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1. Introduction

Three-mode principal component analysis using a model, which will be referred
to as the Tuckcr3 model, was first formulated within the context of the social
sciences by Tucker ( 1%3), and in subsequent papers Tucker (1964, 1%6) refined
especially its mathematical description. In the latter paper. Tucker also pro-
posed several methods to solve the estimation of the parameters. A stochastic-
version of this model was first proposed by Bloxom (1%8), and was fur ther
developed by Bentler and Lee (1978, 1979), Lee and Fong (1983). Kroonenberg
and De Leeuw (1980) presented an improved, least squares solution for the
original Tuckcr3 model. In Kroonenberg ( 1983a) an overview is presented of the
state of the art up to that moment, and several later developments are contained
in the readers edited by Law et al. (1984), and Coppi and Bolasco (1989). and
review papers by Geladi (1989), Kroonenberg (1992), and Smilde (1992).
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Also treated in this paper, is the Tucker2 model, which is less restricted than
the Tucker3 model. Tucker (1975) was probably the first to formulate it
explicitly, but a slightly less general version was proposed by other authors
(Israelsson, 1969; Carroll and Chang, 1972; Jennrich, 1973). The Tucker2 model
belongs to the class of individual differences models of which it is the most
general representative. It has also been called a 'generalized subjective metrics
model' (Sands and Young, 1980, p. 41). The other similar models have mainly
been developed within the context of multidimensional scaling. General discus-
sions of individual differences models and their interrelationships can, for
instance, be found in Arabie et al. (1987) and their references. The Tucker2
model and its estimation have been fully described by Kroonenberg and De
Leeuw (1977), and partially in Kroonenberg and De Leeuw (1980), and Kroo-
nenberg (1983a). Hierarchies of three-way models from both the French and
Anglo-Saxon literature which include the Tucker3 and Tucker2 models respec-
tively, have been presented by Kiers (1988, 1991).

2. Three-way data

Consider the situation in which a number of persons have rated twenty abstract
paintings using some ten different rating scales, which measure the feelings
these paintings elicit. Suppose a researcher wants to know (1) if there is a
common structure underlying the usage of the rating scales with respect to the
paintings, (2) how the various subjects perceive this common structure, and/or
(3) whether subjects can be seen as types or combinations of types in their use of
the rating scales for the pictures. Although all subjects might agree on the
dimensions of feelings elicited by the paintings, for some subjects certain
dimensions might be more important and/or more correlated than for other
subjects, and one could imagine that different types of subjects evaluate paint-
ings in a different way. A way to gain insight in such problems is to determine
the (low)dimcnsional structures for paintings, rating scales, and subjects ex-
pressed in components, and combining these component spaces in some way to
assess the relationships between components. The data for this example can be
arranged into a three-dimensional block of variables by conditions by subjects.
Such a block is generally referred to as a three-way data matrix. We will use the
word way to indicate a collection of indices by which the data can be classified,
while the word mode will indicate the entities that make up one of ways of the
data box, here paintings, rating scales and subjects. Thus data boxes always have
three ways, but there are only three modes when each of the three ways consist
of different entities. Sets of correlation matrices have therefore two modes,
while our example has three modes (see Carroll and Arabic, 1980, for further
data types).

The first way (variables) has index i running along the vertical axis, the
second way (conditions) has index j running along the horizontal axis, and the
third way (subjects) has index k running along the 'depth' axis of the box. The
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I Horizontal slices J Lateral Slice« K Frontal slices

Fig. 1. Slices, the two-way submatriccs of the three-way matrix X.

number of levels in each way is /, J , and K respectively, while the number of
components will he indicated with P, Q, and /?, respectively, with p, q, and r
the corresponding indices. The component matrices will he A, ß, and C, and the
core matrix G. The I X J x K three-way data matrix X is thus defined as the
collection of elements:

{ lik

A three-way matrix can also be seen as a collection 'normal' ( = two-way)
matrices or slices. There are three different arrangements for this, as is shown in
Figure 1. Furthermore, one can break up a three-way matrix into one-way
submatriccs (or vectors), called fibers (sec Figure 2). The slices will be called
frontal slices, horizontal slices, and lateral slices. The fibers will be called rows,
columns, and tubes. The terminology used here is largely based on Harshman
and Lundy (1984a).

Note that in most multivariate statistical models, subjects are considered a
random factor, but in the data-analytic models such as those considered in this
paper this is not necessarily the case. Notwithstanding, in many applications the
status of the subject mode is somewhat different, because after all they are the
'data generators'. In addition, three-way models are sometimes used to establish
whether it is reasonable to treat the subjects are replications, rather than
members of different subsamples. Other applications are true population studies
and no true stochastic framework can be formulated, for instance in the analysis

xjk Xlk Xij

J x K Columns I x K Rows I x J Tubes

Fig. 2. Fibers, the one-way submatrices of the three-way matrix X.
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of the performance of genotypes on several attributes at various locations (e.g.
Basford et al., 1990).

