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Fluctuation conductivity and Ginzburg-Landau parameters in high-temperature
superconductors above T, : En'ect of strong inelastic scattering
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The normal state of the high-T, superconductors near optimal doping is characterized by the presence
of strong inelastic scattering, leading to anomalous properties, most prominently a linear-in-temperature

resistivity over a very large temperature range. We study the efFect of this scattering on the correction to
the conductivity due to thermal fluctuations of the order parameter and on the Ginzburg-Landau param-
eters above T, . The fiuctuation conductivity is a8'ected (reduced) by the inelastic scattering, as com-

pared to the case with a constant pairbreaking scattering rate (magnetic impurities). This leads to a sub-

stantial enhancement of an efFect that was recently proposed by Ioffe et al. to account for the observed

upturn of the c-axis resistivity above T, .

I. INTRODUCTION

The anomalous normal-state properties of the high-
temperature superconductor near optimal doping, like
the linear-in-temperature resistivity over a large tempera-
ture range and the hnear-in-frequency width of the quasi-
particle peaks in photoemission experiments, indicate
that the imaginary part of the self-energy behaves as

ImX(co, T)=(An/2)max(to, T) .

When starting from the marginal-Fermi-liquid ansatz for
the polarizability, as proposed by Varma et al. ,

' one ob-
tains A, =g N(0), g being a coupling constant and N(0)
the density of states at the Fermi energy.

This behavior, if still valid at zero temperature and fre-
quency, a regime which actually is hidden due to the oc-
currence of superconductivity in the cuprates, would im-

ply a "just-breakdown" of the quasiparticle concept,
hence the name "marginal Fermi liquid. " If, on the other
hand, a small energy scale exists in the system, for in-
stance due to low-lying spin fluctuations, it might well be
possible that the anomalous normal-state properties are
consistent with a Fermi-liquid-like picture below this
small energy scale and thus do not imply a breakdown of
the quasiparticle concept in the cuprates.

In either case, however, strong inelastic scattering
dominates the physics of the normal state. It has been
pointed out that this inelastic scattering in the normal
state largely affects the superconducting state: First of all
the transition temperature is lowered substantially as a
consequence of pair breaking. Secondly, the suppres-
sion of coherence peaks and a steep behavior of the gap,
with an enhanced value of 2b,(0)/ksT„might arise as
consequences of a strong temperature dependence of the
inelastic scattering rate below T, .

The high transition temperature, the two-
dimensionality of the high-T, cuprate superconductors,
and the short coherence length enhance the thermal fluc-
tuations of the order parameter near T, in comparison to
classical supcrconductors. It is therefore of relevance to
study the effect of the strong inelastic scattering above

the transition temperature on the correction to physical
quantities due to these thermal fluctuations.

In this paper we shall analyze the Azlamasov-Larkin
fiuctuation conductivity in the presence of the inelastic
scattering that leads to the self-energy (1). We find an ap-
preciable change in the Ginzburg-Landau parameters and
the current vertex; this leads to a suppression of the fiuc-
tuation conductivity as compared to the case of a con-
stant [i.e., independent of frequency, unlike (1)] pair-
breaking scattering rate (e.g., magnetic impurities), which
increases with decreasing dimensionality and increasing
scattering strength.

Recently, it was shown by Ioffe et al. ' that in the c
direction of strongly anisotropic superconduetors, Suc-
tuation corrections to the resistivity first lead to a resis-
tivity enhancement, as a consequence of electron scatter-
ing against virtual Cooper pairs, before the zero-
dirrtensiontt/ Azlamasov-Larkin fiuctuation correction
lowers the resistivity close to T, . The magnetic impurity
type of pair breaking, made temperature but not frequen-
cy dependent, was used in Ref. IO, and our findings thus
modify the results of Ref. 10. We find that their effect is
substantially enhanced and might explain the upturn of
the c-axis resistivity in the cuprates just above T, upon
lowering the temperature. '

II. FLUCTUATION CONDUCTIVITY
IN A MARGINAL FERMI LIQUID ABOVE T,

In the presence of strong pair breaking, the leading
contribution to the fiuctuation conductivity above the su-
perconducting transition is the Azlamasov-Larkin correc-
tion. The Maki-Thompson contribution, which describes
the scattering of a particle-hole pair into another
particle-hole pair by exchange of a virtual Cooper pair, is
largely suppressed by the pair breaking. We shall there-
fore concentrate on the Azlamasov-Larkin correction for
a system which displays marginal Fermi-liquid behavior
above the superconducting transition.

