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Phenomenology of the superconducting state of a marginal Fermi liquid
with BCS model interaction
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We study the effect of an additional simple BCS model interaction in a system in which the dominant
scattering causes marginal-Fermi-liquid (MFL) behavior. It leads to a superconductor that shows a
number of unusual features as compared to weak-coupling BCS superconductors. The superconducting
transition temperature is lowered due to the MFL pair-breaking effects. If the bosonic mode that causes
the MFL behavior, and which presumably is of electronic origin, is largely suppressed below T, due to
the gap opening up, 6(0) remains practically unaffected by the MFL behavior. As a result, the ratio
26(0)/kz T, is enhanced, and the gap opens up much more rapidly than in the standard BCS approxima-
tion; even a gap discontinuity at T, is possible. Furthermore, we find a suppression of the coherence
peak in the nuclear-spin-relaxation rate and a more dramatic decrease below T, of the ultrasonic at-
tenuation rate and the penetration depth.

I. INTRODUCTION

The unconventional normal-state behavior of the
high-temperature superconductors, as compared to nor-
mal metals, is well described by the marginal-Fermi-
liquid (MFL) hypothesis. ' Most of the anomalous
normal-state properties can, according to this hypothesis,
be understood from a single assumption about the polari-
zability of the (strongly interacting) system, namely,

ImP(q, co) ~ tanh(co/T) .

It leads for instance to an electronic scattering rate

I /r = ( Ave/2 ) max( T,
~

co
~ ),

where X=g N(0), with g being the coupling of the elec-
trons with the unidentified excitations that lead to the
unusual polarizability and N(0) the density of states at
the Fermi energy.

Also the sup erconducting state of the high-
temperature superconductors shows a number of unusual
features in comparison with weak-coupling BCS super-
conductors. Most prominent are the absence of coher-
ence peaks in the nuclear-spin-relaxation rate 1/T&T
(Ref. 2) and in the conductivity c7&(co) (Ref. 3) (though in
the latter quantity peaks arising from lifetime efFects or
thermal fiuctuations can appear), and an unusually large
ratio 2b, ( )0/~kT, for which values up to 10 have been
reported.

The assumption that the dominant scattering occurs by
exchange of the excitations that give rise to the unusual
polarizability immediately leads to the observation that
below T„as the gap opens up, this scattering process will
be suppressed considerably (most dramatically if the cou-
pling of the electrons to the polarizability is such that it
leads to type-I coherence factors). As a consequence the
quasiparticle lifetime will rapidly increase as the tempera-
ture is lowered. Measurements of the surface resistance
of YBa2Cu307 (Ref. 6) do indeed appear to give evidence

for a suppression of the quasiparticle scattering rate, and
hence support the assumption about the dominant role of
an electronic scattering process involving a nontrivial re-
normalization of the polarizability.

It is aesthetically most attractive to assume that the
(yet unknown) physics underlying the MFL hypothesis is
also the origin of the superconductivity. Kuroda and
Varma and Littlewood and Varma have pursued this
idea in an Eliashberg strong-coupling approach, in which
the MFL polarizability plays the role of the bosonic
mode that is responsible for the superconductivity, i.e.,
where the MFL polarizability replaces the usual
electron-phonon coupling a F(co). They find s-wave su-
perconductivity with an enhanced ratio 2b, (0)/k~T, and
a sharply decreasing 1/T, T below T, rather than a
coherence peak.

In this paper we shall show, without referring to any
specific theory about the origin of the superconductivity,
that the superconducting state is very much affected by
the normal-state MFL behavior. We demonstrate this by
analyzing the effect of an additional attractive BCS-type
potential on a system in which the dominant scattering
causes MFL behavior. The transition temperature T, for
this case can be determined from the ladder instability of
the normal state. Below T„when the gap opens up, the
suppression of the (electronic) bosonic mode is modeled
by a scattering rate that decreases with decreasing tem-
perature. The gap at zero temperature, 6(0), remains
practically unaffected by the MFL behavior above T, if
the MFL scattering is sufFiciently suppressed at T=O.
Consequently, the ratio 2b, (0) /k~ T, is enhanced even for
a weak-coupling superconductor, and the gap opens up
rapidly; even a discontinuous first-order transition at T,
is possible. Furthermore, we find that this behavior of
the gap together with the smearing of the singularity in
the BCS density of states due to the MFL scattering
suppresses the coherence peaks.

