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This series of papers is concerned with a probabilistic algorithm for finding small
prime factors of an integer. While the algorithm is not practical, it yields an
improvement over previous complexity results. The algorithm uses the jacobian
varieties of curves of genus 2 in the same way that the elliptic curve method uses
elliptic curves. In this first paper in the series a new density theorem is presented for
smooth numbers in short intervals. It is a key ingredient of the analysis of the
algorithm.

1. Introduction

In this series of papers we present a probabilistic algorithm for finding small prime
factors of an integer. It may be used to detect and factor smooth numbers. We call
our algorithm the hyperelliptic curve method, äs it uses the jacobian varieties of curves
of genus 2 over finite fields in the same way that the elliptic curve method (Lenstra
1987) uses elliptic curves over finite fields.

For real numbers a, b and χ with χ > e set

Lx[a, 6] = exp (6(log x)a (log log χ)1'«).

Theorem 1.1. There are effectively computable positive constants c0, w0 with the
foüowing property. Given an integer n ^ n0 that is not a prime power, the hyperelliptic
curve method obtains a non-trivial divisor of n in expected time at most

Lv[l,c0](l»gn)\

where p is the hast prime divisor of n.

The run time is measured in bit operations. Our definitions of probabilistic
algorithm and expected time are äs given by Lenstra & Pomerance (1992).

Corollary 1.2. There is a probabilistic algorithm with the following property. Given
integer s n ^ n0 and v ^ 3, the algorithm runs in time at most

and obtains, with probability at least \, all prime factors p of n with p ^ v.

The hyperelliptic curve method is of purely theoretical interest; the following
comparisons with other methods are on a theoretical basis only.

The deterministic algorithm of Pollard (1974) and Strassen (1977), also described
in Pomerance (1982), was heretofore the best algorithm known for finding all prime
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398 //. W. Lenstra Jr, J. P Ha and C. Pomerance

f'actors ^ v of a number n. It remains the best deterministic algorithm for this
purpose, running in time

0(-\/v(logv)zlognlog log n log log log n).

Their method is based on fast multiplication techniques; if these are used in the
hyperelliptic curve method, then the factor (log n)2 in Theorem 1.1 may be replaced
by (log n)1+0(1), for n-»oo.

If v is very small äs a function of n, then the algorithm of Pollard and Strassen
remains faster than the hyperelliptic curve method. At the other extreme, if v is
relatively large, it is better to use a factoring algorithm that is insensitive to the size
of the factors. Specifically, the class group relations method (see Lenstra &
Pomerance 1992) is faster than the hyperelliptic curve method if v is of Order at least
£rc[l2cöf/V3 + o(l)] for »->oo.

Conjecturally, the hyperelliptic curve method is not äs good äs the elliptic curve
method. Under a reasonable hypothesis concerning the distribution of smooth
numbers in short intervals, the expected run time of the elliptic curve method is at
mo&t

^ [ 1 , ^ 2 + o(l)] (log n)2,
where n is the number being factored, p its least prime divisor, and the o(l) is for
2>->co. Under a similar hypothesis, the expected run time of the hyperelliptic curve
method, with optimal choice of parameters, is actually at most

Lp[i,2 + o(i)] (log n)2,

with n, p and o(l) äs above.
The algorithm of Corollary 1.2 may be used to recognize, with high probability,

numbers that are υ-smooth, i.e. built up from prime factors less than or equal to v.
Smooth numbers play an important role in many algorithms that have been
proposed for the discrete logarithm problem and for factoring integers (see Lenstra
& Lenstra 1990). Our results may contribute to the run time analysis of such
algorithms. So far it has sufficed to use the elliptic curve method for this purpose:
while it has not been proved to recognize all smooth numbers, it does recognize many
of them (see Pomerance 1987; Lenstra & Pomerance 1992).

