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ABSTRACT 

The aim of this paper is the investigation of the convergence of the solutions {zn} of a sequence of 

Mobius-transformations with parabolic limit. It is shown that either lim, _ a 2, exists for all solutions 

or it exists for none of them. In the first part of the paper a description for the behaviour of solutions 

in the boundary region (between converging and non-converging type) is given with the aid of a cer- 

tain class of renormalizations. A generalization of this idea is used in the second part to derive a 

necessary and sufficient condition for convergence in terms of the coefficients of the Mobius- 

transformations. Lastly, an application to second-order linear recurrences is given. 

$1. INTRODUCTION 

A PSL(2, R)-recurrence is a sequence {F,}, >O of Mobius-transformations 

F, : z + (a, z + bn)/(cn z + d,) with a,,, b,, c,, d,, 2 R and a,, d,, # b, c,, or alter- 

‘natively, a sequence of matrix classes M,, = (z; 2) E PSL(2, R). The two con- 

cepts are related by: M,(ztel + zzez) = ziet + zie2 if and only if F,(zI/z~) = 

zi/zi E P’(R) where et, e2 form a basis of unit vectors in R2. We study the 

asymptotic behaviour of the solutions of the recurrence, i.e. the sequences 

{z~}~~~, z, E P’(R), for which 

(1.1) Z,+I = F&n) (n E N). 

* This research has been made possible by a grant from the Netherlands Organisation of Scientific 

Research (N.W.O.). 
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From now on, we leave out the index set when considering sequences of maps, 

matrices and solutions, thus identifying two sequences whose terms are equal 

from a certain index on (we shall write {F,}, {zn}, etc). If the coefficients 

(a, : b, : c, : d,) converge in P3(R), then the following situations may occur: 

1. The limit map F is constant (hence, degenerate); 2. F2 is the identity map (i.e. 

F2: z + z); 3. F is hyperbolic; 4. F is elliptic; 5. F is parabolic. 

In case 3, F has two distinct fixpoints in P’(R) and the stable fixpoints of F, 

converge to the stable fixpoint s of F. In this case, all solutions of (1.1) up to 

one converge to the stable fixpoint s of F whereas the one remaining solution 

converges to the unstable fixpoint u of F. For let s,, U, be the stable and unstable 

fixpoints of F,,. Since s # u, there exists some N E N and some open con- 

nected set E c P’(R) such that s,, E E, u, g! E for n > N. Then F,,(E) c E and 

if z, E E, then {zn} converges to s (if ?r > N). Define for k > 0, Ek = 

(E;l+k o o FN)-’ (E). Then E c EO c El . and El is a connected open subset 

of P’(R). On the other hand, the complements EF = P’(R) \ Ei cannot be empty 

for all i, so E,’ converges to some non-empty closed set D. Then ZN E D precisely 

if {zn} does not converge to s. Hence D does not depend on the particular choice 

of E and we see that for all points zN E D, {z,,} converges to U. (Otherwise we 

could have included z,v in E for N large enough). Since the harmonic double 

ratio (zn (‘I : zi2) : zi3) : zA4’) is constant for all n (where {zn”‘} (i = 1,. . ,4) are 

solutions of (l.l)), we find, by letting {zii) } converge to s for i = I,2 and to u for 

i = 3, so that {zi4)} cannot but converge to s unless {zi4’} = {zi3’}, that D con- 

sists of exactly one point. Of course, the same reasoning holds if we let F,, have 

coefficients in C instead of R. In case 4, F has no real fixpoints (the real axis 

being invariant under { Fn}), so there cannot be convergence of the solutions. But 

here the complex case is considerably more difficult than the real case. See e.g. 

[5]. Finally, in case 5, F has one fixpoint (or rather, two coinciding fixpoints) in 

P’(R), as follows by symmetry, if we consider the F,, as maps in PSL(2, C). It is 

this case that will be the subject of our paper. 

We can reduce the study of PSL(2, R) (or PSL(2, C)) recurrences to the study 

of linear second-order recurrences and conversely. In order to see this, let {F,} 

be a PSL(2, R)-recurrence. Putting z,, = (x, : yn) E P’(R) we find: 

(1.2) 
{ 

X,+I = a,x, f&y,, 

Y,+I = cnxn +&yn 

which is equivalent to 

(1.3a) yn+2 = Cd,+1 +c,+IQ,~;‘)Y,+I +(c,+1b,-a,d,c,+lc,‘)y, 

(13) yn+l/yn = dn + cnbdyn) 

if cn # 0. So, if (a, : b, : c, : d,) converges, we see that a solution {zn} of (1.1) 

converges in P’(R) if and only if lim,, o. y,+ i/y, exists for {yn} the solution of 

the second-order recurrence in (1.3a) corresponding to {zn} by way of (1.2). Now 

let {F,,} be a PSL(2,R)- recurrence converging to a parabolic map F. For a 

suitable G E PSL(2, R), the sequence {G-‘F,,G} converges to G-‘FG : z ---f 
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Z/(Z + l), which has a (double) fixpoint z = 0. The corresponding linear recur- 

rence (1.3a) has characteristic polynomial x(X) = (X - l)*. Furthermore, since 

U,+~+P(~)U,+I+Q(~,U~=~ 

is equivalent to 

vu+2 + 2vn+1 + (4Q(n)/p(n) f’(n + 1)) Vn = 0 

for V, = (nE_h P(k)/2) U, (n E N), we may suppose that (1.3a) has the form 

(1.4) Yn+2 - 2Yn+l + (1 - c(n))y, = 0 

where lim, _ x c(n) = 0, c(n) E R. Putting y,, 1 /y, - 1 = w,, we find 

(1.5) Wn+I = Fn(wJ = “;+;y’ (n E N). 
n 

Thus, when studying the convergence of the solutions of (1.1) with parabolic limit 

F = lim,,, F,,, we may assume that F,(z) is of the form given in (1.5), with 

lim,,, c(n) = 0. It is a generalization of this type of recurrence that we shall 

study in the following sections. 

We finish this section by discussing two notations that we shall use in the 

sequel. Firstly, if {an}nEN and {hn}ntN are two sequences of real or complex 

numbers, a, N h, will have the same meaning as a, - h, = o(lu,l) for n + ocj. 

Secondly, a, < b, means that a, < c b, for all n E N and for some positive 

constant c if a,, and b, are non-negative real numbers. 

$2. THE SETS F({d,,}. {fn}); ELEMENTARY PROPERTIES 

We start by giving a few definitions. 

Definition. Let {d,}, {J;,} b e se q uences of real numbers. We define F({d,}, 

{fn}) as the recurrence (1.1) defined by the sequence of MGbius-transforma- 

tions {F,} where 

(2.1) F,,(z) = ,- - f+ (n E N). n- 

In the sequel, we shall consider only a special type of recurrences F({d,}, {fn}), 

which will appear to be a sort of natural generalization of the case that 

lim, + xi F, exists and is parabolic. We let S be the set of sequences {fn} with 

fn E R, lim,-, fn+l/fn = 1 and C,“=O fn = +m We shall, when studying 

‘F({&}, {fn}), assume {fn} E S and, moreover, d, E R and lim,,, d,, fn = 0. 