Although the dominant scattering leads to MFL
behavior a weaker interaction can be the origin of the su-
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perconductivity if retardation effects play a role, i.e., if
the different interactions involve different time scales. It
is therefore quite possible that the anomalous properties
of the superconducting state of the cuprates are mainly
due to the fact that the pairing occurs in a strongly corre-
lated system (with MFL behavior), and that they are only
weakly related to the origin of the pairing. Indeed, our
results demonstrate a large degree of insensitivity of the
unusual superconducting properties to the pairing mech-
anism. This becomes especially apparent by comparing
our results to those of Littlewood and Varma, which are
very similar, but obtained with the MFL boson taken as
the origin of the superconductivity.

II. 25(0)/k~ T, AND SUPPRESSION OF T,

With the simple model form for the attractive BCS in-
teraction (up to an energy coo) T, can be determined from
the ladder instability of the normal state. Here we
neglect differences between the pair-formation tempera-
ture and the actual transition temperature. We take the
normal-state propagators with the MFL self-energy,

X(k, co) =A, [coin(x/co, ) i (vox l2—)] .

Here x =max( co~, T) and co, is a large cutoff scale, which
is estimated to be of the order of 0.5 eV from Raman
scattering;' also the infrared measurements of Rotter
et QI. ,

' which show a quasiparticle scattering rate,
which is linear in co up to frequencies of 3000 cm ' (0.37
eV) indicate a cutoff of this order. The value of A, can be
determined from resistivity measurements. Taking from
Ref. 11 the result of resistivity measurements up to 600 K
on Bi2Sr2.2Ca0. 8Cu2O8 that

G (k, i co„)= [ico„—e(k) —X(ico„)]

where from analytic continuation of the marginal Fermi
liquid X(k, co) it follows that

X(i co„)= —i A, T arctan

1.——i ken lnn

Q) + COn c

QP +Tn

(2)

The pairing-instability occurs at the temperature where
the particle-particle scattering amplitude

I [k, co, k, co; —k, —co, —k, —co)

diverges (Fig. 1), '

1=N(0) VT g fde(k)G( —k, ico„)G—(k, ico„),
/CO j ( COO

(3)

where N(0) is the density of states at the Fermi energy
and V is the strength of the BCS-type interaction with a
cutoff energy coo. The e(k) integration is straightforward,
leading to

dp( T) ldT =0.46 pQ cm/K,

we find X=0.23, assuming a plasma frequency of 1 eV.
Though the value of A, is certainly not the same for all
high-T, materials, it is of this order of magnitude.

The temperature Green function in the normal state
then is

coo/2~T —(1 /2)

1=2N(0) V (2n +1) 1+—ln
2

(2n +1) m T +co, 1+ arctan
(2n +1)'~'T'+ T' (2n +1)~ (2n +1)~ (4)

The remaining sum over the Matsubara frequencies can, under the condition that cu0(co, or that A, is sufficiently small,
be approximated by

~o/2m. T —( 1/2)

2N(0) V
n=0

1

(2n + 1)[1—
A, ln((2n +1)mT/co, )]

coo/2' T —( 1/2)

=2N(0) V
n=0

1 A, ln(2n +1)
(2n + 1)[1+k ln(co, /nT) ] 1+k ln(co, /mT)

Performing the sum in the first term and writing the
second sum as an integral gives the instability condition,
which can be written as a quadratic equation for
1n(coo/~T, ) =X, AX +BX+C =0, with the coefficients

k, (0

5A,

4 N(0)V '

B=- 2X
(1—

A, lna)
N(0) V

ln2+ 4 — + (1 —k lna),1

2

(1—
A, lna)

FIG. 1. The particle-particle ladder. The dashed lines denote
simple BCS interactions, the propagators have a marginal Fermi
liquid self-energy.

