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ABSTRACT

The object of study of this paper is the asymptotic behaviour of sequences {M,}, . of square
matrices with real or complex entries. Two decomposition theorems are treated. These give con-
ditions under which a sequence of non-singular square matrices whose terms are block-diagonal
(diagonal, respectively) matrices plus some perturbation term can be transformed into a sequence
{F\| M, F,},., whose terms are block-diagonal (diagonal) and where the sequence {F,},., con-
verges to the i&entity. In the first section we introduce the concept of a matrix recurrence and some
further notation. In §2 we present the first of the two decomposition theorems. As an application, we
present, in §3, a generalization of the Theorem of Poincaré—Perron for linear recurrences, and in §4 we
prove a decomposition theorem for matrix sequences that are the sum of a sequence of diagonal mat-
rices and some (small) perturbation term. In the final section we use the second decomposition
theorem to derive a result concerning the solutions of matrix recurrences in case the matrices converge
fast to some limit matrix. All our results are quantitative as well.

I. PRELIMINARY CONCEPTS

Let K be the field of real or complex numbers. In this paper we study sequences
{M,},. v (N € Z) of matrices in the set K** of k x k-matrices with entries in K
that digplay a regular asymptotic behaviour. We call a sequence {M,},-, 5 con-
vergent to M if for all i, j the entries (M,),; converge to some number M;; € K (for
a matrix 4 € K5 we let Aj; denote the entry in the i-th row and the j-th column
(1 <i<k,1<j<I)). Thelimit matrix M will also be denoted by lim M,

For M € K*! we define the norm ||M| as the matrix norm induced by the
Euclidian vector norm on K':

M| = M. .
[81]] = max M)/ |
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In particular, we have that |MN|| < | M]| - ||N|| whenever the multiplication is
well-defined.
A block-diagonal matrix is a matrix M € K %% of the form

S1 0
Sy

0 Sk

where S;e K k”'k", Ef’zl ki = k. We shall denote such matrices by M =
diag(Sy, 52, ..., Sk). If some of the blocks are 1 x 1-matrices, we just write their
value: M = diag(e, 2, - . ., ) if S1 = (en).

We recall the concept of a Jordan canonical form. For convenience, we denote
by I (or by I, as well) the k& x k identity matrix and by Ji the k x k-matrix such
that (Jx); = 8i+1,; (1 < i,j < k). By R(¢) we denote the 2 x 2 rotation matrix:

R(6) = (cgs¢ —sin¢).

sing cos¢

For each matrix M € R** there exists some matrix U € R“* such that
U-'MU = diag(S1,S,,...,8), where S; = a; Iy, + Ji, for some o; € R, or
S; = a; - diag(R(¢), . R(¢,)) +J2 for some o; €R, >0, and ¢ €R
(1<i<h).ForMe C ¥ a matrix U € C** can be found such that U~ MU =
diag(Si,...,Sy) with S; = oIy, + Ji, for o; € C. The matrices U~ VMU are
called the (real and complex, respectively) Jordan canonical form of M. We call
S1, ..., Sy the Jordan blocks. The Jordan canonical form is unique up to permu-
tation of the Jordan blocks.
We introduce some more notation: For 4 € K¥*andz € K, z # 0, we define

z4 = edlosr = i l (dlogz)'

N

for some branch of the logarithm. In this paper, we take z € R, z > 0 and
logz € R. Note that for 4 a diagonal matrix, z4 has a particularly simple form: it
is a diagonal matrix with entries (z4),, =z (1 < i,j < k).

By M we denote the set of functions f : N — R such thatlim,, _ o, f(n) exists
in R or is infinity, and such that f(n) /f (m) is bounded either from above or from
below for m,n € N, N < n < m. The subset M® c M consists of the functions
f € M for which lim,_, (f(n+1)/f(n)) =1, and M} is the set of functions
f € MO such that the functions f(X) - X" liein M forallr € R.

Finally, in asymptotic estimates we shall avail ourselves of the notations )
and ~. Let N € Z be fixed. If the series } 7" v a; (a; € K) converges then
> =2 j-,a (n = N),andif it diverges, then Do &= Z, y @i (n>N).
If f,g are sequences of numbers, vectors or matrices, we write f ~ g if

f(n) — g(n) = o(|f(n)]) or,if f(n) is a matrix, o([ f (r)|) as n — oo.

62



Let {M,},> (N € Z) be a sequence of non-singular matrices in K&k, Con-
sider the recurrence relation

(1.1) M, x, = Xn41 (x,,ele’I,nZN,lzlork).

We call (1.1) the matrix recurrence induced by {M.,},- », and {x,},~ y a solution
of (1.1). For I = k, we require that det x, # 0. Clearly, the set of solutions of (1.1)
(with / = 1) is a k-dimensional linear subspace of the vector space of sequences
{an}, >y (an € K¥) (with termwise addition and (scalar) multiplication). We
identify two sequences if their terms are equal from a certain index on and we
simply write {M,}, {x,}, etc, without specifying the starting index. If the starting
index matters, we usually take 1 or N, without further specification.