3. Model description

Tucker3 model

The TuckerS model is the factorization of the three-way data matrix X = {xljk},
such that

p Q R
E m ^ » ^ (

/ / o. h c Q -f* é* ,L^ L-t ip jq kr&pqr IJK
p = l q = \ r=\

( / = ! , . . . , ƒ ; ; = ! , . . . , / ;* = ! , . . . ,K) (1)

where the coefficients alp, bjq and ckr are the elements of the component
matrices A, B, and C respectively, the gpqr are the elements of the three-way
core matrix G, and the eijk are the errors of approximation collected in the
three-way matrix E. A is the (I X P) matrix with the coefficients of the variables
of the first mode on the variable components. B is the (/ X Q) matrix with
coefficients of the conditions, and C the (KxR) coefficient matrix of the
subjects. In the original data matrix X every element of the matrix represents
the value of a specific combination of levels of the orginal modes. In a similar
manner each element of the core matrix represents the value or weight of a
specific combination of the components of the modes.

A matrix formulation of the model is

X = AG(C' ®B') + E (2)

where X, E, and G are written as ordinary two-way matrices of order ( / XJK),
(I x J K ) and (P X QR) by making use of so-called combination modes (Tucker,
1966, p. 281), and ® denotes the Kroneckcr product (e.g. Tucker, 1966, 283ff).
We will not introduce special notation to distinguish between the two-way and
three-way versions of X and G, as the appropriate version will be clear from the
context. An alternative matrix representation is

Xk=AHkB+Ek (k = l , . . . , K ) (3)

where the f/k , the 'individual characteristic matrices' (Tucker, 1972), are equal to
a linear combination of the R frontal slices, Gr, of the core matrix

K

r=\

When instead of directly fitting the original data, cross-product, or covariance
matrices are used as input, typically A and B will become identical or sign-per-
muted versions of each other, and the matrix C will in that case have a strong
similarity to the compromise matrix in STATIS (Escoufier et al., this issue).
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Tucker2 model

As indicated above the TuckerZ model contains only components

/' Q

( i = l ..... f;/-l,. ..,/;*-!,.. ..It) (5)
with the same definitions as above, except that H = (li,,,lk ) is called the extended
core matrix, because one way still has its original dimension, here K. A matrix
formulation is identical to Equation (3), but the Hk are unrestricted, compared
to the Tucker3 model, where they have the form of Equation (4).

When instead directly fit t ing the original data, cross-product, covariance, or
similarity matrices, generally A and B will become again identical or sign-per-
muted versions of each other. In this case the frontal core slices Hk generally
will be symmetric. The Tucker2 model is then identical to the IDIOSCAL model
of Carroll and Chang (1970, 1972).

As hinted at by Harshman and Lundy (1984a,b), and worked out in Brouwer
and Krooncnberg (1991b) a square extended core matrix may be optimally
transformed to diagonality. If this is succesful the model becomes identical to
Harshman's (1970; Harshman and Lundy, this issue) PARAFAC model, or for
symmetric frontal slices equal to the Carroll and Chang's (1970) INDSCAL
model.

4. Algorithms

In this section we will discuss the algorithms that have been put forward for
three-mode principal component analysis. In order to avoid repetition, we will
primarily concentrate on algorithms for the Tucker3 model. Those for the
Tucker2 model are essentially similar, in particular for the basic solution. In
theory, any algorithm developed for the Tuckcr3 model can be used for the
Tucker2 model by equating one of the component matrices to the appropriate
unity matrix. For efficiency, we prefer to have a separate algorithm to solve the
estimation of the Tuckcr2 model.

TuckerS model

If we would compute all the components, thus P = I, Q=J, and R — K, then
one could decompose most data matrices exactly into their components. How-
ever, in practical applications one is just interested in the two, three or four first
components. This generally precludes finding an exact factorisation of X into A,
B, C and G. One, therefore, has to settle for an approximation, i.e., one has to
find A, B, C and G such that the difference between the model and the data is
minimal according to some loss function, or in slightly different terms, we have



7K P.M. Kroonenberg / The TUCKALS line

to look for a best approximate factorization of the matrix X into A, B, C and G,
according to the Tucker3 model.

In our case we define the loss function to be the least squares one, and
propose to search for those A, B, C, and G such that

f ( A , B, C, G)= || X-AG(C'®B')\\2 (6)

is minimal, where || • || denotes the Euclidean norm. The model is overidenti-
fied, because each of the component matrices is only determined upto a
nonsingular transformation. To find a solution for ƒ one has to place restrictions
on the component matrices. It is convenient to carry out the minimisation under
the restriction that A, B, and C are columnwise orthonormal (or suborthonor-
mal), because this makes for an efficient and elegant algorithm. After estimates
have been found, non-singular transformations can be applied to A, B and C
without loss of generality, provided the core matrix G is multiplied with the
corresponding inverse transformation matrices.

At present there are at least three algorithms with several variants to obtain
estimates for the component matrices and the core matrix. The oldest one is due
to Tucker (1966), but it has the disadvantage that the estimators have unclear
properties. A first (alternating) least-squares algorithm was developed by Kroo-
nenberg and De Leeuw (1980; see also Kroonenberg, 1983a Chapter 4, for a
correction), using an eigenvalue-eigenvector algorithm by Bauer-Rutishauser
for its inner iterations. Kroonenberg et al. (1989) showed that the algorithm
could be slightly speeded up by replacing the Bauer-Rutishauser (BR) step by a
Gram-Schmidt (GS) orthogonalisation. Kiers et al. (1992) showed how a really
interesting increase in speed could be obtained by reorganising the computa-
tional process. Using regression techniques Wecsie and Van Houwelingen
(1983) developed a completely different algorithm especially designed to handle
missing data. Kroonenberg (in preparation) adapted the Kroonenberg et al.
(1989) algorithm to handle missing data by using an approach akin in spirit to
the Expectation-Maximisation (EM) algorithm (Dempster et al., 1977), analo-
gously to the procedure included in PARAFAC (Harshman and Lundy, this
volume). All algorithms use loss function (6), and all complete data versions
provide identical estimates, as do the missing data ones. From a user point of
view the difference in algorithms is therefore not interesting, and need not be a
concern. The TUCKALS programs contain the Kroonenberg et al. (1989), Kiers
et al. (1992) and Kroonenberg (in preparation) algorithms, be it that at present
only the first is commercially distributed.