In this case, we can always choose a representant with d, fn > -1, so that 

F’({A)> ifnIl b ecomes a PSL(2, R)-recurrence and, moreover, F,, preserves the 

orientation of P’(R) (as a subset of P’(C), i.e. F,, maps the upper half-plane in C 

onto itself). We have the following results: 

Lemma 2.1. Let F,, be as in (2.1) with d,, fn > -1 andf, > 0. Then 

(a) F,,preserves the orientation of any threepoints in P’(R). 

(b) Zf 1z12 > c Id,1 f,-’ (c 2 l), then F,(z)-] - zP1 > c’fn where c’ > 0 ifc > 1 

andc’=Oifc= 1. 
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Proof. The straightforward proof is left to the reader. q 

The preservation of orientation implies the following 

Proposition 2.2. If {fn} E S, d,, fn > -1, then either {fn z,,} converges for all 

solutions {zn> of 3({d,}, {fn}), or it diverges for all solutions. 

Proof. Suppose there is some solution {zi”‘} such that {fn zi’)} converges. By 

Lemma 2.1, we have for any solution {z,,} of F({d,,}, {fn}) that for n large 

enough, and some c > 1, that zA”) 5 z, and either z;i 1 - z;’ > c’fn or 

fn lznl < &(ldnlfn)*‘2, where the right-hand part becomes arbitrarily small. Fix 

some number 0 < E < 2/c’ and let N be so large that c Id,1 fn < E2, fn+ ,/fn < 

1 + (C/E/~) < 2 and fn lz,(‘)l < E for n 2 N. By C, E N fn = CC we conclude that 

--E < -fm IziO’/ 5 f m z, < E for some number m > N. For n > N we have: 

If fnzn 2 0, then fn+lz,+l 5 &(fn/d,l)*‘2 < E, if 0 < fnzn < ~/2, then 

fn+lzn+l < fnz,, and if fnzn >&/2, thenf,+lz,+l <E. Hence fnlznl <E for 

all n 2 m. Since E was arbitrary, we conclude that lim,,, fn z, = 0. q 

From Proposition 2.2 it follows that we can distinguish two distinct types of 

recurrences F({d,}, { fn}): converging-type recurrences for all of whose solu- 

tions {zn} the sequence {z,, fn} converges (in which case it must converge to 

zero), and diverging-type recurrences, where {zn fn} does not converge for any of 

its solutions {zn}. We can now introduce an ordering on the set of solutions of a 

converging type recurrence: For two solutions {zn}, {z;} we define {zn} < {z;} if 

z, 5 z; for all n large enough. This yields a total ordering on the set of solutions. 

For {zn} fixed, the set U consisting of the numbers cy E P'(R) such that 

{z:} > {zn} and zh = 01 is open and connected. The complement of U in P’ (R) is 

closed, connected and non-empty, since it contains ZO. Hence it contains the 

number CO such that {&} = inf({zL} : {z:} 5 {zn}), where the infimum is taken 

over the solutions of F({d,}, {fn}). {&} is the solution for which {&} 5 {z:} for 

all solutions {z;}, so it des not depend on {zn}. We call it the subdominant solu- 

tion of F({d,}, {fn}). The following proposition gives, for {fn} E S fixed, a 

characterisation for sequences that are subdominant solutions of some recur- 

rence F({d,}, {fn}). 

Proposition 2.3. Let {z,,} be a sequence of real numbers such that 

lim, + o3 fnzn = 0 for {fn} E S. LetNbesuch thatf, Iz,I < 1 andf, /z,+ll < 1 for 
n > N and dejine 

n-l 

(2.2) Gn= II ‘+“k (nEN, n>N) 
k=N 1 -fkzk+l 

Then {z,,} is the subdominant solution of 3({z,, - z,+ 1 - ,, z, z,+ I}, {fn}) ifand f 
only if CFZN fnG,’ = 03. 
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Proof. First note that G, > 0 for all n > N and that 

F({=n - Zn+l -h&7zn+1),ui~) 

is of converging type. Put d,, = z, - z, + 1 - fn z, z, + 1 for n E N. Then 

(10 -‘;+i). (; -p”). (0 y) = (l-f;,,, ,;nz,) 

so that, for any solution {z;} of F({d,}, {fn}), 

(4+, - z,+1)-l = l +fnzn 
1 -fnzn+1 

(z,: - z,)-l + 1 _:” 
n&l+1 

whence, for n > m 2 N, 

n-1 

(2.3) [G&,: - z,)]-’ = [G&A -z,)]-’ + C fkGi’(l +.hz$‘. 
k=m 

Take m = N. Then, if {z,,} is subdominant, we see that the right-hand side be- 

comes positive for all {z;} # {zn} as soon as n is sufficiently large. Hence, taking 

into account that limk + m fk Zk = 0, we find that indeed CrXN fk Gk’ = co. 

Conversely, if CT=,, fk G;l = 00, then the left-hand side becomes positive for 

all (41 # {zn} ‘f 1 n is sufficiently large, so that {z:} > {zn} for all solutions 

{ZL}. 0 

43. SOME CONDITIONS FOR CONVERGENCE OR DIVERGENCE 

In this section, we state a number of sufficient conditions for F({d,}, {fn}) 

to be of converging or diverging type. As above, we suppose {fn} E S, 

lim n+3o fn d,, = 0, so that the results of $2 hold. We write {a,} > (or >) {a;} for 

two real-valued sequences if a, 2 (or >) a; for n sufficiently large. We start with a 

few lemmas: 

Lemma 3.1. If 3({&}, {fn}) is of converging type and {di} < {d,}, 

lim, + K d,’ fn = 0, then F({d,‘}, {fn}) is of converging type. Moreover, if 

{(;I}, {&} are the subdominant solutions of F({dL}, {fn}) and F({d,}, {fn}) 

respectively, then {<i} < {&}. 

Proof. Let {zn} be some solution of F({d,}, { fn}) such that fn ]z,] < 1 for all 

n > N. Let {z;} be the solution of F( {di}, { fn}) such that zh = zN. Then z, 5 z: 

for all n > N. The reasoning that lim, + o. fn IzLI = 0 goes exactly as in the proof 

of Proposition 2.2. Suppose [j,, > <N for infinitely many N E N. Then 

{C,‘> L {<a). B u since {di} 5 {d,}, for the solution {<i} of F({di}, {fn}) with t 
<jj = <,v we would have {<G} < {CL} so {C} cannot be subdominant. Cl 

Lemma 3.2. If { fn} E S, then for N fixed, N large enough, lim,, M (fn + fn)/ 

(fN + “. + fn) = 0. 

Proof. The simple proof will be left to the reader. q 
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Lemma 3.3. If {fn} E Sand& = F,,+I - F, then {fn/Fn} E S. 