2. A DECOMPOSITION THEOREM

In this section we treat the first decomposition theorem for matrix sequences
(or matrix recurrences). If we have a matrix recurrence whose defining matrices
can be written as the sum of a block-diagonal matrix with two blocks, one of
which is (constantly) of smaller ‘size’ than the other one, plus some perturbation
matrix, then, if the perturbation matrix is small enough, another matrix recur-
rence can be found whose defining matrices are block-diagonal, whereas its solu-
tions {x,} correspond, in a 1-1 manner, to solutions {y,} of the original matrix
recurrence such that |x, — y,] = o(]x,|). The use of the theorem lies in the fact
that the second matrix recurrence is of simpler form than the first one, whereas
the solutions of the former correspond to solutions of the latter which are
asymptotically equal. (Note that the solutions of a matrix recurrence whose de-
fining matrices are diagonal, or even upper (or lower) triangular can be calculated
in an exact manner, i.e. an explicit expression for them can be given in terms of the
coefficients of the matrices). The theorem precises what we mean by the size of the
matrix blocks and gives conditions on the size of the perturbations. Moreover,
upper bounds are given for the normalized differences (|x, — yu|/|x4]).

Theorem 2.1. Let {M,} be a sequence of non-singular matrices in K** of the form

_( Ry QOn
(2.1) M,,_<Pn Sn)

where R, € K" and S, € K%~ are such that Sy is non-singular, and such that
for some sequence {6,} with &, € R, 8, > 0(neN)and}",> | 6, < oo,

(22)  O<||R,-IS;M <148, foralln

00

(2.3) Zl (1= |[Rull - IS, ') diverges,
and moreover

(Pl 2l IS,
(2.4)  lim n L _y.
n=o0 1+ 8 — ||Rall - 1S,
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Then there exists a sequence { F,} of non-singular matrices F, € K** such that

(2.5)  F!| M, F, = diag(R,, S,

with R, € KM S, € Kk-bk-1

(2.6)  [[Rs = Ryl + IS, = Sull = o(||Pul})
(2.7)  LmF, =1

and, foreache > 0,

15~ 1l < 5 124l 17 T 1Rl 13,1
(2.8) =

5 00+ < 0P IS T Rl IS5

Further, if the matrices R, are non-singular, and

oC

(2.9) Zl (1Pl + 11 Qall) - 1R - H [1Smll - 1Ry,

converges, then the second term on the right-hand side of (2.8) may be replaced by

210) 5 (104l+< 1P - I1R; - TSl - 1R

We prove the theorem in several steps.

Lemma 2.2. Let A, B € K** be such that 4 is non-singular and ||B|| < || 4~"|™".
Then A + B is non-singular and

1
I(4+B)™" ) € ————.
4~ = 118l
Proof. Let x € KX x = 0. Then
—1y-h
|(4+ B) x| > ||4x| — |Bx|| > (Jl4~"7" = ||B])) x| > 0,

hence A + B is invertible. Furthermore,

A+ B)"! 1
max ————|( +8) vl = max x| < — .
y#0 vl x70 |(A+B)x| ™ l4-1| 7! — ||B|

Lemma 2.3. (a) Let {R,}, {Su}, {Qn} be as in Theorem 2.1 with {6,} = {0}. Then,
if { X} (X, € K571 satisfies the recurrence

(2.11)  Xpi1Su= R X + On,
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then, forn > N

00 < 1l T 1Rl -5

n—1 n—1
2.12) S el i T IR 1S
I=N m=I+1
) hodl- 15711
< 1xull- T IRel - 157 + max I
1wl 1T R T RIS

so thatlim,,_, ., X, = 0 for every solution {X,,} of (2.11), (X, € K"F~1).

(b) Furthermore, the recurrence
(213) Y, R =S.Y,+ 0O,

has a solution { Y\ 1, YA e KF1 with

00 -1
(2.14) ¥, S}Z [T R 'hlj IRl - 1S5

Proof. (a) Solving (2.11) explicitly, we find, forn > N,

Xo=(Ry 1 - Ry)Xn(Sp_1 -+ Sy)™"
(2.15) n—1 4
+ 20 (Rocr - Ri1) Qu(Sp-1 - -+ - S))
I=N
from which (2.12) follows immediately, by |Rx|| - ||S;}|| < 1forallh > N.
(b) Since the sum 7, := > 2, (S; - -+ - SV TVOR; g Ry) conver-

ges, by

q

3 (S Sw) T QRi-1 - Ry)

=
(2.16) ?

hoill - 11871 p=1 1
< max UM "y yysiy
T RT 1S b

we may choose Yy = —T. Then
Yp=-Ty=-5 (S S)" " QRi_1 - - Ry) forn>N,
I=n

which yields (2.14) (take ¥\ = Y,). In particular, by (2.16),
. -1
[[Y]f,())”gmax 10 - 1S, l|1
2 L= |[R|l - IS

0)

solim,_ o Y,,( =0. O

Lemma 2.4. (a) Let {R,}, {Sn}, {Pn}, {Qn} be as in Theorem 2.1 with {6,} = {0}.
Then the recurrence

