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ABSTRACT

The aim of this paper is the investigation of the convergence of the solutions {z,} of a sequence of
Mobius-transformations with parabolic limit. It is shown that either lim, . o, z, exists for all solutions
or it exists for none of them. In the first part of the paper a description for the behaviour of solutions
in the boundary region (between converging and non-converging type) is given with the aid of a cer-
tain class of renormalizations. A generalization of this idea is used in the second part to derive a
necessary and sufficient condition for convergence in terms of the coefficients of the Méobius-
transformations. Lastly, an application to second-order linear recurrences is given.

§1. INTRODUCTION

A PSL(2,R)-recurrence is a sequence {Fy},., of Mobius-transformations
Fy iz — (anz+by)/(cnz + dy) with ay, by, ¢u,dy € R and a, dy # b, ¢, or alter-
‘natively, a sequence of matrix classes M, = (¥ Z:) € PSL(2,R). The two con-
cepts are related by: M, (z1e; + 2z¢p) = z{e + zjey if and only if F.(z1/z2) =
z{/z} € P'(R) where e;,e; form a basis of unit vectors in R%. We study the
asymptotic behaviour of the solutions of the recurrence, i.e. the sequences
{Zn}us0» 20 € P'(R), for which

(1.1) zyy = Fu(zw) (meN).

* This research has been made possible by a grant from the Netherlands Organisation of Scientific
Research (N.W.0O.).

81


https://core.ac.uk/display/388702847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

From now on, we leave out the index set when considering sequences of maps,
matrices and solutions, thus identifying two sequences whose terms are equal
from a certain index on (we shall write {F,}, {z,}, etc). If the coefficients
(an : by : ¢y - dy) converge in P*(R), then the following situations may occur:
1. The limit map F is constant (hence, degenerate); 2. F 2 is the identity map (i.e.
F?:z— z); 3. Fis hyperbolic; 4. F is elliptic; 5. F is parabolic.

In case 3, F has two distinct fixpoints in P!(R) and the stable fixpoints of F,
converge to the stable fixpoint s of F. In this case, all solutions of (1.1) up to
one converge to the stable fixpoint s of F whereas the one remaining solution
converges to the unstable fixpoint u of F. For let s, u, be the stable and unstable
fixpoints of F,. Since s # u, there exists some N € N and some open con-
nected set E C P! (R) such that s, € E, u, ¢ E for n > N. Then F,(E) C E and
if z, € E, then {z,} converges to s (if n> N). Define for k>0, E, =
(Fpiko---o0 FN)‘1 (E). Then E C Ey C E; ... and E; is a connected open subset
of P!(R). On the other hand, the complements E¢ = P'(R) \ E; cannot be empty
for all 4, so Ef converges to some non-empty closed set D. Then zy € D precisely
if {z,} does not converge to s. Hence D does not depend on the particular choice
of E and we see that for all points zy € D, {z,} converges to u. (Otherwise we
could have included AV in E for N large enough). Since the harmonic double
ratio (z, PP )) is constant for all n (where {zn )} (i=1,...,4) are
solutions of (1 1)), we ﬁnd by letting {z,, } converge to s fori = 1 2 and to u for
i = 3, so that {z/*} cannot but converge to s unless {h,, } = {“,, }, that D con-
sists of exactly one point. Of course, the same reasoning holds if we let F,, have
coefficients in C instead of R. In case 4, F has no real fixpoints (the real axis
being invariant under {F,}), so there cannot be convergence of the solutions. But
here the complex case is considerably more difficult than the real case. See e.g.
[5]. Finally, in case 5, F has one fixpoint (or rather, two coinciding fixpoints) in
P!(R), as follows by symmetry, if we consider the F, as maps in PSL(2,C). It is
this case that will be the subject of our paper.

We can reduce the study of PSL(2,R) (or PSL(2,C)) recurrences to the study
of linear second-order recurrences and conversely. In order to see this, let {F,}
be a PSL(2, R)-recurrence. Putting z, = (x,, : ¥,) € P!(R) we find:

X, :anxn+bn n
(12) { n+1 Y
Yusl = X+ dnYn

which is equivalent to

(133) yn+2:(dn+1+cn+lan )yn+l+(cn+lb andncn-klcn_l)yn
(13b) yn+1/Yn :dn+cn(xn/yn)

if ¢, #0. So, if (a, : b, : ¢, : d,) converges, we see that a solution {z,} of (1.1)
converges in P! (R) if and only if lim, _, o ¥n+1/¥n eXists for {y,} the solution of
the second-order recurrence in (1.3a) corresponding to {z, } by way of (1.2). Now
let {F,} be a PSL(2,R)-recurrence converging to a parabolic map F. For a
suitable G € PSL(2,R), the sequence {G~'F,G} converges to G 'FG:z —
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z/(z + 1), which has a (double) fixpoint z = 0. The corresponding linear recur-
rence (1.3a) has characteristic polynomial x(X) = (X — 1)2. Furthermore, since