ln2+%' — (1 —
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Here 4(x) is the digamma function and +=coo/co, & l.
The critical temperature then is found to be

tic scattering on the ratio 2b, (0)/k~T, is neglected, one
has

COp

T, (A, ) = exp
7T

B +—B 4—AC
2A

2g(0) T, (A(T =0) )

k~ T, T, (A,„,)
=3.53 (10)

Taking for instance A, =0.23, cop=0. 2 eV, co, =0.5 eV,
and N(0) V=O. 5 yields T, =91 K. In the limit A, ~O one
recovers the BCS critical temperature, T,= l. 13coo exp[ —1/N(0) V], which is higher than
T,(k) 0). In Fig. 2 we have plotted T, (A, =O)/T, (k„, )

as a function of A.„, for different values of N(0)V and
with a=0.4. One sees that the stronger the BCS cou-
pling is, the smaller the relative suppression of T, due to
the MFL scattering. Thus the critical temperature is
suppressed as compared to the BCS value by the MFL
behavior of the normal state. This is a natural conse-
quence of the pair breaking caused by the inelastic MFL
scattering.

An immediate consequence of the electronic origin of
the MFL mode is that at low temperatures where the gap
develops, the MFL mode itself will also develop a gap,
and the low-energy scattering will be suppressed. The
suppression of the quasiparticle scattering rate below T,
can be described phenomenologically by 1/r( T)
= [k(T)~/2]T, where A, is constant for T )T„ indicated
by X„,. As explained above we estimate A,„,=0.23 from
the experiment of Ref. 11. Upon entering the supercon-
ducting state A, ( T) decreases.

In case the MFL interaction is completely frozen out
at zero temperature the zero temperature gap b, (0) will
not be affected by the MFL scattering and thus assumes
the BCS value. Therefore, the ratio 2b.(0)/kz T, increases
entirely due to the effect of the MFL pair-breaking
scattering on the transition temperature,

Thus with separate origins of the anomalous normal-state
properties (arising from the MFL polarizability) and the
superconductivity (originating from the BCS model in-
teraction) a situation arises that resembles the strong-
coupling situation with an enhanced value of
26(0)/k~T, . The reason is that the inclusion of the
MFL self-energy in the propagators of the particle-
particle ladder describes the pair-breaking effects, which
are suppressed at low temperatures. Such a suppression
also occurs in the strong-coupling phonon situation,
where the pair breaking due to thermal phonons has a
relatively large effect on the transition temperature but
only a small effect on the gap at zero temperature, where
no thermal phonons are present.

In the extreme limit in which the quasiparticle scatter-
ing rate becomes negligible as soon as the gap opens up,
the present model reduces to the BCS problem for all
T & T, . Then, b, ( T) follows a BCS dependence
b,Bcs(A, =O, T) for all T & T, (A,„,). The behavior of
ABcs(X=O, T) is indicated by the uppermost dashed
curve in Fig. 3. Clearly, in this extreme limit, 6 jumps to
a finite value at T, (A,„,). In the general case in which the
quasiparticle scattering rate remains nonvanishing below
T„the opening up of the gap is less drastic, but still more

=o.oo

2~(0)
k~T, T (X„,)

=3.53 (9)

In general, if the MFL mode is not entirely suppressed at
zero temperature, a smaller ratio is obtained. When a
possible small effect of a temperature-independent inelas-
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FIG. 2. T, (A, =O)/T, (A,„,) vs A,„,. The different curves corre-
spond, from top to bottom, with values of N(0) V=0.3, 0.45,
0.6, 0.75, and 0.9.