Proof. lim, + o. F, = cc and by lim,,, fn+ t/fn = 1, hence by Lemma 3.2, 

lim, + o. &/F,, = 0, so lim,,, F,, + 1 IF,, = 1. Moreover, for numbers A4 > N 

large enough, 

M-l M-1 

k?n fk/Fk 2 FN c fk/FkFk+1 = 1 - FN/FM > 1 
k=N 

SO that zrZN fk/Fk = -too (where N is so large that F,, > 0 for n 2 ZV). 0 

Lemma 3.4. Let {&} b e a sequence of matrices in Mz(K) and {a(n)}, {p(n)} 

be sequences of complex numbers such that {Ia(n 1 {Ip(n)l} > (0). If 

c,"N itDd iPbipl -c cc then there are matrices J,, E GL(2,K) such that 

lim, _ w J, = (A y) and J,+ l(diag(4n), P(n)) + &I Jflpl = diag(4n),P(n)) 
(K = R or C, n E N). 

Proof. See [6], Lemma 4.1. q 

Proposition 3.5. Let {fn} and {d,} be sequences such that {fn} E S and 

lim, + oc d,, fn = 0. Then 

(a) If{d,} 5 (0) then 3({d,}, { fn}) is of converging type. 

(b) IfF({dn), {fn)) f zs o converging type and {d,} > {0}, then CrZN dk < 03. 

(c) Ifdn = (E+o(l))d(F,-l)+d,’ where AF, = F,,+l -F,, =fn (nE N) and 

c,“N jdLlF,+l < co, then, if& > -f, F({d,},{f,}) is of converging type and 

has a subdominant solution {&} with lim, + m <,, F,, = 61, whereas lim, _ Ds z,, F,, = 

62 for all other solutions {z,,}, where SI < 62 are the roots of X 2 - X - E = P(X). If 

E < - d, then 3( { d,}, { fn}) is of diverging type. 

Proof. (a) This follows immediately from Lemma 3.1 and the fact that 

3({0], {fn)) f 1s o converging type (it has (0) as a solution). 

(b) Let{z,}beasolutionof~({d,},{f,}).Byz,-z,+~=f,z,z,+~+d,we 

haveforN E Nsolargethat IfnznI < 1 forn > N,thatz,+l < zn/(l +fnzn) < zn 

for n > N, so that {zn} > (0) ( compare with Lemma 3.1). But then, for n large 

enoughxTZndk 5 C~==n(zk-zk+,)=Z,-limk,, zk. 

(c) Set 

Gn= (;a -p) (nEN) 

and let d,, = E AFnel + d,. Put 

Then 

(3.1) H,-:, G,, . H,, = diag(1 + Slfn/F,,, 1 + 62fn/Fn) + D,, 
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where llD,JJ =O(F,+t ld,‘l).If~ > -$,thenSt,& grand 

If&< -a,then&=St @Rand 

(3.3) 
1 + WilFn 
1 +Wi,lFn 

=l (HEN). 

Lemma 3.4 now yields that there exist J, E GL(2, R) in case E > -i, 

J, E GL(2, C) if E < -$ such that {Jn} converges to the identity matrix and 

So .T({&},{fn)) has 

{zn} # {z(‘)} it follows from (3.2) that lim 7 F, = 62, since - - 

((Xxi’) +Lxh2)) : (Ayi’) + pyi2’)) with IL # 0 (A(‘~~~2~‘~ 0 as n -+ oc).i%i 

{zi”} is the subdominant solution. Moreover, iP d,, - di = (E + o( 1)) A(F;‘) 

instead of E . AFn-‘, Lemma 3.1 yields that, for the subdominant solution {zi’)}, 

for any 6 > 0 

limsupzi’)F, 5 St + 6, liminf zil)Fn > 61 - 6. 

Hence, lim,,, zi’) F, = 61, and similarly, lim, _ o3 z, F,, = 62 for any other 

solution {zn}. Now for the case E < - $. We may assume {z,‘~‘} = {z;“}. Then 

we see that F({d,}, {fn}) has a real solution {zn} with 

zn = 
$X(n) + z:2qn) 

A(n) + X(n) 

where IA(n)l = 1, X(n + 1)2 = X(n)2 (1 + bfn/Fn)/(l + &fnlFn). BY 

we see that arg A(n) does not converge, and for infinitely many n, 

argX(n + 1) - E < arg(l + 61 fn/Fn), 

so that for E > 0 fixed. 

IR-+ + 111 < (1 + E) I=lfn/& 

for infinitely many n. For such an n E N, 

lfn+1GT+1( 2 
W(n+1b,(:l).F,+l fn+l Fn .-.- 

(1 + E) IWI h Fn+l 
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and the expression on the right tends to (1 + E)-’ as IZ + 03. Hence, {fj z,} does 

not converge. Finally, if d, - di = (E + o(1)) A(Fn-‘), E < - $, then {d,} > 

((42 + f) AF,-1 +d,“} and C,“=, Id,“lFn+l < OS so that .T({dn},{fn}) is 

indeed of diverging type (by Lemma 3.1 again). q 

Example. Consider the linear recurrence 

(3.4) r&+2 - 2u,+1 + (1 - c(n)) u, = 0. 

For (~~1 # (0) a solution of (3.4), { (un+ i/un) - 1) is a solution of 

F({-c(n)>, 111) d an conversely. Suppose c(n) E R (n E N). We take {F,,} = {n}. 

By Proposition 35(c) the following facts hold: If n2c(n) < -i - E (& > 0) for n 

large enough, then lim,, + M (us+ i/u,) does not exist for any real solution of (3.4). 

If n2c(n) > -d + E (E > 0) for n large enough, then lim,,, (u,+ i/un) = 1 for all 

non-trivial solutions {un} of (3.4). Moreover, if lim,,, n2c(n) = y > - $, then 

lim, + o3 n((~.$/i/u!‘)) - 1) = Si for solutions {uii)} (i = 1,2) of (3.4), where 

6i,S2 are the zeros of X2 - X - y. The last result holds also if c(n) complex, 

and not y I -b. Finally, if c(n) E C, lim,,, n2c(n) = y # -i and 

F;N Inc(n); Yl n < cc then (3.4) has solutions {u,‘~)} (i = 1,2) such that I 
n-m a((~+,‘+ ,/u,(~)) - 1) = &. This follows from the proof of Proposition 

3.5(c), but in fact, this case (and its n-t-h order analogon) has been treated ex- 

tensively in [5]. 

$4. AFFINE RENORMALIZATIONS 

Under the conditions of Proposition 3.5(c) we see that if E approaches -$ 

from above, then lim, + M zi’) /z,, (where {zn(‘)} is the subdominant solution of 

.F({d,}, {fn}), and {zn} any other solution) tends to 1. If E < -$, then 

F( {dn}, {fj}) is of diverging type. So E = - $ constitutes in a way a boundary 

case. We shall investigate such cases more closely with the aid of what will be 

called ‘affine renormalizations’. 

Let {fn} E S be a fixed sequence and {&} some sequence of real numbers such 

that lim, + o. &,fn = 0 and X&j, {fn}) 1s o converging type. Let {c(n)} be its f 
subdominant solution and define 

(4.1) G, = G,({c(n)], {_A>) = ;c; 1 ‘;J;c:(t)l) (n E N). 