U2+ Pm) Uy 1 +Q(n) U, =0
is equivalent to
Var2 +2Vur1 +(4Q(n)/P(n) P(n+ 1))V, = 0
for V, = (HZ;(I) P(k)/2) - U, (n € N), we may suppose that (1.3a) has the form
(14)  yar2=2ynr+ (1 —c(n))yn=0
where lim,, . o ¢(n) = 0, c¢(n) € R. Putting y, /v, — 1 = w,, we find

_ wy+c(n)

(1.5) Wy = Fp(wy,) = —— (neN).

Thus, when studying the convergence of the solutions of (1.1) with parabolic limit
F =lim, _, . F,, we may assume that F,(z) is of the form given in (1.5), with
lim, _ o c{n) = 0. It is a generalization of this type of recurrence that we shall
study in the following sections.

We finish this section by discussing two notations that we shall use in the
sequel. Firstly, if {a,},.n and {b,},.n are two sequences of real or complex
numbers, a, ~ b, will have the same meaning as a, — b, = o(|a,|) for n — oc.
Secondly, a, < b, means that a, < c¢-b, for all n € N and for some positive
constant c¢ if a, and b, are non-negative real numbers.

§2. THE SETS F({d,},{/:}); ELEMENTARY PROPERTIES

We start by giving a few definitions.

Definition. Let {d,}, {/,} be sequences of real numbers. We define F({d,},
{f»}) as the recurrence (1.1) defined by the sequence of Mobius-transforma-
tions {F,} where

(2.1)  Fy(2) :ﬁ (n € N).

In the sequel, we shall consider only a special type of recurrences F({d,},{f1}),
which will appear to be a sort of natural generalization of the case that
lim, , », F, exists and is parabolic. We let S be the set of sequences { f,} with
fo€R, lim, oo fuii/fu=1 and > 7 fu = +0o. We shall, when studying
"F({d,},{fn}), assume {f,} € S and, moreover, d, € R and lim,_ . d, f, = 0.
In this case, we can always choose a representant with d, f, > —1, so that
F({dy,},{fn}) becomes a PSL(2, R)-recurrence and, moreover, F, preserves the
orientation of P!(R) (as a subset of P'(C), i.e. F, maps the upper half-plane in C
onto itself ). We have the following results:

Lemma 2.1. Let F, be as in (2.1) with d, f, > —1 and f,, > 0. Then

(@) F, preserves the orientation of any three points in P! (R).

) If |2 > ¢ ldo| £, (¢ > 1), then Fy(z)=1 — 271 > ¢'f,, where ¢’ > 0if ¢ > 1
andc¢' =0ifc= 1

© If |2 < |dal £, then F(2) < (Jdul £,7)'72
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Proof. The straightforward proof is left to the reader. O
The preservation of orientation implies the following

Proposition 2.2. If {f,} € S, d, fu > —1, then either {f, z,} converges for all
solutions {z,} of F({dn}, {fu}), or it diverges for all solutions.

Proof. Suppose there is some solution {zn(o)} such that { f, 2,50)} converges. By
Lemma 2.1, we have for any solution {z,} of F({d,},{f.}) that for n large
enough, and some ¢ > 1, that z; <z, and either z; !, —z !> ¢'f, or
folzal < Ve(|dy| £)7?, where the right-hand part becomes arbitrarily small. Fix
some number 0 < ¢ < 2/c’ and let N be so large that ¢ |d,| f, < €2, fus1/fn <
1+ (c'e/2) <2 and f, |z,fO)| <eforn>N.By ), .nf: =00 we conclude that
—& < —fm |z,5,0)i < fmzm < € for some number m > N. For n > N we have:
If £,2, <0, then foo1zp1 < Ve(fulda)? <&, if 0< fz, <e/2, then
Jot1Zne1 < fuzy, and if foz, > /2, then f, 12,41 < &. Hence f, |z,] < e for