(2.17)  Xui1 = (Ry X+ Qn)(S, + Py X))
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has a solution {X } X e K51 such that lim,_ o X" = 0 and, for any
>0,

n
218) X1 < 3 (el +e 1P - 1S | TII 1 [ B

Jor N > N(e).
(by Moreover, if R, is non-singular too for n € N and the sum

) -1
S P+ 1Q0D) - IR TT IR - 1Sl
N h=N

converges for some N € N, then (2.17) has a solution {X,,(l)}, XV e Kbk with
W) < $ 1y T R
219) X7 < IZ @il + & 1Pl - 1Rl 'hH IR, 1 Sall
=n =n

forn > N'(g). In particular, lim,, _, o X,,(l) =0

Proof. (a) Without loss of generality we take ¢ < 1. First of all we show
that small solutions remain bounded. Put, for ne€ N, r, = ||R.| - [|S, |
po = IPall- IS, and g, = |Qall - 1S} Let N(e) be such that g, +ep, <
Vel —r,) forn > N(e). By (2.17) and Lemma 2.2, we have

IIX |+ 4n

1 X1l <
X

provided that ||X;,|| < 1/p.. Hence, if for some N’ > N(e) we have || Xy/|| < /e,
then ||.X,|| < e foralln > N' We can write (2.17) as

(2.20)  Xpt1Sn= R Xo+ O

with Qn 0, — X, 41 P, X, for afixed solution { X,,}. If N > N(¢) and we choose
{X, (0)} such that X © — 0, then we have || X} O)H < /e foralln > N. Application
of Lemma 2.3(a) to (2 20) (with O, instead of Q) yields the desired result.

(® Put o, = R - I,lls w1 = 1R - [ 2all. and o = R, - 14 (n > ).

Since Y ;7 v (m 4+ pr) oi—y - -+ - on converges, we may put
o0
Z (em+p)oi—1 -+ -0, (n2N).

Then D, = 6, Dp41 + pp + eny forn > N and lim,_, o D, = 0 since o, 7, > 1 for
all n. Let N'(¢) > N be so large that D, D, <& for N> N'(e). Then
0y = pn+emy — 7y Dy Dyy1 > pnand

D, —p,

Dyyy = —2—Fn
n+1 pn‘+‘77'nDn

(n>N'(e)).
For n > N'(g) we define compact sets U, = {X € K"* . | X|| < D,} C Kchk=t
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(with the topology induced by || ||), and for each & > N'(g) we choose solutions
{Xn(h)} of (2.17) with Xh(h) € U,. Then X,,(h) € U, for N'(¢) < n < h. For we have

h
X 0w + pn

1 —m, || X

h
X0 <
Sl

provided that 7, | X, || < 1. Butif X?) € Up11, thenm, | X%, || < 7, Dyi1 <
mne/Dy < 1. Thus, 1fX(h € Uy forn > N'(¢), we have

Dn+1 +pn

1P <2 <D,

- 7rnDerrl

so that X"’ € U,. Since the U, are compact sets, the sequence {X N,(E)} has at
least one limit point in Uyy(.), say Xne). Let { X, }u> nv(e) be defined by (2.17). By
continuity of (2.17), X, € U, hence || X,|| < D, forn > N (). O

Proof of Theorem 2.1. We first suppose that {§,} = {0}. By Lemma 2.4 the
recurrence (2.17) has a solution {X %} such that X Ve "%~/ lim X9 =0and
such that (2.18) holds. Moreover, if R, is non-singular, and the sum (2.9) con-
verges for some ¢ > 0, then, again by Lemma 2.4, (2.17) has a solution {X,,(O)} for
which (2.19) holds. Put

(0)
I X
B, = ! n > N).
" (0 Ik—l) (2 N)

Then ||B, — I|| = | X,\”]| and
0
R,— X' ' P, 0
n+1M Bn = " ntl
P, P, X" +5,

Since B,, M,, are invertible for n > N, sois B, l | My By. Further, since by Lemma
2.2 we have 1 — ||R, — X'V, Pul| - 1(Sn + Po X)) > L(1 = |[Ry]] - |S,71]]) for

n-+1
n large enough, say n > N, we may apply Lemma 2.3(b) to the recurrence

X1 (R — X2 P)) = (Sy + Pa X)X, + P,

and find that there is a solution {X,, }n SN XV e Kk with

1%, ShZ 1PAlL - 1(Sh + P X))

h—1 (0) (0)y~1
X o I I1Rm = X, 5 Pl - (S + P X,07) ||

m=n

forn > N, and lim X,,(l) = 0. Define

I 0
= . > .
F, =B, (Xn(l) Ik_[> (n> N)

Then F, € KX F, )\ M, F, = diag(R, — X', P, Sy + P, X,V) (n > N). It is

now easy to check properties (2.5)—(2.8) and (2.10).
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Now consider the general case. Put b, =[],_, ( + 6;). Further, put
U, = diag(b, I}, I _;) (n € N). Then lim,, _. o b,, exists and is not zero. Moreover

M, U, _<R,,/(1+6,,) n+1Qn> (n € N)

Un+ b, P, Sy

n + 1
so we may apply Theorem 2.1 with {6,} = {0} to {U,”}; M, U,}, thus obtaining a
sequence {F,,}, F, € K** such that

E-L U M, U, F, = diag(R,/(1 + 6,), 54)

w1th Ry — Rall + ISz — Sall = o(||P,]) and such that (2. 7) (2.10) hold for
{(F-1, U7} M, U, F,} and {F,}. Finally, put F, = U, F,U! (n € N). Since U,
converges to some non-singular matrix U, we find that (2.5) to (2.10) hold for
{M,}and {F,}. O

Remark 2.1. If, in Theorem 2.1, {6,} = {0}, it follows from the proof that, in
(2.8), <. can be replaced by <, provided that n is large enough.