In order to understand the results of the TUCKALS programs some basic
understanding of the alternating least squares approach is necessary. The
principle wil l be outlined using the Kroonenberg and De Leeuw approach to
solving the estimation of the parameters in (6), and details of the other variants
will be discussed in passing.

It can be shown that the least squares estimate for the core matrix G is

G=A'X(C®B), (7)
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given that the component matrices are (columnwise) orthonormal. By substitut-
ing (7) into (6) ƒ only depends on A, B, and C, and therefore it is sufficient to
first estimate A, ß, and C, and solve for G afterwards. The estimation proceeds
as follows (a is the iteration counter).

TUCKALS3 ALGORITHM
a. a = 0.
b. Initialise Al}, A0, C0 by using the Tucker (1966) approach.
c. a = a + 1.
d. A-substep:

Fix Ä „ _ i and Cn ,, and solve the least-squares problem for A with either
BR or GS, to obtain a new Aa.

c. B-substep:
Fix Aa and C„_, , and solve the least-squares problem for B with either BR
or GS, to obtain a new Bn.

f. C-substep:
Fix An and ß„, and solve the least-squares problem for C with either BR or
GS, to obtain a new Cn.

g. (Optional) Estimate missing data by using current estimates Aa, Bn, and C„
and the data X using model Equation (1).

h. If the difference between succesive iterations with respect to the loss func-
tion and the Euclidean norms of successive values of A, ß, and C is not
small enough return to c.

The major improvement by Kiers et al. (1992) is that the amount of multipli-
cation involved in the step with the largest of /, J and K can be circumvented
by cleverly rearranging the computations, so that manipulat ion with the original
data matrix X is not necessary. For the estimation of missing data one has to
include the extra step g., preventing the use of the Kiers et al. algorithm, exactly
because it does not use the original data matrix. In Kroonenberg and De Leeuw
(1980) the convergence properties of the basic algorithm were discussed. As in
virtually all problems of this kind, only convergence to a local optimum is
assured. Measures are taken to restart the algorithm in case of singularities due
to very small components.

To initialise the algorithm A{}, ß„ and C0 are chosen in such a way they will
solve Equation (6) exactly if such an exact solution is available. It can be shown
that the eigenvectors associated with the largest eigenvalues of U = X(l,X{n

U ( / )eR / x 7*), V = X(J}X{J) (X(J)^UJXK'\ and W = X(K}X{K} U (K)e R A x " )
will solve Equation (6) exactly if such a solution exists. These eigenvectors are,
therefore, used to initialize the algorithm. This init ial solution is, in fact, the
Method I solution of Tucker (1966). Incidentally, this method was apparently
independently discovered by Appellof and Davidson (1981).

Tucker! model

As indicated above the estimation of the parameters for the Tucker2 model
follows essentially along the same lines as that of the parameters in the Tucker3
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model. The loss function ƒ ' may be written as
K

f'(A,B,H)=\\X-AHB'\\2 - £ \\Xk-AHkB'\\2 (8)
* = i

with the same kind of definitions as above. When we eliminate the C-step (f.)
from the TUCKALS3 algorithm, a parallel algorithm can be used for TUCK-
ALS2, except that no components are specified for mode C. The model is not
symmetric in its three modes as the Tucker3 model is, and therefore one has to
make a decision which mode will remain uncondensed. This also means that not
in all cases the acceleration due to Kiers et al. (1992) will lead to large gains in
execution speed.

Sums-of-Squares notation

If we use zljk for the implied data based on either model Equation (1) or
Equation (5) the loss functions (6) and (8) may be written as

E enk = E (x.jk -x.jk)2 = E *?jk - E *,2,* (9)
i,l,k i, j. k i,j,k ij,k

which may be written in Sums-of-Squares notation as

SS(Res) = SS(Tot) - SS(Fit). (10)

The quality of the fit of the overall solution can be evaluated by looking at the
ratio SS(Fit)/SS(Tot), which is the proportion sums-of-squares accounted for.
When the raw scores have been centred in some way, and this is nearly always
the case (see below), this ratio is equal to /?2(data, implied, data). It has been
shown (Ten Berge et al., 1987), that when the algorithms have converged it is
also true that

SS(ResJ = SS(TotJ-SS(FitJ, (11)

where m stands for any level of any way of the data matrix. This is a powerful
way to establish whether individual levels fit very well or very badly.