all n > m. Since ¢ was arbitrary, we conclude that lim,, , , f,z, =0. O

From Proposition 2.2 it follows that we can distinguish two distinct types of
recurrences F({d,}, {fx}): converging-type recurrences for all of whose solu-
tions {z,} the sequence {z, f,} converges (in which case it must converge to
zero), and diverging-type recurrences, where {z, f,} does not converge for any of
its solutions {z,}. We can now introduce an ordering on the set of solutions of a
converging type recurrence: For two solutions {z,}, {z,} we define {z,} < {z,} if
zn < z,, for all n large enough. This yields a total ordering on the set of solutions.
For {z,} fixed, the set U consisting of the numbers o € P!(R) such that
{z!} > {z,} and zj = a is open and connected. The complement of U in P'(R) is
closed, connected and non-empty, since it contains zy. Hence it contains the
number (p such that {(,} = inf({z,} : {z,} < {z.}), where the infimum is taken
over the solutions of F({d,}, {fu})- {C.} is the solution for which {¢,} < {z,} for
all solutions {z, }, so it des not depend on {z,}. We call it the subdominant solu-
tion of F({d.},{fs})- The following proposition gives, for {f,} € S fixed, a
characterisation for sequences that are subdominant solutions of some recur-

rence F ({d,}, {fn})-

Proposition 2.3. Let {z,} be a sequence of real numbers such that
lim, .o frnzo =0 for {f,} € 8 Let N be such that f, |z,| < landf, |za+1] < 1 for
n > N and define

(22) G, = nﬁl A Sz

neN, n>N).
k=~ L= fezi+1 ( )

Then {z,} is the subdominant solution of F({zy — zn+1 — fuZnZns1}, {fn}) if and
only if 50y 16y = o
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Proof. First note that G, > 0 for all » > N and that
f({-:n — Zn+1 _fnzn Zn+l}7 {f;'l})

is of converging type. Put d, = z, — Zy+1 — fu Zn Zn+1 for n € N. Then

1 —Zn41 . 1 —dn . 1 Zn _ 1 —f;,Zn+1 0
0 1 £ 1 0 1)~ 0 1+ fo Zn
so that, for any solution {z,} of F({dn}, {fx}),

/ -1 1+fnzn /
(Zgs1 = Znt1) Zm (2, — 2n)

1 I
1 _fnzn+1

whence, forn >m > N,
n—1

(23)  [Galzp =zl = [Gulzp = 2n)] T+ X oG (U4 fez)
k=m

Take m = N. Then, if {z,} is subdominant, we see that the right-hand side be-
comes positive for all {z,} # {z,} as soon as n is sufficiently large. Hence, taking
into account that limg_, o fixzx = 0, we find that indeed ;7 y fk Gf ' = .
Conversely, if Y7 v fk G| = oo, then the left-hand side becomes positive for
all {z!} # {z,} if n is sufficiently large, so that {z;} > {z,} for all solutions
{z) o

§3. SOME CONDITIONS FOR CONVERGENCE OR DIVERGENCE

In this section, we state a number of sufficient conditions for F({d,},{fs})
to be of converging or diverging type. As above, we suppose {f.} €S,
lim, _. o f,d, = 0, so that the results of §2 hold. We write {a,} > (or >) {a,} for
two real-valued sequences if a, > (or >) q,, for n sufficiently large. We start with a
few lemmas:

Lemma 3.1. If F({d.},{fx}) is of converging type and {d,} < {dn},
lim, .o d/ f, =0, then F({d)},{fu}) is of converging type. Moreover, if
{¢},{¢) are the subdominant solutions of F({d,},{fa}) and F({dn},{/s})
respectively, then {{]} < {(a}.

Proof. Let {z,} be some solution of F({d,},{f:}) such that f, |z,| < 1 for all

n> N.Let {z/} be the solution of F({d,}, { fu}) such that z; = zy. Then z, < z,

for all n > N. The reasoning that lim, _ o, fu|z,| = 0 goes exactly as in the proof

of Proposition 2.2. Suppose (y > (v for infinitely many N € N. Then
{¢/} > {¢:}. But since {d,} < {d,}, for the solution {(,'} of F({d,},{f.}) with
N = (v we would have {({y} < {(,} so {(,} cannot be subdominant. [J

Lemma 3.2. If {f,} € S, then for N fixed, N large enough, lim,_ o (fx +fn)/
v+ +fa) =0

Proof. The simple proof will be left to the reader. O
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Lemma 3.3. If {f,} € Sandf, = F,,1 — F, then { f,/F,} € S.