The Azlamasov-Larkin diagram (Fig. 1) represents a
contribution to the current
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jest(«&)= T P &(Q,iQ, iQi) I (Q, iQ )I (Q, iQ —iQ&) A(iQ&),
4e dQ
m;n (2~}D

(2)

where A is the vector potential. The "vertex function" V is given by

V(Q, iQ, i Q& ) = 2T—g f D 2pG(p, i co„)G(p,i Q&+iro„)G(Q p—,i Q i Q—
&

i—ro„)
(2m. )

(3)

and I (Q, iQ } is the pair propagator.
First, the pair propagator I (Q, iQ ) is calculated. It is given by the sum of the geometric series (Fig. 2),

I = —V/(1 —X), where Vis the usual BCS model interaction, which is constant and attractive up to an energy roe, and
X is given by

X(Q, iQ )= VT g f D G(k+Qi ,oc+„iQ )G( —k, i'—„) .
dk

(2~)
(4)

The temperature Green function in the normal state is

G(k, ice„)= [i rv„—E(k) —X(ice„)]
1

T, =1.13rooexp
NO V

(8)

X(i r0„)= i A, T a—rctan
1.il—ro—ln,1l

N +Nn c

~2+T2

From analytic continuation of the self-energy X(ro), it fol-
lows that at the Matsubara frequencies

and where the coeificients ri and a follow from a small Q
and small Q expansion of (4), giving

7$(3)vF
71=

16D7T (T )
(9)

(7)

where T, is the usual BCS transition temperature,
defined as the temperature where I (0,0) diverges,

Here ~, is an upper cutoff, estimated to be at least 0.5
eV.

We thus consider a system in which the dominant in-
teraction leads to marginal-Fermi-liquid behavior. This
does not rule out that a different, weaker interaction ( V)
causes superconductivity, provided retardation effects
play a role such that the different interactions operate on
different time scales. (A high transition temperature
might in such a case be due to a large scale coo or to the
presence of a van Hove singularity in the density of
states. )

The simple BCS model form that we assume for V
makes an explicit calculation of the pair propagator
I (Q, iQ ), in the limit of small Q and small Q, possible.
In the limiting case A, =O one finds the well-known result

T—T,'
I '(Q, iQ )= —N(0) rig +aQ +

T,'

Te 1 1
ln „=1( —+

T," 2 4m T,"w
1

2
(10)

where P(x) is the Digamma function. The renormalized
Ginzburg-Landau coeScient g" can be evaluated exactly
to be

'g = vp ~ r lP +g 1 2 1 1

D 2 4~Tg
1

2

7

4mT,

and a=rr/8T, .
In the presence of scattering, e.g., as implied by (6) or

in the presence of impurities, the form of (7) for I ' is
preserved, though the Ginzburg-Landau parameters a
and g are renormalized.

It is instructive to first consider the interesting case of
magnetic impurity scattering, with a constant scattering
rate I /r in the Green function G. The suppression of the
transition temperature due to the pair breaking by the
magnetic impurities is found to be

This expression is plotted as the dashed curve in Fig. 3.

k+Q
s

FIG. l. The Azlamasov-Larkin contribution to the conduc-
tivity. The propagators have a marginal-Fermi-level self-energy
and the pair propagator is shown in Fig. 2.

FIG. 2. The pair propagator I'{Q,iQ }. The grey lines

denote simple BCS interactions, the propagators have a
marginal-Fermi-liquid self-energy.
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FIG. 3. The ratio g"/g (dashed curve) and g ""/g (solid
curves) for the case with a marginal-Fermi-liquid self-energy
(solid curves) with co, /T, as a parameter, both as a function of
p=1/(4~T~). For the marginal-Fermi-liquid case, with
1/2v =ImX and T & T, & co =0, p =A, /4.

The coefficient a is only slightly modified by the impurity
scattering

R m + Q"(I/2)
8TR (4m. TR)2r

(12)

In the limit of large ~ the above expressions reduce to the
unrenormalized coefficients.

In presence of the self-energy (1) the renormalized
coefficients g

" and a " and the suppressed transition
temperature cannot be calculated analytically due to the
complicated summation over the Matsubara frequencies
in (4). The solid curves in Fig. 3 show the result of a nu-

merical evaluation of ri
" as a function of the scattering

strength A, , with e2, /T, as a parameter. It is seen that

g
""is a decreasing function of A, , and for fixed A, the

value of 21
" decreases with increasing co, /T, . It is

clear that the marginal-Fermi-liquid self-energy leads to a
reduced value of ri, compared to the case of a constant
scattering rate. Later we shall see what consequences
this has for the Azlamasov-Larkin dc fluctuation correc-
tion.