5. Input data and their manipulation

The TUCKALS programs are primarily geared towards metric or interval data,
which are fully crossed with respect to all three ways. The missing data
procedures allow some relaxation of the fully-crossing requirement, but the most
stable results will be obtained without large numbers of systematically missing
data. The programs do not have special ways of handling row-conditionality or
matrix-conditionality. Such special structures should be taken care of before-
hand, for example via centring and scaling (see below). Especially TUCKALS2
may be used for three-way two-mode data, such as multiple covariance matrices
or (double-centred) (dis)similarity matrices (see Kroonenberg and Ten Berge,
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1989, for details of the former case). In the latter case it is implicitly assumed
that the dissimilarities are equal to squared distances rather than ordinary
distances. If this is unacceptable, corrections should be made prior to the
analysis. If the Tucker3 model is applied to sets of covariance matrices, the
solution for the 'matrices' mode will be generally very similar to the comprise
solution of STATIS (Escoufier ct al., this issue). Unlike for the PARAFAC
model (see Sands and Young's (1980) ALSCOMP3), there are (as of yet) no
specific provisions in the programs for nonmetric data, such as optimal scaling
or similar procedures for handling ordinal or nominal data (see Gifi, 1990, and
Van der Burg, this issue, for information on optimal scaling), however one can
analyse three-way interactions resulting from log-linear analysis or analysis of
variance (sec Kroonenberg, 1983a, Chapter 15, and Kroonenberg, 1989, for
further details).

Generally, it is not adviseable to analyse raw three-way data. As in two-way
data, some kind of preprocessing in the form of subtracting certain means and
equalizing scales of levels of modes is recommended to increase interpretability.
Kroonenberg (1983a, Chapter 6), and especially Harshman and Lundy (1984b
pp. 225-253) give detailed discussions of this problem. The most commonly
applied centrings are one or two fiber centrings (removing row, column, or tube
means; see Figure 2), and no, one, and very seldomly two size standardisations
(equalizing the (mean) square in data slices; see Figure 1). Which and how many
of these are necessary in any particular case is very much data dependent (see,
however, Harshman and Lundy, 1984b, for a slightly different and more alge-
braic point of view).

Several centrings can be performed by the programs, primarily on frontal
slices of the data, but the programs arc not specifically geared towards compre-
hensive data manipulation. In practice, the centring options suffice for most
data sets, especially as by transposing the data matrix all desired centrings can
be performed, and centring on all three ways at the same time is hardly ever
necessary. Full data manipulation can be performed with the separately avail-
able program NDIMIS3 (Brouwer and Kroonenberg, 1991a), or within Harsh-
man and Lundy's PARAFAC (this issue). The latter program contains an
(iterative) size-standardisation procedure for simultaneously size standardising
two or three ways, and also has special procedures to handle sets of covariance
and similarity matrices.

6. Programs

The versions of TUCKALS2 and TUCKALS3 discussed here are Version
5.0/PC for both programs. Around the time this paper appears, the TUCKALS
PC-Interface should be available which will greatly facilitate the use of these
programmes and NDIMIS3. However, the discussion here will be confined to
the batch versions.
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The primary output of TUCKALS2 (TUCKALS3) consists of the component
matrices A, B (and C), and the core matrix H (G), as well as information on
the convergence and fit of the overall solution. Apart from this, there is
information about the input parameters, input data, and the like. To evaluate
the quality of the solution several kinds of supplementary information can be
requested, such as the fit per level of each way, residuals, fitted data, etc. To aid
interpretation various kinds of line plots can be produced, such as pairwise plots
of the components, plots of the fitted versus squared residuals, and joint plots of
components from different ways. Several matrices containing such information
can be written to external files for analysis with other programs. The TUCKALS
programs also contain several transformation procedures, both for components
and for core matrices. Moreover, options are included to compute combination-
mode component scores and so-called core covariances. The details of the
majority of this output will not be discussed here, but the reader is referred to
the Manual of the programs (Kroonenberg and Brouwer, 1993), which also
contains a list of publications using some of the more uncommon features.

Scaling of components and core matrix

The basic parameters of the Tucker3 model are the loadings for the three
modes, A, B and C, and the elements of the core matrix G. There are several
possibilities for scaling these basic parameters. The situation for the Tucker2
model is similar but will not be discussed explicitly.

Components of length one. In the algorithms, the component coefficient matrices
are orthonormal i.e. they have orthogonal, length-one components. Therefore,
the sizes of the coefficient vectors do not reflect the relative importance of the
components, and the elements of the core matrix, gp(ir, directly reflect the size
of the data. Furthermore, Ej?^r = SS(Fit), each g*qr indicates the contribution
of the (p, q, recombination component to the overall fit, and g^r/SS(Total)
indicates the proportional contribution to the fit, or proportion explained
variation ( = sum of squares).

PARAFAC-scaled components. The disadvantage of the above scaling is that the
absolute sizes of the coefficients are not comparable across modes, because of
the generally different numbers of levels. As in PARAFAC (Harshman and
Lundy, this issue) the coefficients can be made comparable by making the mean
squared coefficients, rather than the lengths of the components, equal to one.
Thus, for instance, the PARAFAC-scaled coefficients for the first mode would
become a*p = alp(JJ). One could consider rescaling the core matrix with the
inverse transformations, but this does not have any particular interpretational
advantage.