The relationship between the elliptic and the hyperelliptic methods has an
antecedent in primality testing. The random curve primality test of Goldwasser &
Kilian (1986) proceeds by choosing a random elliptic curve E over Z/pZ, where p is
the number being tested. They prove that their method runs in 'random polynomial
time' for most primes p. The same result for all primes is conditional on a Standard
conjecture regarding the density of primes in short intervals, specifically of the form
[x,x + c \/x]; the order of the group E(Z/pZ) of rational points of E over Z/pZ
belongs to such an interval, with χ χ p, ifp is prime. In the abelian variety primality
test of Adleman & Huang (1987, 1992), the elliptic curve is replaced by the jacobian
J of a curve of genus 2, which is a two-dimensional abelian variety. If p is prime, the
order ofJ(ZfpZ) belongs to an interval of the form [x,x + cx*], with χ ~ρ2, and the
analysis depends on the density of primes in intervals ofthat form. Such intervals are
not so short: a known density theorem enables Adleman & Huang to prove
unconditionally that all prime numbers can be recognized in random polynomial
time.

The idea of using jacobians of curves of genus 2 in place of elliptic curves in the
present context of factoring was inspired by the work just mentioned of Adleman &
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Huang. Now the analysis hinges on the density of smooth numbers - äs opposed to
prime numbers - in intervals of the same form. For the elliptic curve method, no
adequate density result is available; for the hyperelliptic curve method we are able
to supply one.

Theorem 1.3. Let c1 = (l 980 000 )s. There is an effectively computable constant x3 such
that if χ ^ ΧΆ, z = Lx[%, c j , and χ* =ξ y ^ x, then the number of z-smooth integers in the
interval [x, x + y] is at least y · exp (— (log xf* (log log χ)~ή.

This first paper in the series is devoted to the proof of Theorem 1.3. Our proof will
follow the same general lines äs that of Harman (1991), who showed that if e > 0 is
arbitrary and z = exp ((log x)^+t), y = x^e, then there is at least one z-smooth integer
in the interval [x, x + y] once x is sufficiently large depending on the choice of c.
Harman's proof is in turn a refmement of an argument of Balog (1987) who showed
the same result but with z = xc. Friedlander & Granville (this volume) obtain an
asymptotic result for the number of z-smooth integers in the interval [x,x + y] when
y = x^z2+t and z ^ exp ((log x)«+c).

In §2 we state a result more general than Theorem 1.3 and give a few lemmas. In
§ 3 we use a combinatorial argument to reduce the proof to the estimation of a certain
weighted sum. In §4 this estimation is carried out by an analytic argument. The
proof that Theorem 1.3 follows from the more general result stated in §2 is given at
the end of §4.

2. Smooth numbers in short intervals

If x, z are real numbers, let ψ(χ, z) denote the number of positive z-smooth integers
< o;. If e < z ^ o;, let

u = u(x, z) = (log x)/\og z, α = oc(x, z) = (log log z)/log log x.

It is known (see Canfield et al. 1983) that if exp((log z)e) ^ z ^ xl~c, then

i/r(x,z) = arexp ( —«(log « + log log u + 0e(i))).

(In fact an asymptotic formula is known in this ränge.) Thu& if the z-smooth numbers
^ x are not too wildly distributed, then we might expect, for numbers y with
^/x ζ y =ζ χ, that

\]r(x + y,z)-'-ijr(x, z) = y exp ( — «(log « + log log « + 0C(1))). (2.1)

The following theorem is a step in this direction.

Theorem 2.1. There are effectively computable positive constants x0, c1; c2, c3 and c4,
such that in the ränge

χ ^ χ0, Lx[%, c2] ^ z ^ exp ((log x)/log log x), \/(xz) ^y ^x, (2.2)

we have
i/r(x + y,z) — ijf(x,z) ^ y exp ( — «(log « + log log « + c3)); (2.3)

in the ränge
x ^ x0, exp ((log x log log χ)5) =ζ ζ ̂  Ac[f> C2L]

we have

ι (2-4)
;* exp (2c4 u

3 log u) ^ y ^ x,

i/r(x + y,z)- i/r(x,z) ^ yexpl —l 1 + 4 8 - ^U-log u — - -u log log u\; (2.5)
\ y oOC — £ / aCC 2i
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and in the ränge

χ^χϋ, Lx[l,cJ ίξ z ^ exp ((log χ log log x)J), l ^

x* exp (c4 u
z log u) ^ y =ζ χ, J

WP Zei /? 6c SMcA ίΑαί z = exp ((log x)3 (log log x)P) and we have

i/r(x + y,z)-i/r(x,z) ^ y -exp (-21w(log M)4-^(log log tf)"1). (2.7)

Furthermore, the expression a^exp (ctu
3 log u) does not exceed x* if (2.6) holds.