Note that (l+fjC(k))/(l-fk(k+l)) = (l+fk<(k))2/(l+&ikfk) > 0 if &fk > 
-1 unless fk C(k) = - 1 or c(k) = CU. If fk c(k) = -1, then <(k + 1) = co and 

fk+1@+2) = 1, and 

l-tfk C(k) l+fk+l@+ 1) lffk& (l+h@+ lH2 > 0. 

l-fks‘(k+l)' l-h+1C(k+2) = l+fk+l&+l '(l-fkC(k+ IN2 
So, assuming (as is legitimate)f, & > - 1 for all k, we have G, > 0 for almost all 

II. By Proposition 2.3, C,“=N fnG;’ = 00 (N so large that G,, > 0 for n > N). The 

recurrence F({&}, {fn}) d e fi nes an affine transformation as follows: 

88 



Proposition 4.1. Every solution {zn} f o a non-degenerate recurrence F‘( {d,,}, 

{fn}) corresponds uniquely to a solution {z,“} = { G,(z, - C(n))} of.T( {d,“}, {f,“}) 

where 

d,” = G,+l(d, - &)/(I +fnC(n)), f,” =fn G;‘/(l +fn C(n)), 

and {f,“} E S. In particular, lim, + a d,” f,” = 0 if and only if lim,, x d,, fn = 0. 

Furthermore, F({d,}, {fn}) f IS o converging type ifand only ifF( {d,“}, {f,“}) is. 

Proof. Putting 

and P,, = 
G, -GnC(n) 

0 1 

we fmd 

P,,+1M,PL’= (_& -p”> (nEN) 

(where we take representants for elements of PSL(2, R)). Since lim,, 35 fn C(n) = 

0 we have lim,,,G,+t/G, = 1, so that lim,,, f,“,l/fnU = 1. From 

CrEN fnG;’ = 0~) it then follows that {f,“} E S. Finally, lim,,, d, fn = 0, 

lim,,, z, fn = 0 imply lim,, 3c1 d,” f,” = 0, lim,,, z:f,” = 0 and con- 

versely. 0 

Remark 4.1. Transformations of the type described in the above propostion 

will be called ‘affine renormalizations’ and will be denoted by v({C(n)}, {fn}). 

Note that an affine renormalization defines the sequence (germ) {Gn} up to a 

multiplicative constant X E R, X # 0, so the same holds for {d,“}, {z:}, {(f,“)-‘}. 

The following proposition asserts that a sort of converse of Proposition 4.1 holds: 

Proposition 4.2. Let {fn} E S be jixed. Any (afine) transformation that 

transforms solutions {zn} of recurrence: 3({$}, {fn}) $0 solutions {z,“} = 

{G,,(zn - c(n))} of some recurrence F({d,,}, {fn}) with {fn} E S, G, # 0, is an 

afine renormalization Y({<(n)}, { fn}). 

Proof. From the fact that {z,“} is a solution of F({&}, {A}) it follows that 

G,+ t/~,, = (1 + fn <(n))/( 1 - fn <(n + 1)) (n E N) as in Proposition 4.1, and 

.& =JX$~‘l(l +fn C(n)), k = Gn+l(dn - &)/(I +fn(n)) 

with 

2, = c(n) - C(n + 1) - fn C(n) C(n + 1) (n E N). 

So_k+l/$ =fn+l/fn. (1 -fn<(n + I))/(1 +fn+l C(n + 1)) (n E N) and 

imply lim,,, fnC(n) = 0, so that {C(n)} is the solution of a recurrence 

F({&}, {fn>) with lim,+, 2, fn = 0. This in its turn implies lim,, o. G,,+ I/ 

G, = 1 and from C,“=,, fn = cc it then follows that CpZN fnG;’ = co, so that 

{C(n)} is indeed th e subdominant solution of F( { &}, { fn}). 0 
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Corollary 4.3. The composition of two afine renormalizations Y = v({<(n)}, 

{fn)) and v’ = v({d(n)>, {f,“>) 2s an afine renormalization v({q(n)}, {fn}), 

where q(n)” = g(n) for all n. Moreover, 

GAMn)>, {fn)) = G4rl(n)“L {f,“>) G({C(n)l, {fnl). 

Proof. Putting G, = G,({C(n)}, {fn}), GA = G,({q(n)V}, {f,“}) for n E N, we 

have 

($)” = GA(G&, - C(n)) - GA+) - <(?I))) = GAGn(z, - q(n)). 

From Proposition 4.2 it now follows that GAG, = G,({v(n)}, {fn}) and Y’ o v = 

v({rl(n)), {fn>). 0 

Application. Let {fn} E S, d,, = - f AF*-’ + di’, where F,,+ 1 - F, = fn (n E N). 

If {d,‘} = {0}, then {C(n)} = { 1 F,-‘} is a solution of 3({d,}, {fn}). Moreover, it 

is the subdominant solution, by (GA{<(n)}, {fn}))/(GN({C(n)}, {fn})) = F,/FN 
(n > N) and C,TZN fi Gjpl = FN Gil c,FZN fi/Fj = 00 (see Lemma 3.3), where 

G, = GA{<(n)), {fn)). So {C(n)) d fi e nes an affine renormalization v = 

u({C(n)jl {fn)) with 

z ‘=F,z,-4, n f,” =fn(Fn + ;fn)-’ 

and 

d,” = F,+ld,‘(l + ;fn/Fn)-‘. 

Repeating the argument and using the fact that a (finite) succession of affine re- 

normalizations gives an affine renormalization, we obtain 

Theorem 4.4. Dejinesequences {fnCi)} asfollows: {fn”‘} = { fn} E S, {fnCif’)} = 

{fn(i)(F,(i) + 4 f,“))-I}, where Fi’) = Xi E R and dF,(‘) = fii) (n, i E N). Then 

{<j(n)} = {i(l/(FJO’) + l/(Fn(“)F~‘)) +...+ l/(Fn(‘) ... F,(j)))} is the sub- 

dominant solution of 3({4(n)}, {fn}) and de$nes an a&fine renormalization 

v({<,(n)}, {fn}) with z,” = F,“’ . Fn(‘)(zn - Cj(n)), f,” =J/i+l) and 

d,(n) = t ,$ 
r_O F;:‘, . .:.‘. F,‘;;‘) 

.A(F,(‘))-‘.(l+f;,<iP~(n)) (nEN). 

Proof. Putting u, = v({ 1/(2Fn’j’)}, {fn”)}), (j E N), we have by Corollary 4.3, 
vi-1 o “’ o ~0 = v({<j_l(n)}, {fn}) and if ;y set an = (z,(j-‘I)“‘, then z,(‘) = 
F,(i- ‘)$ ‘1 - i by the above remarks. So zn ,F(jW1) ,, t . Fi’)(z, - </- 1 (n)), 

so that {[j- 1 (n)} is indeed of the form mentioned in the statement of the 

theorem. The fact that the {<j(n)} are subdominant solutions of recurrences 

3({di(n)), {fnI) f o 11 ows from Proposition 4.2, so it suffices to determine the 

numbers 4(n). Writing d/+‘) = (d,(j))““’ we have 

d(if’) = F,((),(d;i) + $(F,(i))-‘)(l + + fn(j)/F,(I))-1 
n 
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and, by Proposition 4.1, 

d(j) =+,l) n ’ ~~~,(~~O’-d,_l(n))‘(l+i,_l(n)f,)-’. 