Standard-PCA scaled components. In standard two-way component analysis the
loadings are scaled such that their squared lengths reflect the size of the



P.M. Kroonenbcrg / The TUCKALS line S3

eigenvalue of that component, and the eigenvalues add up to the number of
levels. A similar scaling can he used in three-mode analysis, be it that coeffi-
cients scaled in this way arc generally not correlations between the original
entities in a mode and the component (see Harshman and Lundy, 1984a, p.
192ff. for a_thorough discussion of this point). The scaling is thus such tha t
aip = aip (y'/i /). Again one could scale the core matrix with the inverse
transformations, but also this scaling does not seem to provide new interpreta-
tional insights.

External analysis. In certain applications component spaces are available from
previous studies, and the question may arise whether this particular component
space will also be applicable for a new set of data. An analysis in which such a
component space is used as input, and kept fixed during the analysis, is called an
external analysis. The programs include options to read in an external compo-
nent space for each of the ways. A detailed example is presented in Van der
Kloot and Kroonenberg (1985). External analysis may also be used for restarting
insufficiently converged solutions.

Supplementary information. For a proper assessment of the fit of the three ways,
it is necessary to have some insight into the structure of the residuals ( =
differences between the data and the implied data). A large residual sum of
squares - SS(Rcsidualm) - indicates that level m does not fit very well in the
structure determined by the other levels. However, an extremely large residual
sum of squares, often combined with a very large total sum of squares -
SS(Totalm) - is often indicative for some clerical error in the data. The size of a
SS(Residualm) depends on its SS(Total,„). Therefore, the relative residual sum of
squares ( = SS(Residual,,,)/SS(Total,,,)) should be used for the comparison of fit
levels within a way. Often levels with large SS(Total,,,)s will fit better than those
with small SS(Total,,,)s due to the least-squares procedures used. For each way
the program provides a plot of the SS( Residual „,)s versus the SS(Fitm) from
which the relative performance of the levels can be gauged, i.e., both relative to
each other, and relative to the overall fit/residual ratio. A more detailed
analysis of the residuals is possible by investigating the / X J X K block of
residuals.

Joint Plots. Both in TUCKALS2 and TUCKALS3, it is very instructive to
investigate the component coefficients of one mode (say, variables) jointly with
those of another mode (say, conditions). This can be done by plotting them
together in the same joint plot. For each core slice, say G, in TUCKALS3 (and
Hk in TUCKALS2), a joint plot for two component matrices, say A and B, can
be constructed in such a way that the columns of A and B are close to each
other. Closeness is measured as the sum of all P X Q squared distances
d2(a,, bj), for all / and j. The construction is a follows. A Gr is decomposed via
a singular value decomposition G, = UrDrVr', and the orthonormal left-eigenvec-
tors Ur, and the right eigenvectors Vr arc combined with A and B respectively.
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and the diagonal matrix Dr of singular values is divided between them in such a
way that

(12)

and

B? = (J/I)]/4BVrDy2. (13)

As A*B*' = GrB' = Yr, each element yr
tj is equal to the inner product a*b*',

and provides the strength of the relationship between i and j in as far as it is
contained in the r-th core slice. By simultaneously displaying the two modes in
one plot, visual inferences can be made about their relationships. The joint plot
is a close kin of Gabriel's (1971) biplot, and interpretational procedures devel-
oped by Gabriel (e.g. 1985) should be useful here as well. The construction for
TUCKALS2 is obviously analogous.

Latent covariation matrix. In analyses of variables by conditions by subjects data
the subject mode is often considered to be stochastic, rather than fixed. In that
case a // by U multivariable/ multicondition covariance matrix can be com-
puted for the IJ variables-conditions combinations over all subjects. In an
analogous manner the PQ by PQ 'covariation' matrix can be computed for the
'latent variables'-' prototype conditions' combinations over the 'idealized sub-
jects' of the core matrix (see Tucker, 1966, or Kroonenberg, 1983a, Chapter 6,
for such an interpretation of the components and the core matrix). The matrix is
generally not a real variance-covariance matrix, except when the column means
of the core matrix are zero, but only a sums-of-squares-and-cross-products
matrix. In the TUCKALS3 case, its elements are the inner products

R
^pq,p'q' ~" L-i &pq,r&p'q',r '

r = l

and in the TUCKALS2 case the summation is over k with hpqk, rather than
over r with gpqr. The value of spq pV thus indicates the covariation of the pq-\\\
and the p'q'-\\\ 'latent variables-prototype conditions' combination compo-
nents. In Tucker's (1966) terminology, the core matrix is seen as a miniature of
the original data set explaining most of its variance. In the same way one may
say that the latent covariation matrix underlies the observed covariation matrix.
For a more detailed description, one could consult Lohmöller (1978; see also
Kroonenberg, 1983a, Chapter 13).

Component scores. In some applications it is useful to inspect the scores of all
combinations of levels of two modes on the components of the third mode. For
instance, for longitudinal data the scores of each subject-time combination on
the variable components can be used to inspect the development of an individ-
ual's score on the latent variable or variable component over time. In some
applications these component scores turn out to be a very successful summary of



P.M. Kroonenberg / The TUCKALS line 85

the relationships involved. They serve as an intermediate level of condensation
between the raw data and the three-mode model.