The renormalization of a (Fig. 4) expresses how the
Ginzburg-Landau relaxation time is renormalized by the
inelastic scattering. Of course, the Ginzburg-Landau
time is reduced as a result of the pair breaking by the in-
elastic scattering. This is of importance for dynamic
responses above T„but, as we shall see, it also influences
the dc limit. Likewise, the fact that g is reduced rela-
tive to g", implies a decrease in the correlation length
above T, . The suppression of the transition temperature
was treated, in an approximate way, earlier by us.

The second ingredient that is needed in the calculation
of the fluctuation conductivity is the vertex function
V(Q,iQ, iQ&}. We shall calculate only the dc limit of
the conductivity, i.e., the case 0& =0. V(Q, i Q ) is eval-
uated in lowest nonvanishing order in frequency and
momentum, since the pair propagator is strongly peaked

FIG. 4. Renormalization of the parameter a, normalized to
the bare value m. /(ST, ), as a function of the scattering strength

P.

at small values of its arguments and thus V contributes
only significantly at small frequency and momentum. At
zeroth order in 0 and first order in Q (the zeroth order
in Q gives zero due to the vector nature of the current
vertex) one finds that V=CQ, where

X J D~p~ G (p'~n)G ( p i~n).4T dp
Dm, .„(2~}D

C= 8rnN(0)ri . (14)

Using the results for I and V yields the Azlamasov-
Larkin correction to the dc conductivity,

Q2

D (2n)n [(T T, )/T, +gQ —]
(15)

where T„ri, and a are the renormalized parameters.
This expression is rewritten as

' 2—D/2

0. =B a~1—D/2

T Tc
(16}

and

2 e AT ~&+&
Bg) = dx

(x +1) (17)

In the latter equation, we have reintroduced A and kz ex-
plicitly. As (16) shows, the scattering rate dependence
enters o.

&& through the coefBcient ag', and thus has
a dimensionality dependent inhuence.

(13)

After some algebra it turns out that this expression is
proportional to g,
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III. DISCUSSION

We have seen that the use of the Green functions with
the marginal-Fermi-liquid self-energy in the calculation
of the dc Azlamasov-Larkin fluctuation conductivity
leads to a change of the parameters g and a, which ap-
pear in the Iinal result (16) as the prefactor ari' i . In
Fig. 5 we have plotted the enhancement factor of the
Azlamasov-Larkin contribution due to the marginal-
Fermi-liquid effects in D =3, 2, 1, and 0 compared to the
case of a constant magnetic impurity scattering rate as a
function of p= 1(4n.T,~). For the case of the marginal-
Fermi-liquid self-energy above T„ 1 /r =A m T /2, p =A /4.
It is seen that the frequency dependence of the pair-
breaking scattering rate enhances the effect of the pair
breaking and thus further reduces the fluctuation conduc-
tivity. From resistivity measurements it can be estimated
that k varies roughly between 0.25 and 1 in the different
cuprates.

Despite the reduction of the fluctuation conductivity,
fluctuation effects are observable up to high temperatures
due to the small bare conductivity 0.0. The resistance ra-
tio

R
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deviates over a large temperature range from 1 when 00
is small.

Recently, Ioffe et al. ' have shown that in strongly an-
isotropic materials fluctuation effects initially lead to an
increase of the c-axis resistivity above T, upon lowering
the temperature, as a consequence of electron scattering
against Cooper pairs, before it drops to zero. The de-
crease of the conductivity near T, is 6rst driven by zero-

dimensional fluctuations and even closer to T, by three-
dimensional fluctuations. This observation might help to
understand the observed upturn of the c-axis resistivity
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FIG. 6. The c-axis resistivity. The left figure shows the ratio
R /Ro, where Ro is the bare resistivity, the middle figure shows
R with Ro ~ T. The rightmost figure was obtained with a box
distribution of T, s with a 3E width. The dashed curves are ob-
tained by using the expression derived by Ioffe et al. ,

' the solid
curves are obtained taking the effects of the marginal-Fermi-
liquid self-energy into account. The upper dashed curve corre-
sponds to X=0.6 and the lower dashed curve to A, =0.3. The
same parameters are used for the solid curves.

near T, in the cuprate superconductors. " While it is
difficult to extract parameters from the experiments accu-
rately, the authors of Ref. 10 estimate this effect to be too
small to fully account for the observed upturn. More-
over, the resistivity minimum appears too close to T, (see
the dashed curve in Fig. 6).