Hence, 

d,@)(j) = F,,($ l) . . F,(~,(d,(n)-di-l(n)j’(l+i,-i(n)~)-’ 

and, on the other hand, dj(n)(‘+‘) = 0 since <j(n)“+” = 0, SO that dj(U)(j) = 

- i A(F,(i))-l and 

Corollary 4.5. DeJine fn(') and F,(j) (1, n E N) as in Theorem 4.4. Then iffor some 

jENandE>O,d,,=dL+dd,“with 

and 

d,’ < d,(n) - &(d,(n) - dj_ l(n)) 

2 Id,“1 F,(y, F,,(c), < 00, 
n=N 

then 3( {d,}, { fn}) is ofconverging type, and if 

d, 2 dj(n) + E(d,(n) - d+ l(n)) 

and 

then F( { d,}, { fn}) is of diverging type. 

Proof. By Theorem 4.4, application of the affine renormalization v = 

u({Cj- i(n)), WI) yields 

d,:=f;,‘i;” . Fiy,(A -dipl(n))(l +fnCj+~(~))-’ 

< F(i-l) 
_ n+l “’ . F,(y, d,“(l +fn<ji-l(n))-’ + 9 p(@‘)-‘I 

for large n. Now apply Lemma 3.1, Proposition 3.5(c) and Proposition 4.1. The 

second case is completely analogous to the first one. q 

Remark 4.2. If we choose F,,(O), Fi”, in such a way that for a certain number 

N E N, A; = F’) > 1 for all i and s := c,Eo (FE) .. Fi’)pl < cx), then 

F,(l) > Xi for n > N and C(n) = limj+xCj(n) = $c,zo (F,“’ ... F,‘j))-l 

exists for n > N, and 0 < C(n) < s. (Ff)/F,(‘)), so that lim,,, C(n) = 0. 

Moreover, since {C(n)} is the uniform 1imi.t (in n) of {C/-(n)}, it is the sub- 

dominant solution of F({&}, { fn}), where &, = limi, o3 d,(n). So it defines an 

affine renormalization {zn} + {z,“} = {G,({<(n)}, {fn}) (zn - i‘(n))}. We de- 

termine Gd{C(n)), {fn)). 
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Lemma 4.6. ((X0 . . . Xi)-lF,(o) . . F,(j)} converges as i --) 00 for all n > N. 

Proof. Since fnCi + ‘) = fn(;)/(F,j) + i fn(;)) < log+) /F(‘) (i E N 
n+t n , y1> N) we 

have 

I;(‘+‘) _ F(‘+‘) 
n N < log F,(j) - log F,$), 

so 

0 I F,(;+ ‘)/A;+ 1 - 1 < A;; 1 log(F,(;)/X;) 5 log F,(j)/& 

so that lim;, ccI F,(‘)/X; = 1 for n 2 N. Furthermore, if we put F,(;)/& - 1~ E;(H), 

we have 

Ei+l(Jf) < $!l .lOg(l + Ej(n)) < A;+!, 'Ej(?Z) 

so that 

0 5 E;(lt) < (Xl ” . A;)_‘q)(n) 

and boo E;(H) < cc for n > N. q 

We claim: G, = lim;, w F,(o) F,(‘)(Xo . . Xi)-‘. We write H,, for 
lim;,, F,“’ . . . F,(‘)(Xo . 

we have that {v(;)} = {F(O) 

Xi)-‘. By Proposition 4.1 and Theorem 4.4, 

F({dn(‘)} {f “‘>) zhere ’ ’ 

. . Fj’-‘)(z, - cl- 1 (n))} is a solution of 

> n 

d,c’) = F,‘yl . . . F;i_;” (4 - &lb))(l ffnb(W 

and 

fn(;)= (fn/F,“’ ... F,(i-l))(l+f,~i-l(n))-l (HEN). 

So, {(X0 . . . Xi- ~)~~zi~)} is a solution of 

q{C+;)‘i’(xo . . xi_ ,)_I}, {f,‘;‘(xo . ‘. . A;_ I)}). 

Taking limits, we find that {lim;,, z,(j) (X0 ... . X;_l)-l} = {Hn(zn - 4(n))} 

is a solution of F( {&}, {fn}) with 

2, = Kz+1(42 - 27)(1 +fnC(n))_‘2 fn =fn H,-‘(1 +fn C(n))-‘. 

In particular, { Gn} = {H,}. 

The affine renormalization v({<(n)}, {fn}) is in a way the limit of 

yj-10 “‘OVO = 4{<j-l(n)),{fnH. 

$5. APPLICATION TO LINEAR SECOND-ORDER RECURRENCES 

We apply the theory derived above to linear recurrences, although we shall use 

slightly different affine renormalizations than those defined in $4, in order to 

obtain explicit formulae for the coefficients of the renormalized recurrences. 

Let f j”) = 1 for all n E N and let fn(‘) and F,(j) be as in $4, so 

f (;+I) =f,(‘)/(Fi(‘) + if,‘;‘) and AF,(;) =fn(;), 
n 
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where F,(‘) = A, E R (i = 0,. ,J). We define sequences {15,(~)}, {HJi)} 

(i = 0 , , J) inductively: h,(O) =fn(*), IT,(*) = F,(O) and, for i 2 0, hi’+ ‘1 = 

log Hi? 1 - log H,(l), AH,(‘) = hi’) with Hi’) chosen such that 

lim (F(‘) - H,(j)) = 0. 
nice n 

Lemma 5.1. The above construction is well-de$ned. Moreover, fnCi) - h:‘) = 

O(n-3), Fii’ - H,(‘) = O(n-2) (n --f !x), 

Proof. For i = 0 the lemma is trivial. Suppose the assertion holds for 

i<j-1 <J-l. Sinceforn-oc, fn’) _fy-‘)lF;j-‘), we have fn(j-‘)/F,(j-‘) = 
O(j”“) = O(n-I). Furthermore, n 

f(j) = logF(j-‘) 
n ?I+1 

_ logF(ip 1) + O((j’(‘- ‘)/F’j- “)3) 
n 

=logF,((,1)-logF,(i-1)+O(n-3) (n-00). 

Hence, 

f(i)=h(I)+O(n-3)+0 fn(‘-‘) + 0(C3) 
n n 

F(‘-‘I(1 + O(n-*)) n 

and 

= h,(/) + 0(n-3) (n + XI). 

Fji) = A, + “2’ {log(F~~1I)/F~~‘)) + 0(K3)} 
k=O 

= A;. + log F,(j- ‘1 + O(n -2) 

= A; + logH,(jP1) + O(nP2) = H,(j) + 0(nm2) (n 4 03) 

if we choose Hii) = A;. 