Within TUCKALS2 the component scores may be derived by rewriting the
basic model Equation (5) for the Tucker2 model as follows

/>
xUk = E aipdpjk + eak '

P=\

with

Q
dpjk= E bjqhpqk-

« 7 = 1

A dpjk can be thought of as the component score of individual k at occasion j
on component p of the first mode A. By using Equation (4) one can define a
similar expression for the Tuckcr3 model. Sometimes it is not very useful to
inspect the plots of the scores of different components against one another, as is
customary for component loadings. Instead, it is often more useful to inspect the
component scores per component against their sequence numbers of the second
or third mode. If one plots the component scores against each other, one
obtains trajectories as are commonly presented in STATIS (Escoufier et al., this
issue; for an example of this use see Kroonenberg, 1985).

Transformations. As mentioned above the Tucker2 and Tucker3 models are
overidcntified, and there is therefore no unique orientation of the axes, as in
PARAFAC (Harshman and Lundy, this issue). The component matrices may be
nonsingularly transformed, provided the core matrix is subjected to the inverse
transformations. Alternatively, the core matrix may be transformed according to
some criterion and the component matrices have to be adjusted accordingly.
Both options are available in the programs: varimax and promax rotations of the
(orthonormal) component matrices, and orthonormal and nonsingular transfor-
mations of the core matrices. The latter transformation is equivalent to investi-
gating whether a PARAFAC solution exists for the model given the number of
components. Details are contained in the Manual (Kroonenberg and Brouwer,
1993), as well as some methodological considerations with respect to choosing
reasonable transformations.

7. TUCKALS3 application: Drunken twins

Data

Nick Martin and his colleagues of the Queensland Institute for Medical Re-
search, Brisbane, Australia, collected a large amount of information from
Australian twin pairs who received an acute or challenge dose of alcohol (see
Martin et al., 1985, for the full experimental details). In this paper, we will
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concentrate on 41 twins pairs who were measured at two separate occasions. At
each occasion they were measured four times. The first time the subjects were
sober. The other measurements were taken at hourly intervals after they had
drunk 0.75g ethanol/kg body weight over a period of 20 minutes (which can
make one fairly drunk, indeed). Here, we will only look at the variables:
Auditory Reaction Time (ART), Complex Reaction Time (CRT), Visual Reaction
Time (VRT), a speeded Arithmetic Test (ARI) consisting of simple addition and
subtraction problems (number correct in two minutes; converted for this analysis
into number of incorrect responses), and the subjects' judgements of their own
Drunkenness (DRNK). The scores are coded in such a way, that high scores for
all variables indicate a high influence of alcohol, i.e., long reaction times, large
number of errors, and high ratings of intoxication.

In particular, we are dealing with a 82 (subjects) by 5 (variables) by 8 = 2*4
(measurement times) matrix. Before the three-mode analysis proper, the means
of the variables at each measurement time were removed, and each variable was
scaled over all measurements on that variable. The model used for this example
is the Tucker3 model, in which components arc computed for all three ways: 3
components for the subjects, 3 for the variables, and 2 for the measurement
times.

Components

Variables. The structure in the three principal components of the variables has
been enhanced by rotating them orthogonally according to a varimax criterion.
The three axes VI, V2, and V3 can easily be labelled Reaction Time (RT),
Arithmetic (ARI), and Self-rated Drunkenness (DRNK).

Time. The two time components are presented in a different fashion by plotting
each component against time itself (see Figure 3). The time components get
their fu l l meaning in conjunction with the other modes, but it is evident, that the
first component indicates the general Persistence of the effect of alcohol across
time periods, and that the patterns of the first occasion (drawn lines) and second
occasion (dashed lines) are very similar. There is good replicability, and there-

Table 1
Variable Components (after Varimax)

Auditory Reaction Time
Visual Reaction Time
Complex Reaction Time
Arithmetic Computation
Self-rated Drunkenness

ART
VRT
CRT
ARI
DRNK

Reaction
Time

0.63
0.57
0.53

- 0.00
0.02

Arith-
metic

0.02
-0.01

0.01
1.00
0.00

Drunken
ness

- 0.08
0.05
0.02
0.00
0.99

Percentage Explained Variation 39 17 14
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fore we will make no distinction between the two occasions. The same can he-
said with respect to the second component, which indicates the Time-dependent
reaction of the subjects to the alcohol intake. In particular, the influence of
alcohol is low at f ( ) because the subjects were sober. At / , and t2 the influence
is most clearly felt, and falling off towards /,, three hours after the first
consumption of alcohol. From the time components alone there is no telling
which subjects on which variables follow the general pattern on which variables,
for that we need the complete information from the analysis.

Subjects. The first two of the three components are shown in Figure 4.
Without the labelling Figure 4 would show an amorphous cloud without any
structure whatsoever. There are two ways to impart meaning to such clouds: via
information present in the data set itself, i.e., in terms of its relationship with
the components of the variables and those of the measurement times, and via
external variables with additional information on the twins.

We have connected all twin pairs and labelled them according to type and
sex. One would expect (1) that twins are closer together than randomly paired
subjects, (2) that monozygote twins (connected with uninterrupted lines) are
closer together than dyzygote twins irrespective of sex, and possibly (3) that
dyzygotc twins of the same sex (short dashed lines) are closer together than
dyzygote twins of the opposite sex (long dashed lines).

To investigate the first hypothesis, Euclidean distances were computed be-
tween the twins using the three-dimensional subject space. These distances were
compared with the distribution of distances computed for randomly connected
pairs. Such pairs were created by randomly permuting the original subject
coordinates. This procedure is called bootstrapping, and can be considered a
permutation test (see e.g. Efron and Gong, 1983). In the present case 100
bootstrap samples were created and the average mean distance was computed
over these hundred samples. The other two hypotheses were informally evalu-
ated by comparing the mean distances.

