in the channel is increased by ΔΤ, giving rise to a heat flow Q
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through the point contact. This causes a much smaller temperature rise oT of
the 2DEG region behind the point contact (neglected in the previous subsec-
tion), which we detect by a measurement of the thermovoltage across a second
point contact situated in that region.

To increase the sensitivity of our experiment, we have used a low-frequency
alternating current to heat the electron gas in the channel, and a lock-in detec-
tor tuned to the second harmonic to measure the root-mean-square amplitude of
the thermovoltage Vl - V4. The voltages on the gates defining the second QPC
were adjusted so th'at its conductance was G - 1.5(2e2 /h). Finally, we applied a
very weak magnetic field (15 mT) to avoid detection of hot electrons on ballistic
trajectories from the first to the second point contact.

Figure 46) shows a plot of the measured thermovoltage äs a function of the
voltage on the gates defining the point contact in the channel boundary, for a
channel current of 0.6 μΑ (r.m.s. value). A sequence of plateaux is clearly visi-
ble, which line up with the quantized conductance plateaux of the point contact.
Since the measured thermovoltage is directly proportional to ST, which in turn
is proportional to the heat flow Q through the point contact, this result is a de-
monstration of the expected quantum plateaux in the thermal conductance
κ = - Q/ΔΓ. We have verified that the second-harmonic thermovoltage signal
at fixed gate voltages is proportional to 72, äs expected. Let us now see whether
the magnitude of the effect can be accounted for äs well.

To estimate the temperature increase 3Τ(«ΔΤ) we write the heat balance
for a region of area A

(22) κΔΓ = ονΑοΓ/τΓ .

We assume that the effective area A equals the square of the energy relaxation
length (D-s )

1/2 ~ 10 μπι, so that ~t drops out of eq. (22). On inserting the (ap-
proximate) Wiedemann-Franz relation K~L0TG, with G = N(2ez/h), and using
the expression for the heat capacity per unit area given in the previous subsec-
tion (with rcs = EF m/r,hz), we find

(23)
ΛΤ mD '

In the experiment D = 1.4 m2/s, so that at the N = l plateau in the conductance
we have ZT/±T~\2 · 10~3. The experimental curve in fig. 46) was obtained at a
current density in the main channel of //Wch = 1.2 A/m, close to that used in the
thermopower experiment shown in fig. 36). The analysis of the latter data indi-
cated that ΔΓ ~ 2 K at this current density. Consequently, ίΤ ~ 2 mK. The
point contact used äs a thermometer (adjusted to G = 1.5(2e2/A)) has S ~
~ - 40 u.V/K (see subsect. 2'3), so that we finally obtain Vl - V2 ~ - 0.10 uV.
The measured value is larger (cf. the first plateau in fig. 46)), but not by more
than 50%. All approximations considered, this is quite satisfactory.
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a)

40,um

-1.0 -0.5
Veale (V)

Fig. 5. - a) Layout of the d^vice used to demonstrate quantum oscillations in the Peltier
coefficient of a QPC. Positive current flows from Ohmic contact 6 to 3. The main channel is
4 am wide, and the distance between the pairs of point contacts in its boundaries is 10 am.
6) Measured conductance and thermovoltages -(Fj - V&) and -(Vz - V4) divided by the
current 7 äs a function of the voltage on the (black) gate defining the point contact in the
channel. The lattice temperature is 1.6 K and the current is about 0.1 oA near G = 2e2/h.
Gates defining point contacts l and 2 were adjusted so that their conductance was
G = 1.5(2e2/A).

3'3. Peltier effect. - In this subsection we present results of an experiment
designed to observe the quantum oscillations in the Peltier coefficient Π of a
QPC. The geometry of the experiment is shown schematically in fig. 5α). Α
main channel, defined by split gates, is separated in two parts by a barrier con-
taining a point contact. A positive current 7 passed from Ohmic contact 6,
through this point contact, to Ohmic contact 3 is accompanied by a negative
Peltier heat flow Q = ΠΙ. The result is a temperature rise $T in the left-hand
part of the channel, and a temperature drop ίΤ in the right-hand part. These
temperature changes of the electron gas can be detected by measuring the ther-
movoltages across additional point contacts in the channel boundaries—at least
in principle.

A complication is that the changes in temperature ϊΤ come on top of an over-
all increase in temperature from the power dissipation 72/G at the QPC in the
channel. The dissipated power is not equally distributed among the 2DEG re-
gions on either side, and it is precisely this imbalance which corresponds to the
Peltier heat flow 777. We wish to detect only the temperature changes ± ίΤ as-
sociated with the Peltier heat flow. This is accomplished by using an alternating
current and a lock-in detector tuned to the fundamental frequency to measure
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the components linear in / of the thermovoltages V\ - V5 and V2 - V4 . (Note
that the power dissipation produces a signal on the lock-in at twice the a.c. fre-
quency.) The Output voltage of the lock-in detector is divided by the current, to
obtain a signal linearly proportional to the Peltier coefficient Π of the point con-
tact in the channel. This signal, measured äs a function of the voltage on (one of)
the gates defining that point contact, should exhibit quantum oscillations, relat-
ed to those seen in the thermopower S by the Onsager relation (2).