Remark 2.2. If|[R7}|| = ||R,|| " and ||S, || = [|S,||~" for all n, we can take (2.8)
and (2.9) together, writing

o0 - h—1 . n—1
[Fn = 1| < hZ 124l - 1S5 TT Rl - 15,1+ H1l|lel IS,
=pn m=n m=

(2.21) ,
< @l + < 1P IS TT 1R 5ol

(m)

3. APPLICATION: SEPARATION OF EIGENVALUES WITH DISTINCT MODULI

In this section we study converging sequences {M,} of square non-singular
matrices. We show that a converging sequence {U,} can be found with lim U,
non-singular and such that Unjrll M, U, is a block-diagonal matrix with each of
its blocks converging to some matrix whose eigenvalues have equal moduli.
Moreover, the rate of convergence of { U, !, M, U, } is about the same as the rate
of convergence of {M,}.

For a matrix M € K*¥ we denote by p(M) its special radius.

Theorem 3.1. Let M € K** be a matrix of the form M = diag(R\, Ry, ..., Ry)
where R; € K% such that al eigenvalues of R; have smaller moduli than those of R;
(1<j<i<L). Letf € M°and{M,} asequence of matrices in K%* such that

MDY
My=| L M ek,
MmED D
forneNandl <i,j<L and
(3.1)  |IMu— M| =o0(f(n) (n—o0).
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Then there exists a sequence {F,} of non-singular matrices in K%* such that

(3.2) F-',M,F, = diag(Rin, Ro, ..., Rrn)

n+1

withlim Ry, = R; (j=1,..., L),

n

(34) limF, =1

(33) 1R — M7 = o(| My — M]|) (n— o)

and
(35) |IF— 1l =0o(f(rn)) (n—o0).
Moreover, if S0 (1/f{n)) |1M, — M|| converges, then {F,} can be found such

n=1

that, in addition,

x 1
(3.6) nz::l o) |F — I|| converges.

Lemma 3.2. Let M € K5* . There exists for each number € > 0 some invertible
matrix A(e) € K** such that | A(e) ' MA(e)|| < p(M) +&.

Proof. Notethatif M = diag(M1,..., M), then ||M|| = max([|M]],..., ||ML]]).
Since a matrix U € K% ¥ exists such that U ! MU is in Jordan canonical form, it
suffices to construct 4(e) for the Jordan blocks of M. First consider a Jordan
block of the form of; + J;. Put

(3.7)  E :=diag(0,1,2,...,[—-1)e K"’
Forze K, z #0,

(527,

= Zi—l(J])ijZI_j = Ziﬁj(slq_],j.
Hence
(3.8) zEB.g .z B =zl

Thus, ||e~E(ad; + J;) e8| = ||ad; + eJi|| < |a| + £. Now consider a Jordan block
of the form 3 - diag(R(p), ..., R(p)) + J?. (Here we assume X = R). Consider
the (right-)Kronecker product Ej;, ® I. Since Ej, ® I, = diag(0- I, 1 L, .. .,
((1/2) — 1) Ib), it commutes with diag(R(y), ..., R(y)). Furthermore, by J* =
Ji2 ® L, we have

(3.9) zEnp®h. 2. ~Epeh = ;-1 g2

Hence,

e E®2(3 . diag(R(p), ..., R(w)) + J2) eE®L||
<18l |R(@)|| +€ = |8] +¢,

since R(y) is an orthogonal matrix. [J
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Proof of Theorem 3.1. We proceed by induction on L. First take L = 2. Put
R:=R), S:=Ry. Let §:=p(R), v:= p(S“l)_l. By assumption, v > 8 and we
may choose some number ¢ € R, 0 < ¢ < (v — 3)/6. By Lemma 3.2 there exist
matrices U € K% and V € K£** such that

i
lUTRU| <B+e, VIS~V < 7

Put W = diag(U, ¥) and choose N € N so large that

£
M, = M|| < ————— forn>N.
! Wi w1

Observe that W~ M, W =: M, can be written as

" Rn Qn

M= (P,, S,,)
with |R, — UT'RU|| <&, IS, = VISV| <&, |Pull <&, ||Qn]l <€ for n>N.
Thus, by Lemma 2.2, ||R,|| < 3+ 2¢,and ||S,7!|| < 1/(y — 2¢) for n > N. Hence,

IRl 118, )l <1—& for some >0 (n > N),

o0

> (1= IRall - 1IS,7)) = o0

and
Jim ([Pl + (121D - Is, 'l =o.