Lemma 5.2. Let h,(j) ,H,(‘)beusubove(i=O,l,..., J,nEN).Put 

2_,(n) = 0, 2j(n) - 2i_ 1 (n) = a 
h(l) 

I$;“,‘, . . . .“. ffj:‘,H,(‘) 

for n E N, i = 0,. . ,J. Then F({d(n)),{l)) f IS 0 converging type if, for some 

E > 0 and d’(n) such that En EN Id’(n)1 H,iy 1 . . . . Hi:)l < 00, 

{d(n)} - d’(n)} 5 {&(n)(l - E) + &-l(n) E}, 

and F({d(n)}, { 1)) is of diverging type iffor such E and {d’(n)} us above, 

{d(n) -d’(n)} > {&(n)(l + E) - &l(n) E}. 

Proof. Considering the fact that HO”‘, , HO’J’ can be chosen freely, it suffices 
to show that C,“=.,, Id;(n) - d,(n)1 Fj($ ... F,(:), < 00 for 0 < j < J with 

di(n) as in Corollary 4.5, since lim,,, Hn(j)/Fn(‘) = 1 (0 5 j 5 J). By Lemma 

5.1, 
h,r ‘) fn(j) + O(n -3) 

H,‘“,‘, Hn($)lH,(i) = F,(y, . . F,‘;‘,~,(j)(l + O(n-2F(j)-1 n 1) 
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so that do(n) = do(n) and 

2j(n) - q_ 1(n) 

= (dj(n) -&1(n)).(l+O(l/n)) +O(n-3).F(0) l 
n+l “’ 

FnC:),F(i) ’ 
n 

where we use that <ji 1 (n) = 0( l/n). But 

forj = 1,. . ,J, since F,(‘+‘) = O(logF,(‘)) for i E N, n --f 00. 0 

For J = 0 we have 20(n) = b/((n + Xo)(n + x0 + 1)) = 1/(4n2) + O(K3). In 
general 

@ = A> + log(XI, _ , + + log( x0 + n) . . .) 

where log, n = n, logj n = log(logj_ 1 FZ) (j 2 I), SO that 

&.(n) - isi_ ,(n) = 
n 1ogjn 

4n(lOgn) ’ ’ (lOgi ~)2 (1 +o( &)). 

Since 

jN & (2nlogn,1 ,log,n)2 3% . “’ . fc 
J J 

cc logj+In...log,n 
+z c 

n=N nlogn.. (login)* 
< cc (N large enough), 

we can reformulate Lemma 5.2 as follows: 

Corollary 5.3. 3({d(n)}, { 1)) f IS o converging type iffor some E > 0 and {d’(n)} 

such that for N large enough CrTN Id’(n)1 . (n logn . log, n) < 00, 

{d(n) - d’(n)} < { d i$o (n logn . . logj n)-* - &(n logn . log, n))2} 

and of diverging type ifi for such an E and {d’(n)} 

{d(n) -d’(n)} > { $ j$o (nlogn.. .logjn)-2 + &(nlogn.. .logJn)-‘}. 

This result can now be applied directly to recurrences of type (1.4), using the 

correspondences shown in $1. 
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$6. A NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE 

The following theorem gives a characterisation in terms of affine renormali- 

zations for a recurrence of type _F({d,}, {fn}) to be of converging type. 

Theorem 6.1. Let {fn} E S, {d,} a real-valuedsequence such that lim, + o3 d,, fn = 

0. Then F({4}, if*}) f IS o converging type tf and only tffor all afJine renormali- 

zations v = z+{[(n)}, {fn}) such that {d,“} > (0) we have C,“=n d,” < 00. 

We shall need the following results: 

Theorem 6.2. Let {zn}, {z:} be solutions of recurrences F({d,}, {fn}), 

F({d,‘}, {fn}) rewctiveb, with { fn} E S and {l} > {d,f,} > (0) as well as 

(1) > {d,fnI 2 (0) suchthatforsomep,q~N,zp=z~,zq=z~undO<s,,z~ 

(or 0 > znr z:) for p 5 n < q : If di = 0 for p < n < q - 1 (d,’ = 0 for 

q - 1 2 n > p, respectively), then Czib d,’ < Czii, d,,. 

Proof. It suffices to show the result for q = p + 2, the general case then follows 

by induction. Thus 

(6.1) d,+d,+, = c+4(,f, +++2fp+1) 

l+=*& 

with c independent of d,, d,+ 1. The result holds for all values of zp, Z~ + 1, zp + 2. So 

if zil 2 0 for n = p, p + 1, p + 2, then d,, + dr+ 1 is minimal if dt, = 0. The other 

case goes analogously. 0 

Lemma 6.3. Let {I~} b e a solution of F({d,}, {fn}) such that {fupl} > {dn} > 

(0) and such that for some numbers N, L E N, zN+[ > 0 (I = 0,. , L) and 

zN+L+l 5 0. Then 

N+L 

c d,, > (=$ +fN+“‘+fN+L-l)pl. 
n=N 

Proof. By Lemma 6.2 we may assume that d,, = 0 for n = N, , N + L - 2. 

Moreover, by (6.1), dn+L- 1 + dN+L > dh+L_, + dh+L where either dh+L_, or 

dhfL = 0. In the first case, dh+L > z;+~ = ZN/(~ + (fN +..+fN+Lpl)zN). 

In the second case, d’ N+L-I 2 =h+LH = ~N/(~+(fN+~~~+fN+L~2)--N). 0 

Proof of Theorem 6.1. The necessity of the condition follows from Proposition 

3.5(b). Conversely, let F({d,}, {fn}) be of diverging type. We first assume that 

(4,) > (0). Let {G> b e a solution of F({d,}, {fn}) and let {m(j)}, {n(j)} be 

sequences of indices (still to be fixed) such that -cc < “m(j) < 0 < Zm(j) + 1 and 

"n(j) + 1 < O 5 “n(,j) and m( j - 1) < n(j) < m(j) for j E N. We construct an affine 

renormalization v = V( {c(n)}, { fn}) such that {C(n)} > (0) and {d,“} > {0}, 

Cz’i’,,CjP 1I+, d[ > 1 for all j. Suppose that {C(n)},,.CjP ,) has been constructed. 