We shall only be applying the ränge (2.6) to the analysis of the algorithm, and then
only in the case z=Lx[%,c1]. However, it is little extra work to prove the füll
Theorem 2.1.

In our proof below, the constants implied by the notation 0 and the notation <ξ
shall always be absolute. If Jf is a finite set of positive integere and s is a complex
number, we denote by Jf(s) the Dirichlet polynomial Σκ&/)/·η~5.

We now state some lemmas. For a eomplex number s, we denote by σ the real part
of s and by t the imaginary part.

Lemma 2.8. There are effectively computable positive constants xlt c6, c6, such that if
L is a real number with L^xl and JSf(s) is thefunction '£L<l!ieLl'~s, then in the ränge

This result follows from the proof of Lemma 2 in Harman (1991). Namely, a trivial
estimate is used for \t\ =% L, an estimate of van der Corput type is used for L ^ |ί| ^
-L19, and the remaining ränge follows from estimates of Korobov and Vinogradov. We
may take 1/60000 äs a value for c6 in Lemma 2.8. This number is stated äs a valid
choice for c6 in Harman (1991) for the ränge \t\ ̂  L·19. A valid choice for c6 in the van
der Gorput ränge L < |<| < L19 is 1/3000. (Thanks are due to S. W. Graham for
informing us of this latter fact.)

Lemma 2.9. There is an effectively computable positive constant c7 such that if U is
a positive real number, J is a positive integer and &1; . . . , bj are complex number s, then

Σ b,j«
1=1 3 - 1

This result is Theorem 6.1 in Montgomery (1971).
Let Ω(Ν) denote the number of prime factors of JV counted with multiplicity.

Lemma 2.10. There are effectively computable positive constants x2, cs such that if L,
Λ are numbers satisfying L ^ xz, (2e log log L)5 ^ Λ ^ log L and 3? is the set of integers
l satisfying

(i) L < l ^ eL,
(ii) / is free of prime factors below log L /log log L,

(iii) ß(Z) ^ Λ,

then in the ränge \ ^ σ ^ l ,
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Proof. Let Jz?0 be the set of integers l satisfying conditions (i) and (ii). Let P denote
the product of the primes below w — log L /log log L. Then

Σ

Ι- (2.11)

d\P L<lf..eL d\P

d,f)=i d\l

Thus

<Z|P

Note that P = exp (0(Iog L/log log L)) = L0™10*10*». We suppose xz is so large that
P < i1 / 2° and L/P > xr We have from (2.11) and Lemma 2.8 that

\%>(s)\ ^ c, Σ d
d\P

9 T T ^ ~ Ö J ?
for some absolute positive constant ce.

Let ^ζ denote the set of le£?0 for which condition (iii) fails. Then

\&(s)\ = \%(s)-%(a)\ ^ |^(e) | + |jg?(e)|. (2.13)

We now estimate |^ζ(δ)|· We have for any real number v ̂  l,

1 n
__ y _ <; ,,-/! V _ .

'Ir- Cff ' Jc (P

«-̂  Π
j)l?=i-M)<iXeI, ' w

Thus if l ^ υ ̂  %w,

^(1)^υ-Λ Π ( l + — j ^ v ^ e x p i Σ — ) < υ~Λ exp (2v log log L), (2.14)
w<3)ie/_,\ jP/ VuxjjjSeLi5/

if o;2 is sufficiently large. Lefcting v = Λ/(2 log log L), we have l ^ w ̂  \w. Thus from
(2.14) and our hypothesis we have

|^(s) | =ξ (eL^- '^ i l ) ^ (eL)1-M^(2eloglogL)'4 ^ (ei)1-"· /M/3

and Lemma 2.10 now follows from (2.12) and (2.13). Π

3. A combinatorial beginning

In this section we begin the proof of Theorem 2.1. Suppose a; is a large number (how
large will be determined äs we proceed) and suppose z is a number in the ränge
Lx\3, 1] < z < exp (log z/log log x). We thus have the numbers u, α determined by
the equations z = xllu = exp ((log x)a). Let L, k, M be given äs follows :