FIG. 3. The gap as a function of temperature (upper figure)
with a temperature-dependent A, . (lower figure) with
26(0)/k& T, =7.8. The curves in the lower figure correspond to
curves in the upper figure: the lower the A,(T) curve, the higher
the A(T) curve. The dashed lines are BCS curves (thus with
26(0)/kz T, =3.53) through T, (k), with the values of A, given in
the figure. We used X(0)V=0.6, co, =0.5 eV and coo=0.2 eV.
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rapid than in the BCS case: the quicker A, (T) decreases
below T„ the quicker the gap opens up, and vice versa.
Although, in principle, the full complex gap equations
have to be solved below T, to study this behavior, the
general trend can be understood as follows. Consider a
temperature-independent A.; for a given value of A, the
transition temperature T, (A, ) is known from (8) to in-

crease with decreasing A, . In a rough approximation, we
can take for the temperature dependence of b.(A, , T) for
fixed k a BCS curve through T, (A, ). Curves of this type
are indicated by dashed lines in Fig. 3. (The ratios of the
T, 's for A, =O, 0.06, 0.12, 0.18, and 0.23 are taken from
the N(0)V=0. 6 curve in Fig. 2.) If we now consider a
temperature-dependent A, ( T) as the upper two curves
drawn in the lower part of Fig. 3, we obtain a gap that
"scans" the constant-A, curves between the A, =0.23 curve
at T, and the A, =O curve at T =0. Evidently this leads to
a relatively rapid opening up of the gap and a larger ratio
25(0)/k/i T„which for the curve we have shown is about
7.8. In fact, if we take the scattering rate as a function of
6( T) and T, rather than of T only, the opening up of the

gap and the decrease of the scattering rate even show a
discontinuity at T;, very much like the behavior dis-

cussed above in the limit A, ~O for all T (T, . This
discontinuity is found to be very large when we use

k(T (T, )/X„, =2/[ I+exp[6(T)/T]] .

(This ratio is the low frequency limit of the ultrasonic at-
tenuation in BCS theory, i.e., a coherence-type-I suppres-
sion). Of course, it also leads to a discontinuity in A, at
T, . Finite frequencies (and presumably also correlation
eft'ects leading to a vertex renormalization) might weaken
this drastic behavior, leading to a smaller jump of the gap
at T, and a remaining amount of inelastic scattering in
the superconductive state. Experiments seem to agree
that the temperature dependence of b, ( T) is very steep, if
not discontinuous.
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By using directly the steep gap, one also finds this narrow
coherence peak. With /l, being a function of b ( T), as was
considered above, the coherence peak disappears com-
pletely when the discontinuity of the gap, and thus of k at
T, is sufficiently large. If k changes continuously at T„
always a narrow peak remains. The same mechanism
leads to a more rapid suppression of the ultrasonic at-
tenuation rate below T„as shown in Fig. 5.

Close to T„ in the region of the narrow peak, the in-
elastic scattering is still active. This scattering, in addi-
tion to the BCS interaction, has the effect of smearing the
square-root singularity in the BCS density of states. With
a quasiparticle lifetime of the order of 0.2X10 ' sec
close to T„as given by Bonn et al. , the spectral

FICx. 4. Coherence peak (solid curve) with a temperature-
dependent quasiparticle lifetime 1/r= [A,(T)vr/2]T, Al T) taken
as the middle A,(T} curve in Fig. 3, but without broadening of
the density of states taken into account. The dashed curves are
BCS coherence peaks, T, determined by (8) with, from right to
left, A, =O, 0.06, 0.12, 0.18, and 0.23.

III. COHERENCE PEAKS

BCS theory predicts coherence peaks in the nuclear-
spin-relaxation rate and the microwave conductivity as a
function of temperature. These peaks appear at about
0.85T, and have a width of typically 0.3T, . They reAect
the properties of the quasiparticles and the singular na-
ture of the density of states just above the gap,
N, (co) =N„(0)co/+co —~b,

~

. In the high-temperature
superconductors these coherence peaks are absent. In
Eliashberg strong-coupling theory (with an c/ F(co) from
the MFL mode ' or from phonons' '

) it is found that
they may disappear for sufficiently strong coupling.

With 2b, (0)/k&T, large, the coherence peaks become
narrower and are located closer to T, than in the BCS
case. This is due to the same effect that leads to the steep
behavior of the gap: As the paraitieter A, changes upon
entering the superconductive state a scan of the BCS
curves between the A, =0.23 curve at T, and the A. =O
curve at T =0 (as described above for the gap) is made, as
shown in Fig. 4. This yields a narrow coherence peak.
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FIG. 5. The ultrasonic attenuation rate in the superconduct-
ing state normalized to the normal-state rate. The same values
of A, as in Fig. 4 are used.
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broadening near T, is of the order of the zero-
temperature gap in the cuprates. At lower temperatures
the broadening is strongly reduced due to the suppression
of the inelastic scattering.