Set G, = G({C(n)}, {fn)) (so {Gn}n<n(j_i) is known), and 

rl = G+)(l +f,(;) <(n(i))) (n, i E N). 
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Moreover, we assume that for some 0 < Ej- 1 = E < i, 

(6.2) h(j- l)/‘Gn(j- 1) < ~1 1-E<fn/fn-l < l+c 

for n 2 n(j - 1). Let now nr be such that nl > n(j - l), fn(j_ i)+i + ... + 

fn,-t >rj-iandletp(j),m(j-1)b e such that p(j) > m(j - 1) 2 1z1 and 

0 < Z,l 5 (Iypl, 

U-l 

- u&1)+1 +...+fv-l)-‘)-’ + c h 
J=n(j-l)+l 

for m(j - 1) < Y < p(j) and either 

for v =p(j) + 1 or z,,(J+ 1 5 0. This is possible since {zn} is a diverging 

solution. We now define 5-l := <(n(j - 1) + 1) := rjy, - GjP1 where @j = 

fncj_ I)+ 1 + . +fp(j) ~ 1. Then lj > rj- t > 0. Further, let n(j) be such that 

Zn(j)+t < 0 and z, > 0 for m(j - 1) < n 5 n(j). Clearly, n(j) > p(j). For 

0 < K <p(j) - n(j) we define sequences {<(n, K)} which are solutions of 

%dn(K)), {fn)) such that <(n(j- 1) + l,K) = $-‘, d,(K) = 0 for n = 

n(j- l)+l,...,p(j)- 1, C(n,K) = zn for n=p(j)+l,...,p(j)+[K], 

d,(j) + [KI (K) = (K - 14) dp(j) + [KI and d,(K)=0 for n=p(j)+[K]+l,..., 

n(j) - 1. It is then clear that 0 < d,(K) 5 d, for y1 = n(j - 1) + 1,. . . ,n(j) - 1. 

Moreover, by Lemma 6.3 and for v = ~({<(n, K)}, {fn}), 

p(j) 
(6.3) C dk” 2 Gp(j)(sp(j) - C(p(j))) 

k=m(j- I)+ 1 

where {c(n)} is the solution of F({&}, {fn}) with <(n(j - 1) + 1) = $-’ and 

dk = 0 for k = n(j - 1) + 1,. . , p(j) - 1, and (2,) is the solution of 

F({&},{f,}) withZ,(i_l)+i = oo.ThenZ,,(i) = @,rl, <(p(j)) = (lj+@j)-’ and 

Ai) 
(6.4) C d[ > Gp(j) ’ 

!i !i+@j_ 1 

k=n(j- 1)+ 1 
~~(b+~~)>~j-l.--- . 

!I @j 

We show that we can choose K and m( j - 1) such that in(j) > 0 for all j and 

lim, + (>s fn<(n) = 0. In any case, m(j - 1) > ni, so that 4 > rj_1. Then, 

by (6.21, & i)+t C(n(j - 1) + 1) < (& 1)+1/G,+ 1)) < (1 + E) E. Writing 

{t(n)} for the solution of F({O}, {fn}) with ((p(j)) = <(p(j)), we have, for 

n(j - 1) < n I n(j), 

0 5 fn C(n) I: fn l(n) = h 
Ij+fn(j-*)+I +“.+fn-1 
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Similarly, for m(j - 1) large enough, say m(j - 1) > n2, we find, by 

lim, + o. (&+i/fn) = 1, that& C(n) < &/2 for&j) 5 n F n(j) (using Lemma 3.2). 

Put GII(K) = G,(j) n;Z& (1 +fk C(n,K))/(l -fk c(n + 1, K)) for P(j) 5 n 5 

n(j) and define functions g, h : [0, n(j) -p(j)] + R 20 by 

g(K) = G,(j) (W CM’), W, h(K) =fn(j)lGn(j) (9 
Then 

0 5 g(K) h(K) < &/2 for 0 L K I p(j) - n(j) 

provided that m(j - 1) > n2. In addition, g and h are monotonously non- 

increasing, and non-decreasing (in IQ, respectively. Since [(n, 0) = l(n) for 

n(j - 1) < n I n(f) and {C(n)} . IS not a subdominant solution of _F({O}l{fn}) 

we have that CL’i’,Cjp i)+, fkGk(O)-’ converges as n(j) --f co, by 0 < fn C(n) < 
E/( 1 - E) < 1 and Proposition 2.3. So, if we choose m(j - 1) large enough, say 

m(j - 1) > n3, then h(0) < c/3. Moreover, since @j -+ 00 as m(j - 1) (and SO, 

p(j)) tends to infinity, we have IJ < : rj_ 1 if m(j - 1) is larger than some num- 

ber n4. We now choose m(j - 1) > max(nt , q, n3, n4) and we choose K as fol- 

lows: if h(n(j) -p(j)) < :E we set K = n(j) -p(j), A<(n) = <(n, K) for n = 

n(j - 1) + 1,. ,n(j). Thenf,(i)G,$j 5 $E and d,(j) 2 dncjl. Hence, by (6.4) we 

have 
n(j) 
c d,” 2 1 and d,” > 0 for n(j - 1) < n 5 n(j). 

r=n(jpl)+l 

If h(n(.i) -P(A) > $ E, we may choose K such that h(K) 5 i&, g(K) < 5 and 

0 < K <p(j) - n(j), by h(0) < ~/3. Then C(n) := C(n, K) for n(j - 1) < 

n < n(j). Now againf,(j)G,$ < $E and 

d<j, L (1 - &) G,(j) + 1(4(j) - &~j~) 

2 ~(1 - E) G,(j) &n(j) ’ 
1 +h(j) <(n(j)) 

1 -A-z(j) <MA + 1) 

>- 
(1 - ~~1 G,(j) (<(n(d) - <(n(j) + 1) (1 +fn(j) C(n(j)))) 

1 -h(j)lGn(j) 
> _ (1 - E2) - 5 .dK) + (1 -E2)rj/lj+l 

4 

>_2,1_&2 3 
- 3 1_1E+4(1 -E2) &+6(c) 

4 

where S(E) + 0 as E --f 0 (we may assume that I’i/Zi+t > i for all i). SO we 

choose E so small that IS( < &. Then anyjj > 0, so that &’ 2 0 for 

n(j - 1) < n 5 n(j) and C;“l,,_ r)+t JIU > 1. Moreover, we havef,(,)/G,(j) -+ 0 

asj + 00. (In fact, we have only constructed a solution {l,(n)}, > N for N so large 

that IS(&)\ < A. Of course, this solution can be completed to a solution 

K(n)),>0 with {c(n)} 2 (0) and &, > 0 for all n.) 

It remains to show that v({<(n)}, {fn}) is in ee an affine renormalization. d d 

Since we have {Gn} > {0}, lim,,, fn c(n) = 0, the recurrence F({&}, {fn}), 

with & = C(n) - [(n + 1) -fn c(n) C(n + l), is of converging type and by 
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Gp(j)(sp(j) - <(P(A)) = 1 (with I%> as in (6.3)), we infer from (2.3) that 

Cr==, fk Gil = so that is the solution of {fn}). 

We treat the case. Thus, {d,} be arbitrary real 

with lim o. d, = 0. d,’ = 0). Then d, fn 0 and 

I (0). F({d,‘}, {fn)) o converging (by Proposition f 
and an affine V’ = {fn}). Then > 0 

3({d,“‘)> if,"'>) of diverging by Proposition Thus we find an 

renormalization Y” V( {q’(n)}, such that (d,“‘)“’ = and 

{(d,“‘)“‘} (0). By 4.3, there an affine Y”’ = 

{ fn}) that {(d,“‘)“‘} {d,““‘}. This the proof. q 

$7. SUBDOMINANCE FOR LINEAR RECURRENCES RELATED TO CONVERGING 

TYPE RECURRENCES 

In this section we study the relationship between linear recurrences and 

PSL(2,R)-recurrences. In $1 we saw that a linear recurrence (1.3a) can be 

reduced to a linear recurrence (1.4) in almost all cases, and particularly in the 

case that the limit recurrence has characteristic polynomial (X - a)2, a # 0. We 

further saw that the study of (1.4) is intimately related to the study of (the solu- 

tions of) (1.5), a PSL(2,R)-recurrence. We recall that, in the case that 

lim, + o. c(n) = 0, lim,,, (u,+~/u,) = 1 for all solutions {u*} # (0) of (1.4) if 

and only if F({-c(n)}, (1)) is of converging type. In the opposite case, 

lim n + o3 (u, + 1 /un) does not exist for any solution {u,}. 