The results, summarized in Table 2, show that, overall, twins are indeed
closer together than randomly connected pairs. The observed mean distance is
smaller than any bootstrap mean distance, and way beyond any reasonable
confidence bounds. Looking at the twin types, various deviations can be ob-
served from the general trend: female and mixed-sex dyzygotic twins are not
very much below the bootstrap means, while the monozygotic twins clearly are,
as are the male dyzygotic twins. Note, however, that type of twin is not related
to any direction in the subject space.

Equally interesting is the simple separation by sex alone irrespective of
twinship. We see clearly that alcohol has a different effect on males ( a ) and
females (9), and that we can associate a direction in the subject space with the
sex difference. What this effect is, will become apparent from the investigation
of the variable components, the time components, and the subject components
together. Via a discriminant analysis of sex on the components, we have
determined the direction which optimally separates men and women. In the
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Fig. 3. Time components: Tl = Persistent effect of alcohol, T2 = Time dependent effect of
alcohol.

sequel we will use the directions of the discriminant axes as new axes for the
subjects, and continue to designate them SI, S2, and S3. In this way the first
subject axis corresponds optimally with sex differences.

We have no further external information related to the separation between
subjects. For instance, the scores on the subscales Extraversion, Psychoticism,
Neuroticism, and Lie (or Social Desirability) from the Eysenck Personality
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Fig. 4.

Questionnaire (Eysenck and Eysenck, 1975) did not show any relations with the
subject components. For the present discussion, we will refer to a subject with a
nonzero weight on one component and zero weights on all other components as
a 'characteristic subject'. For the first component, this would mean that we have

Table 2
Comparison of mean distances between twin pairs

Twin Type Sex Dist. Bootstrap distances

Monozygotes

Dyzygotes

Monozygotes
Dyzygotes

All twins

Female
Male
Female
Male
Mixed
All
Single
All
All

9
15
6
5
6

24
1 1
17
41

0.13
0.15
0.21
0.10
0.21
0.14
0.16
O . I I S
0.16

Mean

0.23
0.25
0.25
0.23
0.25
0.26
0.24
0.24
0.25

S.D.

0.02
0.02
0.03
0.04
0.03
0.02
0.02
0.02
0.01

Min

0.16
0.16
0.17
0.15
0.16
0.22
0.18
0.18
0.18

Max

0.27
0.29
0.29
0.31
0.32
0.29
0.29
0.28
0.28
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Table 3
Core Matrix

SI
9/â

Persistent effect of alcohol (Tl)
VI: Reaction Time 24
V2: Arithmetic 18
V3: Drunkenness -2

Time-dependent effect of alcohol (T2)
VI: Reaction Time -2
V2: Arithmetic -3
V3: Drunkenness — 1

S2

-26
11

-12

1
-3
-6

S3

-5
9

15

1
-0

7

Explained

SI

18
10
0

0
0
0

variability

S2

21
4
4

0
0
1

(%)
S3

0
2
7

0
0
1

a Female and a Male as characteristic subjects. For the other components we
can only indicate them with a number plus a sign to indicate their location on a
component, e.g. 2 + for a subject on the positive side of subject component 2.
We will describe the properties of such characteristic subjects in terms of
changes over time in their scores on the variable components, as expressed
through the time components.

Core matrix

The relationships between the components of the various modes is contained in
the core matrix as we pointed out before. For the present solution this core
matrix is shown in Table 3. Note first of all that the Tl panel, referring to the
persistent effect of alcohol on the subjects, has a rather complicated structure,
suggesting that different characteristic subjects have quite different reactions
towards alcohol.

To explain this in detail we will have to look simultaneously at Table 3 and
Figure 5, which shows for each time point the means of the variables averaged
over replications, with reaction time also averaged over the three reaction-time
measurements. The general conclusion from these figures is that reaction time
stays at a higher level long after the alcohol intake, and long after the subjects
say they feel less drunk. That the influence of alcohol is declining is borne out
by the arithmetic test. The figures show what the scores are of the Auerage
Subject. This Average Subject is located at the origin of the subject space, and
will be the reference point for all further explanations.

With this background we can now turn to the investigation of the fundamen-
tal relationships in the data as contained in the core matrix. The first thing to
note is that a strong temporal effect (over and above that already displayed in
the average curves) is only evident in the self-ratings of drunkenness. The other
variables or variable components only have the trend as portrayed in the first
time component, viz. the persistent effect of alcohol. This means that the curves
of the characteristic subjects especially for the after-alcohol periods stay parallel
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MEAN VALUES

(=scores of Average Subject)

Reaction Time Pattern (RT) Arithmetic (ARI)
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Times
(Reaction time pattern is based on VRT. ART. and CRT scores!

Times
Wumber of errors are indirectly derived from numbers correct)

Self-rated Drunkenness (DRNK)

Times
(Ratings based on both occasions)

Fig. 5.

to, either above or below, the mean curves. The easiest way to look at this core
matrix is to describe the characteristic subjects one by one.