Applying Theorem 2.1 to {M,,} we obtain a sequence {(Fulysn Fn €K k& such
that
limF, =1

F2L M, F, = diag(R,, S,)

and such that (2.6), (2.8) hold for {M,} and {F,}, hence ||R,, — Ryl +
1S = Snll = o(|| Pall) for n — co. Put F, = WE,W ! (n > N). Then
imF, =1,  F,} M,F, = diag(R,,S,)
with
[ Ry = Runll + |87 — Ranl| = (|| My — M[|) (1 — o).
Put
=P UST L g = NQall - 18,7 7w = lIRall - 1S,

foralln > N.Then
rm<l—8 py=0(M,— M), g.=O(|M,— M]|).

Furthermore,

5 o 11 Omepa) < 3 13— M- ¢
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and
n—1

n—1 n—1

Xoan I (rmt+epm) < 30 (|1 My _M”'Cn_h

h=1 m=h+1 h=1

for some number ¢ < 1. So, by (2.8), and by ||F, — I|| ~ ||F, — I||, we have
[1Fn — 1| < Z 1My, — M| -¢F" + Z [ My — M| - ¢

We show that
00 n—1
S-S S =0(/() - (n )
Set 4 = max,cn f(n) and let N’ be so large that |(f(m+ 1)/f(m)) — 1| <

(1 —=¢)/2form> N'" Choose n > N’ Since (3 —()/2 < 1,2¢/(1 +¢) < 1 and
¢"/f(n) — 0 (n — o0), we obtain

1 1 1 N'—1 ~
IR S pycrh e 5 r ¢
S(n) 5= f(” h=N' f(n) 4=
o0 | n—h N1
n h
Z( > hZNI<+c> f()CZC o)

(n — o0). By (3.1) this implies (3.5). Suppose that > 7, (1/f(n))||M, — M]||
converges. Then

$ {2 g w4 5 agy ¢t
< :iN M=l (C( )
v 5 s ()T
<<h§v, f—(l}'l')”HMh—MH < 0.

So, 3"y (1/f(n)) ||F, — I|| converges and we have proved Theorem 3.1 in case

Now suppose L = Ly > 2. We assume that the theorem holds for L < Ly. We
denote the matrix that is obtained from M, by omitting the first £ rows and col-
umns by M, (n € N). Thus

RI
My = (P: Aan’)

with lim R, = R;. By the theorem for L =2 we can find a sequence of non-
singular matrices {F,} such that

(Fn/+l) an Fn, = diag(Rl,,,Mlln)
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with lim M|, = lim M, and lim R,, = lim R, and such that (3.3)-(3.6) hold for
{M,} and {F}. Applying the theorem for L = Ly — 1 yields a sequence {F,’}
such that (Fn”Jrl)Al M| F) = diag(Ra, ..., Rr,) and such that (3.3)—(3.6) hold
for {M{,} and {F,’}. (Note that since H(FW’H)_1 M, F] — M| ~ ||M, — M| by
(3.3), the order of convergence of { M/, } is not essentially larger than the order of
convergence of {M,}). Put

F, =F) diag(ly,,F)) (neN).

It is not difficult to check that {F, } satisfies the requirements. O

Note that for any matrix M € K*¥ it is always possible to find a matrix
U € K*¥ such that U ~! MU has the form prescribed in Theorem 3.1. Moreover,
we can find U and Ry,..., Ry such that all eigenvalues of R; have the same
modulus (1 < j < L).

We apply Theorem 3.1 to matrix recurrences:

Corollary 3.3. Let {M,} be a sequence of non-singular matrices in K** with limit
matrix M. Suppose that M has some eigenvalue o € K with multiplicity 1 and
such that |B| # |a| for all other complex eigenvalues 3 of M. Then the matrix
recurrence (1.1) induced by {M,} has a solution {x,E")}, Ve K¥ such that
(x,$°> / |x,$°)|) ~ fu = o(1) with f,, an eigenvector of M with eigenvalue o.. Moreover,
if Y IMy, — M| < coand o # 0, then {x,go)/oz"} converges.

Proof. We can find a matrix U € K** such that U ~! MU = diag(e, R) for some
Re Kk-1k-1 By Theorem 3.1, there exists some sequence {F,}, F, € Kk such
that

F, !, U™ M, UF, = diag(a,, R,)

with lim,_., a, = @, lim R, = R, lim F,, = I. Further, if >0 | |M, — M| < o,
then )7 | lan —al < oo as well. So, the matrix recurrence induced by
{F,;}, U"'M, UF,} has some solution {7} with y /|y = Mer, where
M € K, [As| = land e; = (1,0,...,0)" is the first unit vector in K* (n € N). Then
{0 = {UF, »{”} is a solution of (1.1) and (x\” /|x\"|) — (A Ue1/|Uey|) = o(1)
and Ue; is clearly an eigenvector of M with eigenvalue «. If o # 0 and
S0 1 lan — a] < oo, then

Bl ("ﬁl ﬂ).el (n>1)

an~ 1 = 2 o
and the product on the right-hand side converges. Then {x,so)a
well. O

"1 converges as

Remark. If M € K¥* has k distinct eigenvalues aj,...,ax with |oy| <
|aa] < - < |ag], we have, by Corollary 3.3, that (1.1) has k solutions
{x . {x%} such that /\S,i)x,si)/ |xni)| converges to an eigenvector of M with
eigenvalue o, for certain numbers AY ¢ K, |/\f,i)| =1 (i=1,...,k). Clearly,
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{x,El)}, cees {x,gk)} constitute a basis of solutions of (1.1). This is essentially the
Poincaré-Perron theorem for matrix recurrences (see e.g. [3], [4] (p. 300-313), [5],

[61.)