(3.1)
6 og 2
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where c6 is the constant introduced in Lemma 2.8. We shall choose the oonstant c2

in (2.2) so that c2 = (6/ce)* which implies that k = l for z in the ränge (2.2). We shall
choose y so that

y = x/M = x^L^+W. (3.2)

In addition, we shall choose the constant c4 in (2.4), (2.6) so that c4 = 9/ce. Note that
if k > 2, then

c6 log z

so that L(lc+l)/z < exp ((18/ce)-it
3 log w) = exp(2c4-w,3 log M). Also note that in the

ränge (2.6), we have

ce log z

for χ sufficiently large, so that L(fc+1>/2 < exp (c4 u
3 log u). Thus the value of y given by

(3.2) is slightly smaller than the lower bound specified for y in (2.4) and (2.6) and is
exactly equal to the lower bound for y in (2.2). Proving the theorem for y given by
(3.2) is thus sufficient to establish the theorem in general.

We shall choose the constant cl in (2.6) so that ct = (33/c6)i A simple calculation
shows tbat for all sufficiently large χ and z ^ Lx[%, c j we have x$ exp (c4 u

3 log u) ^ z*,
which is one of the assertions of Theorem 2.1.

Let M be tbe set of integers m with M < m =ζ eM such that every prime factor p
of m is in the ränge eL < p ^ z. Let

v = log M/log z = ±u-\(k+l). (3.3)

From our choice of c^ we have for all sufficiently large χ that

k+l <\u. (3.4)

From (1.7) in Theorem 2 in Saias (1993) and from Theorem l and (iv), (v) of Lemma
4 in Saias (1992) (cf. Theorem 6 of Friedlander 1976) we have

Ji(\.)= Σ m~l = exp( — υ log υ — v log logv + 0(v)).
meJt

Thus
J4(\Y = exp ( — (v— \k) (log u + log log u + 0(1))). (3.5)

We now give three definitions of a set !£ of integers depending on the three ranges
for z in Theorem 2.1. If z is in the ränge specified in (2.2), we let ä? be the set of
integers l with L < l ^ eL. If z is in the ränge specified in (2.4), we let 3f be the set
of integers described in Lemma 2.10 where A satisfies

A log A = |ββ · (log z)/uz. (3.6)

Finally if 2 is in the ränge specified in (2.6), we Jet ä! be the set of integers described
in Lemma 2.10 where A satisfies

A log A = |ce (log log x)2. (3.7)

Let y(x, z) denote the set of ordered (/c + 3)-tuples (m, n, r, lv ..., lk) where m,ne.Ji',
/!,..., Zfce Jzf,r is a prime or prime power and mnrl^~lk =ζ z + y. Since by (3.1)

x + y x + y 2x
^ mnlj · · · llc 'T1> r * ~~"
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A hyperelliptic smoothness test. I 403

the product N of the entries of any element of if(x, z) is a z-smooth integer. For any
integer N, let Rx<i.(N) denote the number of (m,n,r,ll,...,lk)e&'(x,z) with N =
mnrl^· · -lk. For any positive integer N there is a uniquefactorizationJV = iV1iV

r

2, where
each prime factor of Ni exceeds eL and each prime faetor of Nz is at most eL. Thus if
(m,n,r,l1,...,llc)e&'(x,z) and N— mnrl^---lk, t'henNl = mn and JV2 = rZ1---ZJ.. We
conclude that Βχ<ί(Ν) is at most the number of ordered factori/ations of Λ^ äs a
product of two positive integers times the number of ordered factorizations of Nz äs
a product of a prime or prime power times the product of k positive integers. Further,
in the ranges (2.4) and (2.6), each of these k positive integers has at most Λ prime
factors. That is,

Σ' dk(NJr), (3.8)

where d}(w) is the number of ordered factorizations of the positive integer w into j
positive integers (so that dz is the well-known divisor function), where r runs over
primes and prime powers and where the dash indicates that there is no restriction on
Q(NJr) when z is in the ränge (2.2). Since d3(w) < j a ( w ) , we have from (3.8) and the fact
that k = l in the ränge (2.2) that

(3.9)
if (2.4) or (2.6) hold.