Taking the marginal-Fermi-liquid self-energy into ac-
count, the effect by Ioffe et al. , is substantially enlarged
via the changes in g and a, as is illustrated by the solid
lines in Fig. 6. With a linear-in-temperature bare resis-
tivity, the results of Ioffe et al. , hardly produce an upturn
of the c-axis resistivity. Especially when a variation of T,
through the sample is taken into account, a small shoul-
der rather than a clear upturn is produced, as sho~n in

Fig. 6(c). Well above T, the resistivity is linear in tem-

perature. The enhancement of the upturn in R, /Ro in

Fig. 6(a) leads to a clear minimum in the c-axis resistivity

R, in Fig. 6(b). The high temperature where the
minimum in R, occurs (above 1.2T, ) is in agreement
with the experimental observations of Ref. 11.

In conclusion, we have discussed the effect of a linear-

in-temperature and linear-in-frequency scattering rate on
the Azlamasov-Larkin fluctuation conductivity. The
Ginzburg-Landau parameters and the current vertices re-
normalize appreciably due to the inelastic scattering. We
6nd that the fluctuation conductivity is reduced as corn-
pared to the case of magnetic impurity scattering. This
causes an enhancement of the effect which was proposed
by Ioffe et al. , to account for the upturn of the resistivity
in the c direction near optimal doping.

FIG. 5. The enhancement factor (a ""/a")(gM""/g )

of the Azlamasov-Larkin contribution due to the marginal-
Fermi-liquid effects in D =3, 2, I, and 0 compared to the case of
a constant scattering rate as a function of p = 1/(4~T~).

ACKNOW'. KDGMENTS

M.H. and F.V. are supported financially by the Dutch
Foundation for Fundamental Research on Matter
(FOM).



FLUCTUATION CONDUCTIVITY AND GINZBURG-LANDAU. . . 3543

'Present address: Serin Physics Laboratory, Rutgers Universi-

ty, P.O. Box 849, Piscataway, NJ 08855.
C. M. Varma, P. B.Littlewood, S. Schmitt-Rink, E. Abrahams,

and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989); 63,
1996(E) (1989).

K. Levin, Ju H. Kim, J. P. Lu, and Qimao Si, Physica C 175,
449 (1991).

~P. A. Lee and N. Read, Phys. Rev. Lett. 58, 2691 (1987).
4C. Bandte, P. Hertel, and J. Appel, Phys. Rev. B 45, 8026

(1992);C. Bandte, ibid. 47, 5473 (1993).
~M. L. Horbach, F. L. J. Vos, and W. van Saarloos, Phys. Rev.

B 48, 4061 (1993).
P. B. Littlewood and C. M. Varma, Phys. Rev. B 46, 405

(1992).
7A. A. Abrikosov and L. P. Gorkov, Zh. Eksp. Teor. Fiz. 39,

1781 (1961) [Sov. Phys. JETP 12, 1243 (1961)];K. Maki, in

Superconductivity, edited by R. D. Parks (Dekker, New York,
1969),p. 1037.

L. Coffey, Phys. Rev. Lett. 64, 1071 (1990).
L. G. Azlamasov and A. I. Larkin, Phys. Lett. A 26, 238

(1968).
L. B. Ioffe, A. I. Larkin, A. A. Varlamov, and L. Yu, Phys.
Rev. B 47, 8936 (1993).
S. J. Hagen, T. W. Jing, Z. Z. Wang, J. Horvath, and N. P.
Ong, Phys. Rev. B 37, 7928 (1988);T. Penney, S. von Molnar,
D. Kaiser, F. Holtzberg, and A. W. Kleinsasser, ibid. 38, 2918
(1988).
J. Labbe and J. Bok, Europhys. Lett. 3, 1225 (1987); D. M.
Newns, C. C. Tsuei, P. C. Pattnaik, and C. L. Kane, Com-
ments Condens. Matter Phys. 15, 273 (1992); C. C. Tsuei, C.
C. Chi, D. M. Newns, P. C. Pattnaik, and M. Daumling,
Phys. Rev. Lett. 69, 2134 (1992).