Characteristic Subject 1 (Female versus Male). Characteristic subject 1 +
(Female) has persistently (Tl) longer reaction times (VI) than average [core
element (VI, SI, Tl) = 24], also has persistently (Tl) more arithmetic errors
(V2) than average [core element (V2, SI, Tl) = 18]. On the other hand, the
characteristic subject 1 - (Male) has persistently shorter reaction times than
average, and persistently less arithmetic errors than average. Thus the general
trend, as is embodied in the means, is elevated for females with respect to males
for the performance variable components, while there is no appreciable sex-re-
lated deviation from the average in perceived drunkenness [core element (V3,
SI, T l ) = -2].

Characteristic Subject 2 (No specific relationship with external variables
known). The 2 + subject shows persistently shorter reaction times than average
[core clement (VI, S2, Tl) = -26], has persistently more arithmetic errors than
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average [(V2, S2, Tl) = ll]. He gives persistently lower drunkenness ratings
[(V3, S2, Tl) = -12]. Finally, also his time-dependent judgements of drunken-
ness are below average [(V3, S2, T2) = —6]. The time-dependent curve of Fig. 3
(inverted because of the minus sign) shows an inverse pattern to that of the
average curve (Fig. 5), thereby attenuating the peak of the average curve. The
2 — subject shows the reverse pattern: persistently longer reaction times and less
arithmetic errors. This is accompanied by higher drunkenness ratings, which
tend to emphasize the peak already present in the means, especially one hour
after alcohol. Thus alcohol affects these subjects differently with respect to the
performance measures, either reaction time is long and arithmetic low in errors,
or vice versa. The self-ratings of drunkenness concur with the reaction times,
but not with arithmetic. In addition, the subjects profess to be either fairly
sensitive to the alcohol (2 - ), or are largely indifferent to it (2 + ), as their
time-independent curve counteracts the average one.

Characteristic subject 3 (No relationship with external variables known).
Subject 3 + is about average on reaction time, but has persistently more errors
and higher drunkenness than average, and these ratings are time-dependent in
that they elevate the peak of the Average Subject. Subject 3 - is, of course, also
average on reaction time, and makes persistently less errors and has lower
ratings for drunkenness, with an attenuated peakedness directly after alcohol.

Summary. High drunkenness ratings can occur both with large number of
errors, and with long reaction times. For some subjects their feeling of drunken-
ness is reflected in elevated scores for arithmetic, and not for reaction times,
while for others it is the reverse, that is a high feeling of drunkenness is
reflected in elevated scores for reaction time, but not for arithmetic. And when
both performance measures are high or low the drunkenness ratings tend to be
average. Furthermore, note that when there are differences between subjects on
the drunkenness ratings higher than average scores tend to go together with
higher peakedness, and conversely that low ratings go together with lower
peakedness directly after alcohol. Thus emphasizing the sensitivity or insensitiv-
ity for alcohol.

Conclusion

By treating the example in some detail we have tried to convey some of the
power of an integrated analysis of three-way data. In particular, we hope to have
succeeded in showing that complex questions can be asked of complex data, but
that such questions generally have complex answers. It demands a careful and
thoughtful analysis, preferably with considerable theoretical insight into the
subject matter.

In the present example, the theoretical background was not very profound,
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but this is primarily due to the very common sense notions and variables in the
research. The fact that our samples consisted of twin pairs does not seem to be
very relevant for explaining differences in tolerance to alcohol. In that respect,
sex does a far better job. However, it became evident that twins in general have
more similar reactions than arbitrarily paired persons, be it that for dyzygotes
the situation is not unequivocal.

In addition to sex, one would like to find other external correlates to explain
differences between subjects. Without such variables it is unrealistic to expect
an understanding of differences between subjects on various measures. This
becomes especially clear from the subject component for which we have external
information. There we see a relative stronger deterioration of performance by
women compared to men. It is interesting to see that this difference is not
clearly related with differences in subjective perception of drunkenness by
females and males.

8. Technical information

The programs were written in FORTRAN??, and the PC versions (Version 5.0)
have been compiled with the Microsoft Fortran 5.1 compiler. The mainframe
versions run satisfactorily on the IBM8083 and on a VAX under VMS. Previous
versions have been installed on a large number of mainframes, but the present
release is too young for such extensive testing.

The standard PC-versions need approximately 320K of free memory, but
smaller or larger versions can be supplied upon request. The mainframe versions
can be supplied with dynamic array allocation capabilities, which can run with a
local dynamic array function. The variable array space depends on the size of
the problem, especially the largest of /, J and K.

At present the input is based on old-fashioned fixed-column entry, but the
TUCKALS PC Interface (written in Pascal 6.0) is under development (ap-
proximate release date: Spring 1993), so that the input can be entered directly
on the screen. The input files can be saved and reused by the Interface so that
running jobs with new parameters is only a matter of adapting the input screens.
Eventually the Interface will allow a mixed interactive-batch approach towards
running the programs. The intention is to include in the Interface options to run
other three-way programs.

The TUCKALS programs and the preprocessing program NDIMIS3 are
available from the author. For academic institutions, the present costs are f 300
(or approximately $200) per program, but prices may change when the PC-Ver-
sions are fully operational.

Direct enquiries and orders should be sent to: P.M. Kroonenberg, Vakgroep
Algemene Pedagogiek, Department of Education, Leiden University, Wasse-
naarseweg 52, 2333 AK Leiden. Tel. *-31-71-273446/273434 (secr.)/273619
(fax). Electronic mail: "kroonenbC« rulfsw.LeidenUniv.nl".
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