Frorn the definition of Ji , if RX>Z(N) > 0, then Ω(Νι) = 0(u) so that

2ß(^) ^ eo(u)_ ( 3_ 1 0 )

In addition we have

Ω(ΝΖ) ^ log.N, = 0(log *) = u°^. (3.11)

In the ränge (2.2) we have by (3.9)-(3.11) that

RX<Z(N) ^ e°<«> (3.12)
for any integer N.

Suppose now that z is in the ränge (2.4). From (3.1) we have

k log k ^ — ' ~ j ~ ~ ' ^ — ̂  ^°§ U~^°S l°g 2 + log log u + 0(1)).ce log z

From (3.6) wc have that log log Λ is small compared with log Λ when χ is large, so
that

. log z
/l < c _ — _6 it2 (log log z — 2 log u)

for all large x. Thus using log u = (l —a) log log χ and log log z = oc log x, we have

, ., , , ._ ,
kA log k =ζ 48ii log u·&

^ 4 8
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Hence from (3.9)-(3.11) we have for any integer N,

RXJN) < exp 4 8 u log « + 3 2 « log log u (3.13)

for all large x.
Suppose fmally z is in the ränge (2.6). Writing z äs exp ((log xf*(log log xf), we have

from (3.1) and (3.7) that

M log k < ^(log a;)-'(log log a;)4-4^(log log log x)'1 =ξ 19w(log it)4~3/?(log log u)"1

for all large x. Hence from (3.9)— (3.11) we have for any integer N and all sufficiently
large x that

RXiZ(N) < exp (20tt(log « ^ ( l o g log u)-1). (3.14)

.,. z — ̂ ^N^x^z^.). We conclude from (3.12)-(3.14) that for sufficiently large
x we have

exp(0(tt)), if (2.2) holds,

exp i 48 ̂ j ^ M log u+ 1 ? M log log A if (2.4) holds, (3.15)

^"-^(loglog^)- 1 ), if (2.6) holds.

For w such that x ^ w ̂  x + \y, let

Sx,z,y(w) = S(w) = Σ A(r).
(m, B, r, i,, ,lk)E£/'(x,z)

mnrll llce(ui,w+y/2i

Note that yi(r) ^ log r ^ log z =ζ β". Thus

•̂(a; + ̂ a ) - ^ ( a ; ) z ) > ^ ( w + iyJz)-^(w,2)>e-"JB-1
zÄ(M;). (3.16)

We shall show in the next section that

max S(w)ttyexp(-(u + 3k)(logu + loglogu + 0(l))). (3.17)

Using that k = l in the ränge (2.2), k <ζ u/logu in the ränge (2.4), and, for all large
x, k < \u in the ränge (2.6) (cf. (3.4)), Theorem 2.1 will follow from (3.15)-(3.17).

4. An analytic conclusion

In this section we conclude the proof of Theorem 2.1 and give a proof of Theorem
1.3.

As we saw in §3, Theorem 2.1 follows from (3.17). To show (3.17), it is sufficient
to show that

•x+y/2

(4.1)

For both w and w-\-\y not integers, we have

·2+ιοο -' / , l s _ s
W_

S(w) =- (s) Jt(s}* &(s)* * as.
2-100 i s
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This is the Perron formula and it corresponds to display (2.9) in Harman (1991). Let

JL± (S) —

Thus interchanging the order of Integration, we have

_ ι Γ2+ιοο i "

S(w) dw = — 2. (β) ̂ ( S ) 2 ^ ( s ) f c ^ ( 5 ) ds. (4.2)
/ 7 t l J 2-100 b

We now move the path of Integration to the curve <% — ̂  U % U % U ̂  U %, where

^ = { s - s = l+if, | i | 5s χ},

^ 2 = {s . s = l + ii, x/y =ξ |i| < χ},

# 3 = {6 . s = l +it, T < |ü| < x/y},

and where T7 = exp (^(log z)s/(\og xf], a = l/log T. We take the orientation of the
curve # to be upwards. If χ is sufficiently large the only singularity of the integrand
in (4.2) encountered when moving the path of Integration to <ß is the simple pole of
— ζ' /ζ at s = l with residue 1. This follows from the zero-free region l — l /log }t] ^ σ
of ζ(#) for \t\ sufficiently large. We thus have from (4.2) that

2^(s)kA(s)ds. (4.3)

We now estimate the main term in (4.3). First note that .4(1) = \yz. Next note that
<g (i) is at least the sum of the reciprocals of the primes in the interval (L, eL], so that
for large χ we have ä'(l) ^ l/(2 log i ) = l /log z. Thus

JSf(l)* 5s (log z)~k = exp( — ka log log x) = exp( — (a/(l— a))&log M).