We call a solution {vn} # (0) f o a linear second-order recurrence sub- 

dominant if lim, _ o3 (Q/U,) = 0 for all solutions {Us} that are linearly indepen- 

dent with {vn}. If such a solution exists then lim,,,(UL/U,) exists (including 

infinity as a possible value) for all non-trivial solutions {Us}, {u:}. In what fol- 

lows we show that convergence of F({-c(n)}, { 1)) implies the existence of a 

subdominant solution for (1.4), whereas the converse is not true, as a counter- 

example will show. 

Proposition 7.1. The linear recurrence (1.4) with lim,,, c(n) = 0 has a sub- 

dominant solution if and only iffor some solution {un} # (0) the sum C,“=,, G,, 

converges in P’ (R), where 

2uk - uktl 

uk+l 
(n 2 N). 

In this case, c,” N c,, converges for all solutions {u,} # { 0} of (1.4). (flu, + 1 = 

0, then we omit G,,, G,+ 1 in the summation and replace (2~4,~~ - u,+~)/(u,+ 1) by 

1 -cc,+1 inZ;,form>n+l). 

Proof. Given {u,}, (1.4) has a basis of solutions {Us}, {vn} with U, = 

V, . C;ih Gn. Further use the fact that lim,,, u,,/w,, exists in P’(R) if and only 

if (1.4) has a subdominant solution. q 
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Corollary 7.2. IfF({-c(n)}, { 1)) 1s o converging type, then the corresponding f 
linear recurrence (1.4) has a subdominant solution. 

Proof. By Proposition 2.3, CT=,, (n;ii (1 + &)I( 1 - cm+ I))-’ converges in 

P*(R) for every solution {m} of 3({-c(n)}, (1)). Setting cn = (u,+i/u,) - 1, 

we have G,, = (1 - C,v)/(l + Cn). nL;iN (1 - &+i)/(l + 6) (n > N). BY 
lim, + M cn = 0, the assertion follows. q 

Remark 7.1. In particular, it follows from Corollary 7.2 that if (1.4) has a 

solution {Us} with limn,,(u,+i/u,) = 1, th en it has a subdominant solution. 

The following example shows that the converse is not generally true. 

Let {v(j)} be an increasing sequence of natural numbers such that 

v(j + 1) - v(j) N aj for some a > 1 (j + co). We define a sequence of non- 

negative real numbers {c(n)} such that c(n) = 0 if n is not one of the numbers 

u(j), and .F({-c(n)}, (1)) has a solution {zn} such that ZY(~)+~ = mj + k 

(0 < k I v(j + 1) - v(j)) with mj -+ --oo and mj + v(j + 1) - v(j) -+ 00 as 

j -+ c~.Thenc(u(j)) < Oandlim,,, c(n) = 0. Put G, = l-I;=0 (1 + ZI)/( 1 - ~1) 

(n E N) and rj = G,cj) (j E N). Then 

k mj+l+l 
Gu(j)+k = r’ . n 

I=1 mj+l- 1 
=r (mj+k)(mi+k+l) 

” mj(mj + 1) 

and 
4i) + k 

C G”‘=r;l.m.ykk+l. 
n-v(j)+1 J 

If we choose mj = -cj(V(j + 1) - u(j)) such that 2mj zz 1 mod 2 and cj = 

c+o(l),O < c < (a+ l)-‘,then 

rj+, = rj . 

(l-Cj)(l+mi-miC~l)_ 1-C 2rj 
-Cj(mj + 1) 0 c 

(j_m) 

and furthermore, 

4i) 
c G-j =j.g’ r;‘mr(v(l+ 1) - v(l)) 

n 
!?=I lZO m,+l+v(l+l)-v(Z) convergesasj+oo 

and 

Hence, C,“=O G;’ converges, so that, by Proposition 7.1, (1.4) has indeed a sub- 

dominant solution. 0 

The problems treated in this paper are closely connected to the classical results 

of Poincare and Perron. If lim, + o3 c(n) = c > 0 in (1.4), then the Theorem of 

Poincare and Perron says that lim, + o3 (u,+ i/u,) exists for all non-trivial 

solutions {Us} of (1.4), and, even more, for every zero a of P(X) = 

X2 - 2X + (1 - c) there is a solution {Us} such that lim,,, (un+ i/u,) = (Y. 
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(See e.g. [4], [7], [S], [lo].) This fact is no longer true if c _< 0, which is due to the 

fact that in this case the zeros of P have equal moduli. The first counterexamples 

were given by Perron (in [9]). 

In addition, the matter is intimately related to the convergence of continued 

fractions (see e.g. [4], Ch. 7). If {vn”‘} and {u,‘~‘} are the two solutions of (1.4) 

with r+(l) = 1, u;‘) = 0, u/2) = 0, uj2) = 1, then 

-=2 qM+...+ q(n)1 &I+2 4(m) .- 

vti2 
1 1 /l=:KhT 

where q(n) = (c(n) - 1)/4 (n E N). So, the continued fraction K,“= I (q(m)/l) 

converges, i.e. lim, _oo Ki= 1 (q(m)/l) is a real number or is infinity, precisely if 

(1.4) has a subdominant solution. Moreover, in this case the subdominant 

solution can be expressed by means of the ‘queues’ Kz=,(q(m)/l) of the 

continued fraction. Namely, if we set yn = K,“=,(q(m)/l), we have yn = 

q(n)/(l +y,+i), so that {(-2)“-’ .~+_i . ... yl} = {wn} is a solution of (1.4) 

if yi # 00. In fact, it is a subdominant solution, since wi = 1, w2 = -2~1, whence 

w, = vi’) - 2yi v,(~) (n E N), and hence lim, _ Dc ( w~/v~“) = 0. Similarly, if 

yi = co, then {wn} = {(-2)“-’ .y,_i . . . . . ~2) is a subdominant solution of 

(1.4), since by wz = 1 and w2 = -2~2 = 2 it follows that {w,} = (~1~‘) and 

lim,,,(v,(2)/$)) = 0 by assumption. Thus we see that the problem concerning 

the convergence of KE= 1 (a,/ 1) for lim,, ~ o3 a, = - $ is equivalent to the ques- 

tion if (1.4) with lim,,, c(n) = 0 has a subdominant solution. Besides [4] and 

[5], where the matter is treated from the latter point of view, we refer to [l], [2], [3] 

for a treatment from the former point of view, i.e. as a problem about continued 

fractions. 
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