In order to adjust the central point contact without also affecting the QPC
which measures the thermovoltage, we only vary the lower part of the central
gate (the black gate in fig. 5α)). For the same reason, the device is designed
such that the lithographic width (2 um) of the split gates on the lower side of the
channel is rauch larger than that on the top side of the channel (0.2 am) (which
define the thermometer point contacts). As a result, the thermopower of the
contacts on the lower side of the channel is very small, so that a change in their
width has a negligible effect on the transverse voltages V{ - F5 and VZ-V^.
Results obtained at 7 ~ 0.2 uA and T = 1.6 K are plotted in fig. 56), together
with a trace of conductance vs. gate voltage for the point contact in the
channel.

Oscillations in the thermovoltage (normalized by the current /) are clearly
visible for both - (Fi - F5 )// and - (Vz - V4 )//. The Signals are of opposite
sign, which proves that heating occurs in the left-hand part, and cooling in the
right-hand part of the channel (for the current direction used). The oscillations
have an amplitude up to ~ 10 V/A and maxima aligned with the steps between
conductance plateaux. The signals are linear in / and remain so for currents
larger by at least one order of magnitude. Additional experiments at low mag-
netic fields have demonstrated that the signals are not sensitive to electrons
travelling balh'stically between the central and the thermometer point contacts.
All this is consistent with the Interpretation of the results in fig. 5&) äs quantum
oscillations in the Peltier coefficient Π.

Again, it is important to corroborate our Interpretation by an estimate of the
magnitude of the effect. To estimate the temperature rise (in the left-hand part
of the channel) and decrease (in the right-hand part) of magnitude ST, we use
again the heat balance equation. We find

(24)

To evaluate this expression, we use the Onsager relation Π = ST (for T =
= 1.65 K), the theoretical value S« - 40 uV/K (for G = 1.5(2e2 /h)) and the value
T£ ~ 10~10s deduced from the thermopower experiments described above. Since
the length of the channel Wch in the present sample (20 am on either side
of the central point contact) is larger than the energy relaxation length (D-,)2

(in contrast with the Situation in the sample used to measure the thermal
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conductance), we estimate the area A äs the product of these quantities,
A = (D-, )1/2 Wch ~ 50 am2. Thus we find that ί T/I ~\ O5 K/ A. The resulting
thermovoltage across one of the thermometer point contacts (adjusted to G =
= 1.5 (2e2/h) äs well), normalized by /, would then be about 4 V/A, in reasonable
agreement with the experimentally observed amplitude of ~ 10 V/A.

4. - Conclusions.

In conclusion, we have reviewed the theory of the thermal and thermo-elec-
tric effects in a quantum point contact[6-8] and our experiments on the quan-
tum oscillations in the thermopower [10]. Data have been presented that show
the quantum Steps in the thermal conductance and the quantum oscillations in
the Peltier eoefficient. Our experiments exploit quantum point contacts äs
miniature thermometers. The results for the thermal and thermo-electric trans-
port coefficients presented here compare reasonably well with the theoretical
estimates based on a simple heat balance argument. A füll account of our exper-
iments on thermal conductance and Peltier effect is published elsewhere [15].

We acknowledge valuable contributions of M. J. P. BRUGMANS, R. EPPENGA,
TH. GRAVIER and M. A. A. MABESOONE at various stages of this work, and
thank H. BUYK and C. E. TIMMERING for their technical assistance. The support
of M. F. H. SCHUURMANS is gratefully acknowledged. This research was partly
funded under the ESPRIT basic research action project 3133.

A P P E N D I X

In this appendix we outline the derivation of the expressions (7)-(9) for the
transport coefficients, for the two-terminal geometry shown in fig. 6. (More
general multi-terminal derivations are given in ref. [6] and [7].) Figure 6 repre-

Fig. 6. - Illustration of thermo-electric transport through an ideal electron waveguide con-
nected adiabatically to two reservoirs l and r, having electrochemical potentials u, and ur,
temperatures Tt and Tr, and Fermi distributions /( and /r.
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sents an ideal electron waveguide, connected adiabatically to two reservoirs l
and r, which have electrochemical potentials (a; and μτ and temperatures Tt and
7V, respectively. The reservoirs are in thermal equilibrium, and are described
by Fermi functions ft and fr (eq. (10)). The transmission probability at energy E
through the waveguide (summed over the l D subbands) is given by the func-
tion t(E) (which increases step\vise with energy E). As a result of the cancella-
tion of group velocity and density of states for a 1D subband [3], the current
through the electron waveguide is

30

(AI) ' /= - dE ( f i - f r ) t(E).

The heat current Q is given by a similar expression äs /, but with an additional
factor E - E? in the integrand:

(A2) Q

c

= | l

To obtain the transport , coefficients in linear response, we expand // and fr to
first order in Δμ = μτ - μ/ and Δ Γ = Tr - Tt, to obtain

(A-3) /, -/r »

Substitution of eq. (A.3) in eqs. (AI) and (A2), and a comparison with the defi-
nitions in eq. (1), yields eqs. (7)-(9), for the transport coefficients.
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