Using α ^ l —log log log χ/log log a; and & = l in the ränge (2.2), we have

fexp(-2u), if (2.2) holds,
* - !

(_exp(-4^1ogM), if (2.4) or (2.6) holds.
Thus from (3.5) we have

Hence to show (4.1) and ultimately Theorem 2.l, it shall be sufficient to show, in light
of (3.4), that

Γ C
-p(s)J^(s)z^(s)lcA(s)as <|i/2exp(-2Mlogtt). (4.4)

J« b

To show this we shall use Lemmas 2.8, 2.9 and 2.10 äs well äs

(£70(*)«log(|i| + 2) on (g, (4.5)

A(8)<$

which correspond to (5.13) and (5.11) in Harman (1991).
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406 H. W. Lenstra Jr, J. Pila and G. Pomerance

For i = l, 2, 3, 4, 5, let

E.= l ^

If we show each Et <ξ y1 exp ( — 2u log zt), we will have (4.4) and the theorem.

The integral on %. We use the trivial estimates =S?(s) <ξ l, Jt(s) <ξ l on ^ äs well äs
(4.5), (4.6) obtaining

i°° a;2 loe i
,, d* -̂  z log χ = y1 L~k-1 log χ

r f

t

from (3.2). Thus Ei <ξ i/2 exp (-2u log u).

integral on <ßz. From (4.5) and (4.6) we have

max
xjy

From Lemma 2.9 and Integration by parts we have

meJi

JL y J_ y _ya

< '
using (3.2) for the last step. If (2.2) holds, Lemma 2.8 implies that

max

while if (2.4) or (2.6) holds, Lemma 2.10 and (3.6), (3.7) imply that

max |^?(l+ii)l < exp (-^c6- (log z}/uz] log log x.

Thus in every case we have

Ez ϊζ ί/2 log χexp(— ^/cc6(log z)/u2 + 0(k log log log «)),

where & is given by (3.1). Thus Ez <ξ yz exp (— 2u log M).

The integral on <β3. From (4.5) and (4.6) we have

fx/y
M3<$y'logx max \^(l + """

T<s,t<ixly

From Lemma 2.9 and (3.2) we have

p/2/ ™

l l 4ί// ·ΐ ι *i\l2-J/ .x x^ "*" ·̂ "^

JT
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A hyperelhptic smoothness test I 407

From Lemmas 2 8 and 2 10 we have

max \^(ί+ιί)\ < T 1 log log χ = exp (-£ce(log 2)/w2) log log a;,

so that äs with Ez we get j&3 <̂  y* exp ( — 2ii log u)

The integral on #4 We use Lemmas 2 8 and 2 10 to get that

« L1 -T-1 log log T = L^ exp (-fo,(log z)/M2) log log

ior σ such that l -l/log T = l— α ^ σ < l We also use the trivial estimate
1-« Thus from (4 5) and (4 6) we have

£*
- α

By (31) we have

log T Γ Lk(1 σ) Μ^~σ} χσ l άσ = - Γ L""1 d<r

Jl-α aJl-α

so that Ä\ <g y2 exp ( - 2«. log u)

The integral on ^ From Lemmas 2 8 and 2 10 we have

on ^B Usmg the tuvial estimate \Jt(\— a + it)\ <ξΜα and (4 5) (4 6), (3 1), we have

E& < yzx'aLkaMZa log T(log log x)/c<$0<·
0

s; i/2 L-a(log 7T)2(log log x)" e o w « ?/2 exp ( - 2u log u)