4. SEQUENCES OF ALMOST-DIAGONAL MATRICES

It appears useful to have a separate lemma for the case that the matrices M), are
almost diagonal, i.e. they can be written as the sum of some diagonal matrix and a
perturbation matrix. We impose a few regularity conditions on the diagonal parts
of M,, which are often fulfilled in practice.

Lemma 4.1. Let by,...,by be K-valued functions on integers such that
|b;(n)/bi(n)| — 1 is either non-negative or non-positive for all n € N up to addition
of a term d; j(n) where y_,° | |d; ;(n)| converges (1 < i, j < k). Let {D,} be such
that D, € K** and 332° || Doll/|bi(n)| converges for all i. Put B, = diag(b,(n), .. .,
bi(n)) (n € N). There exists a sequence {F,} of matrices in K** such that

(41  FE(B,+D)E, =B, (ncN)

n+1
and

n-1

(42) ||F,-1]< max J]

l<ij<k 21

b(m)
b,(m) ‘

R
2 o 1L,

bi(p) ‘
bj(p)

In particular, lim F,, = 1.
For the proof of Lemma 4.1 we need an auxiliary result:

Lemma 4.2. Let {v,}, {6.} be sequences of complex numbers such that both
Sl and 3707 | |6a] converge. Then for every a € C the recurrence
(43) yari=(0+%)ya+6 (meN)

has a solution {y,(a)} such that lim, _ . y, = a. Moreover, |y,(0)] < 3;°, |64].

Proof. Solving the recurrence (4.3) explicitly (compare Lemma 2.3), we obtain
n—1 n-1 h -
o= T+ fns 'S o [T
m= = =1
Since [[n—;{(14~m) converges to, say, S€C*' and since the sum

S T, (L + v1)~" converges too, we may put

o 00 h -1
yi(a) =5 2 6 IT (M +v1)
h=1 =1

and let {y,(a)}, be a solution of (4.3). Then lim, _, o yn(ar) = @ and

00 h <
lya(0)] < hZ |6l 'IH 1+ <<hZ l6n]. O
=n =n

=n
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Proof of Lemma 4.1. Since the lemma remains valid if we take {P ~!(B,+D,)P}
instead of {B,+ D,} for any permutation matrix P, we may suppose that
|bi(n)| < |bis1(n)] + di(n) forallnand i € {1,... ,k — 1}, with d;(n) non-negative
real numbers such that 3,7 | d;(n) converges for all i. We first look for a sequence
of unipotent upper triangle matrlces (i.e. with diagonal elements 1) {F, (l)} such
that

(FY) ™ (By+ Dy) M), =0 fori<j
where A;; denotes the entry in the i-th row and j-th column of the matrlx A. We
set. f;(n) = (FY)y bij(n) = (Ba+ Dy)yy and by(n) = (F)))™" - (B, + Dy)-
! )l ;- Then

(4.4a) Z_bih(n)filj(n)+bij(n): Y fim(n4 D) bpi(n) if i< j

m>j
(4.4b) zb,h n) fig(n) + bij(n) = 3 fim(n+ 1) by(n) + bi(n) i i > ).
h<j m>i

Before choosing | f;;(n)| as small as possible, we show that it can be chosen small.
Set d(n) = 3 ; |(Dn);jl = |Dall;- Then 3% n)/|b,,( )|} < oo for all i. Set
Sf{n) = max;4; | fi;(n)| and let N be so large that (n)/b;;(n)) < 2% forn> N
and j=1,... k. Let f(n) <1 for some n > N. We show that then f(n + 1) < 1
too. Suppose it has been shown that | f;;(n + 1)| < 1forj=J +1,...,k and that
|bij(n) — bij(n)| < 25F-d(n) for i =J +1,... k. Applying (4.4b) for i = J and
Jj < J < k we obtain that

|bsj(n) = buy(n)| < d(m) + ZJ by (1) = baj(n)| < d(n) -2
m>
Applying (4.4a) for j = J and i < J we find

[firn+ 1) byy(m)] <d(n) + 32 |bms(n) = bps(n)] < d(m)- 2577

m>J
so that
k=T
d(n)-2 <

brs(m)] ~

fori=1,...,J — 1. So we find that, if | f(n)| < 1 for some n > N then |f(v)| <1
and |b;;(v) — [3,‘j(l/)| <d(v) ;2" for all v >n. We may now apply Lemma
24 to (44a) with S, =b;(n), Ry=bu(n), Qu=3;nzibun(n) fij(n)—
Y msj fim(n + 1) by(n), and P, = 0, whence there exists X, = f;;(n) with (com-
pare Remark 2.2)

[fis(n+1)| <

n-1

@s) el < T bulm) | o~ A p

bymy| % Ty Ly

by(m) ‘
bii(m)

We now look for a sequence of unipotent lower triangular matrices {F,,(Z)} such
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that (Fni)l) : (l~),-j(n)) F¥isa diagonal matrix for all n. If we set g;;(n) =
(F,,(z)), we get, using that g;;(n) = 1,

i

(4.6) z w(n) gr(n) = gij(n+ 1) by(n) fori>j.