The smearing of the BCS density of states due to the
MFL scattering is shown in Fig. 6. It is calculated from
the spectral function of a BCS superconductor, with an
imaginary part of the self-energy 1/r = [A,( T)n/2] T, i.e. ,

I I I I I I I I I I I I I I I I I I I I

1.5—

N, (co)

N„(0)
1

. fde(k)[G(k, z~co i/~)—
27Tl

—G(k, z ~co+i /r) ],

.5

where

G(k, z)= (12)
z E(k)—

and E(k) =+@(k) + ~h~ . The integral can be evaluated

o--
.6 .7 .8 .9 1 1 1

T/Tc

FIG. 7. The nuclear spin relaxation rate 1/T& normalized to
the normal-state value with broadening of the density of states
taken into account. The scattering rates are the same as in Fig.
6.
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where a =co +5 +(1/r), P=co —b, —(1/r), and
y=2co/~. The quasiparticle spectrum obtained in this
way is always gapless in case of nonvanishing MFL
scattering, with the zero frequency value

N, ( co~0, T) /N„(0) = 1/+1+ b ( T) r( T)
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In Fig. 6 we have shown N, (co)/N„(0) for different tem-
peratures and different scattering rates at T, . The tem-
perature dependence of the MFL scattering rate shows
up in the decreased amount of broadening at low temper-
atures.

Such a broadening of the square root singularity in the
density of states, which occurs especially near T„where
the narrow coherence peak is located, suppresses the
peak largely or totally, as is shown in Fig. 7. This
suppression even occurs for scattering rates that are
smaller by a factor of two than quoted above.

IV. CONCLUSIONS

frequency

FIG. 6. The density of states in the superconducting state
with the MFL interaction at different temperatures. At low
temperatures the MFL interaction is suppressed and the BCS
square-root singularity is recovered. At higher temperatures
the MFL interaction is stronger, and the smearing of the singu-
larity stronger. The dotted curve is obtained with a scattering
rate of 0.02X 5(0) at T„ the solid line with a scattering rate of
0.05 XE(0) at T, and the dashed line with a scattering rate of
0.2X 6{0)at T, . We used a decrease of the scattering rate as in-
dicated by the solid curve in Fig. 3, i.e., A,(T)=(T/T, ) A,„,
below T, . Even our largest scattering rate is modest compared
to the one given by Bonn et al. (Ref. 6).

We have considered a system of electrons with an
(unidentified) dominant scattering mechanism that leads
to marginal Fermi-liquid behavior and a BCS model in-
teraction, that causes superconductivity. In absence of
the MFL scattering the system would be a BCS supercon-
ductor. The MFL scattering is a pair-breaking process
that lowers the critical temperature, which we calculated
from the divergence of the particle-particle scattering
amplitude. If the MFL mode is sufficiently suppressed
below T, it has little effect on the zero-temperature gap.
Consequently, 2b, (0)/kii T, is enhanced. The gap opens
up relatively rapidly, possibly even with a discontinuity
at T, . The inelastic MFL scattering also broadens the
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square-root singularity in the density of states which, to-
gether with the enhanced value of 2b, (0)/k~ T„leads to a
suppression of the coherence peaks. Type-I-coherence
behavior as followed by the ultrasonic attenuation is
more rapidly suppressed below T, than in the BCS case.
This also applies for the penetration depth. Our simple
description embodies the relevant features of the Eliash-
berg strong-coupling approach: pair breaking and
broadening of the density of states due to inelastic
scattering, and therefore indeed recovers many of the re-
sults obtained by Littlewood and Varma. However, in

our case the interaction that causes superconductivity is
of BCS type, rather than the MFL mode. Our results
also are similar to those obtained in numerical calcula-
tions by Bandte, Hertel, and Appel. '
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