This completes the proof of Theorem 2 l Q

Remark S W Graham h AS pointed out to us that tising the methods on pp 62 and
63 of Titchmaish (1986) cne may obtain an estimate for @>(s) = ^L<p^eLp s where
p runs over pnmes, of the saiue general flavour äs Lemma 2 8, though a little weaker
Suppose we weie to substitute &(s) for £f(s) in the proof of Theorem 2 l We then
would not need Lemma 2 10 and the estimate for R^ z would be much simpler
Fuithei for a large part of the ränge (2 4) we would obtain an estimate of the same
quality äs (2 3) However, the estimate for &(s) is sufficiently weakei than the one
for ^(s) that we ivould not be able t o prove anythmg about the ränge (2 6), which
is the only rangf we actually apply in the analysis of our algonthm

Proof of Theorem l 3 The result follows easily from Theorem 2 l, from the choice
of 61 given m the proof of the Theoiem, and from the remark following Lemma 2 8
concernmg the choice of c6 Π

We thank S W Graham foi bis cntjoal oomments of an earher draft of this paper In addition we
thank the National Science Foundation for paitial support under (lespectively) grant numbers
DMS 9002939 DMS 9104316 DMS 9002538 J P is, gtateful to MSRI (Berkeley) foi hospitahtv
and support

Phil Irans R Soc Land A (1993)



408 H W Lenstra Jr, J Pila and G Pomerance

References
Adleman, L M & Huang, M D 1987 Recognumg pnmes m random polynomial time In

Proc ]9th ACM Symp Theory Comput , pp 462-469 New York Association for Computing
Machmeiy

Adleman, L M & Huang, M D 1992 Pnmahty test'ing and abehan vaneties over fimte ßelds
Lecture Notes m Mathematics, vol 1512 Berlin Spimgei Verlag

Balog, A 1987 On the distribution of integers havmg no large pnme factors Astensque 147-148,
27-31

Canfield, E R , Erdos, P & Pomerance, C 1983 On a problem of Oppenheim concerning
'faotonsatio numeroium' J Number Theory 17, 1-28

Enedlander, J B 1976 Integers free fiom large and small primes Proc Land math Soc 33,
565-576

Goldwasser, S & Kihan, J 1986 Almost all primes can be quickly certified In Proc 18th ACM
Symp Theory Comp , pp 316-329 New York Association for Computing Machinery

Harman, G 1991 Short mtervals contammg numbers without largo prime factors Math Proc
Camb phil So< 109, 1-5

Lenstra, A K & Lenstra, H W , Jr 1990 Algonthms m number theoiy In Ilandbook of theoretical
Computer &cricnce (ed J van Leeuwen), vol A (Algonthm? and (omplexity), pp 674-714
Amsterdam Eisevier

Lenstia, H W , J r 1987 Factoring mtegeis with elhptic curves Ann Math 126, 649-673
Lenstia, H W , Jr & Pomerance, C 1992 A rigorous time bound for factoring integers J Am

math Soc 5, 483 516
Montgomery, H L 1971 Tojncs -in multi'phcatwc number theory Lecture Notes m Mathematics,

vol 227 Berlin Springer Verlag
Pollard, J M 1974 Theorems on faetonzation and primality testing Proc Camb phil Soc 76,

521-528
Pomerance, C 1982 Analysis and comparison of sorne mtegei factormg algonthms In

Computat'tonal method*, m number theory (ed H W Lenstra, Jr & R Trjdeman), pp 89-139
Math Centre Tracts 154/155 Amsterdam Mathematisch Centrum

Pomeiance, C 1987 Fast, rigorous factorization and discrete loganthm algonthms In Discrete
algonthms and complextly (ed D S Johnson, T Nishizeki, A Nozaki & H S Wilf), pp 119-143
Orlando Academic Press

Saias, E 1992 Entiers sans grand m petit facteui premiei I Acta Anlh 61,347-374
Saias, E 1993 Entiers sans grand m petit facteui premier II Acta Anth (In the press )
Strassen, V 1977 Einige Resultate über Berechnungskomplexitat Jahresber Deutsch Math

Vernn 78, l 8
Titohmarsh, E C 1986 ThethcoryoflheRiemannzetaJunction,2ndedn(eevKpabyT) R Heath

Brown) Oxford Clarendon Press

Phil Tränt P Kor Land A (1998)