If[ -~ |b,, (n)/bii(n )| = 0 and i > j, we may apply Lemma 2.3(b) to (4.6) with
Sp = bi(n), Ry = bj(n Zh*”l bi(n) gij(n). Assuming that we know that
lgni(n)] <1 for n> N’ and h > i, we find that (4.6) has a solution {Y Ny =
{gi;(n)} which tends to zero, so in particular |g;;(n)| < 1forn > N” > N’ and

() | blm) ‘

MJnH%WTkaWM'

On the other hand, if Y, 5 (|b;(n)/bi(n)| — 1) converges, then so does
Sl w (|Bjj(n)/13ii(n)| —1). Defining R,, Sy, O, as above and assuming that
lgni(n)] <1 for h >i and n large enough, we have that > 7 |0,/R,| and
>0 & |Sa/Ry — 1| converge. Hence, by Lemma 4.2, the recurrence (4.6) has a
solution {g;;(n)} which tends to zero as » — oo and

gy < 5 20
o 1By (A)]
from which (4.7) follows. Moreover, we see that the assumption that |gs(r)| < 1
for & > i and n large enough is indeed consistent. Finally, since |b;;(n) — l~),-j(n)| <
d(n)-2Ffori,j € {1,...,k} we may find sequences of numbers {/;(n)} such that
bi(n) hi(n) = hi(n+ 1) by(n) (i=1,...,k, n € N) and lim, , o #;(#) = 1. In this
case, again by Lemma 4.2,

4.7 lgyn)l < H

d(h
(4.8) |hi(n)] < En: ﬁ
Putting
F,=FWY . F@ . diag(h(n),... h(n))
we find
F,}\(B,+ D)) F, = B,
and, combining (4.5), (4.7) and (4.8) we obtain

bii(p)
bjj(ﬂ)

n—1
IIFn—I||<<153§ I1

<k J=N

1Dally £
‘ (Zn; |b]](h) ml;[N

from which (4.2) follows since || || and || ||, are equivalent norms. O

by(m) ‘
bi,' (m)

5. FAST CONVERGING SEQUENCES

Again we consider converging sequences {M,,}, M, € K k.k Let L be the maxi-
mum of the multiplicities of the zeros of the minimal polynomial of lim M,, =: M.
We shall say that {M,} converges fast if the sum > >° nl-1.||M, - M|

75



converges. We show that in this case the solutions of the matrix recurrence (1.1)
have a similar behaviour as the solutions of the matrix recurrence

(5.1) Mx,=x,4.1 (meN)

provided that M is non-singular. More precisely, the following result holds:

Theorem 5.1. Suppose that the sequence {M,}, M, € K5k, converges fast to some
non-singular matrix M. Let f € M" such that 3.2, (1/f(n)) - nt=' .| M, — M]||
converges. Then there is a bijection between solutions {x,5°>} of (1.1) and solutions
{x,fl)} of (5.1) such that

52) 1% = xP =150 o(f(m))-
(Note that (5.2) 1s in fact a symmetric relation, since it implies that
(53) % = x| = x5 o(f ()

holds as well).
It is useful to make a few observations before proceeding to the proof of the
theorem.

Remark 5.1. Note that we may assume K = C. For if M, M,,, x,SO) € Rforalln
and (5.2), (5.3) hold for some solution {x,fl)} of (5.1), then it also holds for
{Re xi"}, by

Re ;) = x % < b = ) = % - o(f (m).
Remark 5.2. (5.1) has a basis of solutions {M"e},...,{M"e;} (where ¢; is

the i-th unit vector in C"). If M=ol +J;, a#0, then M"=

n k n 1—j gi-1
a” - j:1(,-41>0‘ 7. J] 77, so that

Hence, for any arbitrary non-trivial solution {x,}, we have x, = \; M"e; + -- - +
A M7e;, so that

(5.4)  |xal ~ N [M"e|

where j is chosen such that X\ #0 and A\ =0 for j<i<k If M=
diag(S1,...,Sy) with Sy,,..., S, Jordan blocks, S; € Cko* and {xn} is a solution
of (5.1), then there exist u; € C5 (1 <i < h) such that x, = (S}'u1, ..., S/ 'up)
(n € N), hence |x,|* = |S{’u1|2 +ot |S}f'u;,|2 (n € N). Then, by (5.4), we have

(55 fal ~ - 1M

forsomec € Ry, j € {1,...,k}.
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Lemma 5.2. Let f € M, f # 0 and let {a,} be a sequence of non-negative real
numbers such that _;_, ai converges. Then

(5.6) (Z; anf (h) = o(f(n)).

Proof. First suppose that lim, ., f(n) = 0. Then > ;7 | a,f(h) converges and
Sfh)/f(n) < Aif h > n. Hence 3, anf(h) < A-f(n) 3 an = o(f(n)), so that
(5.6) holds. Further, if lim, _, o, f (1) exists and is not zero, the assertion is trivial.
Finally, suppose that lim,_ . f(n) =oc. If > ;2 ayf(h) converges, then
> o anf (h) = o(1), so (5.6) holds a fortiori. Suppose that ), | a, f (k) diverges.
Let A be such that f(h)/f(n) < A for h < n. We choose some number £ > 0 and let
N € Nbesolarge that 37 ) ay < ¢/A4.Then, forn > N,
-1 N-1

S af =S afh)+ Y anf(h)
1 h=1 h=N

SA-f(N)%athe-f(n) <2 -f(n)

for nlarge enough. 0O

Lemma 5.3. Let M, = (1 + (1/n))? + D, (n e N) for some diagonal matrix
B € R** and matrices D, € K** Suppose there exists some f € M" such that
Sone 1 (1/f(h)) 1Dy < co. Then there exists a sequence {F,} of non-singular mat-
rices in K** such that

(5.7 |IF, =1l = o(f(n))
and
(58) M, F,n®=F,_(n+1)%
Proof. Put B, = (1 + (1/n))%. Applying Lemma 4.1 to {M,} = {B, + D,} yields
the result. (5.8) follows directly from (4.1). We show that (4.2) implies (5.7). The
numbers b;(n) := (B,),; are of the form b(n) =(1+ (1/n)? for B eR
(1< i < k). Putgy(n) = T2} (6(D)/(b,(1) (1 < i, j < k). Since gi;(n) /(n) € M
and Y ;7 | (1/f(h)) ||Dy|| < oo, Lemma 5.2 yields that

(Z) 1 Dall - gij(B) = o(gij(n) - f(n)).
Hence,

gji(n) - % Dl - gij(h) = o(f(n))

foralll <i,j<k. O

Proof of Theorem 5.1. (a) We first assume that all eigenvalues of M have the
same modulus. Since the assertions of the theorem remain valid if we multiply all

77



M, and M by some constant ¢ # 0, ¢ independent of n, we may as well assume that
all eigenvalues of M have modulus one. We may further assume that M is in
Jordan canonical form, thus M = diag(S),...,S,) with §; € Ck* the Jordan
blocks of M (1 <i < h). Put E = diag(Ey,, ..., E,), with E; (j € N) as in (3.7).
We define the sequence {G,} by G, = M" -n~F (n € N). By (3.8), foreach A € N,
a € C\ {0}, we have

(ady +J)" - n B = n=B(al, + Ty /n)" ~ n "B amelr/®
and
((aly + )" - n™8) = (0B (D + Ta/na)] | ~ [(e77%),] # 0.

_Ek,

Hence, since G, is a block-diagonal matrix with blocks of the form S/ - n
(n € N), we have that {G,} converges to some matrix G such that Ge; # 0 for
1 < j < k. Further, G =nf - M~" and n&(al) + J,)" = (ady + Jr/n)" 0B,
so that

IG, Il = O(lin®|l) = O(r*™~1).

Now, G,! MG,=(1+ (1/n))*, with E some diagonal matrix, and
G, L1 (M — M) G| < nt 1 [My, — M, 50

1 E
Gn+1MnGn = (1 +;> + D,

where 3", (1/f(n)) || D,|| converges. By Lemma 5.3 there exists some sequence
{F,}, F, € C&k (n € N) such that

|1Fw — I|| = o(f(n))
and
G} M,G,F,nf =F, (n+ 1)~

n+1

Put X, = G, F,n (n € N). Then {Xn(o)} is a k-dimensional solution of the
matrix recurrence determined by {M,}. On the other hand, we have, for
(X"} = {G,nE}:

1
MxV =xY  (meN).
X0 - xV =G, (F, - )nf (neN)

sothatforl < j <k

0 1
(X = XN el E, —1I)| - [n% ¢
1X,{Ve;] |G| - [nE ¢

L |y = 1| = o f(n))

since Ge; # Oforall 1 < j <k.
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For any arbitrary non-trivial solution {x,ﬁo)} of (1.1), we have = x2y
,,(0)()\1 el + -+ A eg) for some tuple (A1,..., M) # (0,...,0). Then, by Re—
mark 5.2, and taking into account the special form of M, we have
6" = X u] (X" = X
13" u Xae

=o(f(n))

forsomej € {1,...,k}.

(b) Inthe general case, by Theorem 3.1 we can find some matrix U € C** and
some sequence {F,'} of matrices in C** with °°° | (1/f(n)) ||F, — I|| < oo, such
that
(59) (F., ) ' U 'M,UF =diagM",... . M") (neN)

n+1

where MV, ... ,M,,(") are square matrices such that for each of them all of
its eigenvalues have the same modulus and such that p(M,,(l)) <l p(M,,(h))
for n large enough. Then the theorem follows easily from (5.9) and the special
case (a). O

The results obtained in this paper for sequences of matrices can be applied to
linear recurrences as well. A more detailed account, in particular for second-
order recurrences, is given in [1], [2], where also more references concerning this
subject can be found.
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