Proof. lim,_ . F, =00 and by lim, ., fy+1/f; =1, hence by Lemma 3.2,
lim,_, 5 fu/F, =0, so lim, . F,./F, = 1. Moreover, for numbers M > N
large enough,

M1 M—1
> S /F 2 Fn 3 fi/FeFiyi=1-Fy/Fy >3
k=N k=W

so that 2% » fi/Fr = +oo (where N is so large that F, > Oforn > N). O

Lemma 3.4. Let {D,} be a sequence of matrices in Mz(K) and {a(n)},{B8(n)}
be sequences of complex numbers such that {|la(n)|} > {|3(n)|} > {0} If
S IDall - 18(m)| 7! < 0o then there are matrices J, € GL(2,K) such that
lim, o Ju= (3 9) and J,.((diag(a(n),8(n)) + D,) J ! = diag(a(n), 8(n))
(K=RorC,neN)

Proof. See[6], Lemma 4.1. O

Proposition 3.5. Ler {f,} and {d,} be sequences such that {f,} €S and
lim, _, o dy f = 0. Then

(@) If {d,} < {0} then F({d,}, {fx}) is of converging type.

(b) If F({dn}, { fn}) is of converging type and {d,} > {0}, then Y 3"\ di < .

(¢) If dy = (e +0o(1)) A(F, ') + d! where AF, = F,y1 — F, =f, (n € N) and
Yoy ld)| Fys1 < oo, then, if € > =%, F({d,},{fs}) is of converging type and
has a subdominant solution {(, } withlim, _ o, (, F, = 61, whereaslim,,_, o, z, F, =
8, forall other solutions {z,}, where §; < &y are therootsof X? — X —e = P(X).If
e < =L then F({d,},{fs}) is of diverging type.

Proof. (a) This follows immediately from Lemma 3.1 and the fact that
F ({0}, { f}) is of converging type (it has {0} as a solution).

(b) Let {z,} be a solution of F({d,},{fa}).- BY 24 — zZus1 = fuznzns1 + d, we
have for N € Nsolarge that | f; z,| < 1 forn > N, thatz,, | < z,/(1 + fyz4) < 24
for n > N, so that {z,} > {0} (compare with Lemma 3.1). But then, for n large
enough >0 di <300, (Zk = Ziw1) = zn — limyg o 2z

(c) Set

G, = (} ‘f’”) (neN)

andletd, = ¢ AF, ! +d/. Put
1 5 &
=g -(\ )

(3.1)  H,]} -G, H,=diag(l + 61 fu/Fn, | + 621,/ F,) + D,

n+1

Then

86



where || D|| = O(F,+11d,|). If e > —1, then 6;,6, € Rand
1"l_(slfn/Fn _ 1\ _

1+62fn/Fn

Ife < —- ,then 6, = 6; ¢ R and

1+61fn/Fn
1+62fn/Fn

o0

32 %
n=N

(3.3) =1 (neN).

Lemma 3.4 now yields that there exist J, € GL(2,R) in case ¢ > —g,
Jn € GL(2,C) if € < —1 such that {J,} converges to the identity matrix and
Jur1 H, NG, H J= d1ag(l + 81 fn)Fny 14 8210/ Fn). So ]-'({d} {f+}) has
solutions {z,, }— {1 N} with (x,g).y,ﬁ’)) AOH, J 'ei. So 23 =
(6 +o()F1 (i=1,2, neN). If e>—% then z/)€R and since
limy _, o0 z)' )f,, =0, F({d,},{fu}) is indeed of converging type. For a solution
{zn} # {4 } it follows from (3.2) that lim,,ﬁOO zyn Fy, = 6,, since z, =
(()\x(1 +ux,§2)) ()\y,, + ppi? )) with £ 0 AV/A2 0 as n— ). So,
{z{V} is the subdominant solution. Moreover, 1f dy—d! = (e + o(1)) A(F, 1)
instead of ¢ - AF,"!, Lemma 3.1 yields that, for the subdominant solution {z{!},
forany 6 > 0

hmsup7 VF, < & + 8, l1m1nf,. JE, > & — 6.

Hence, lim, ., - z,f” F, =6, and 51m11ar1y, lim, ., o, zn F, = &, for any other
solution {z,}. Now for the case ¢ < —1. We may assume {z,f = ! }. Then
we see that F({d,}, {f}) has a real solution {z,} with

2,51))\(}1) + z,gz)X(n)
A(n) + A(n)

Zy ==

where [A(n)] = 1, An + 1) = A(n)* - (1 4 6, f/Fy) /(1 + 624,/ F,). By

we see that arg A(n) does not converge, and for infinitely many ,
argA(n+ 1) ~g < arg(l + 61 fu/Fy),

so that for £ > 0 fixed,
|§R/\(I’l + 1)| < (1 + 6) |S61|fn/Fn

for infinitely many ». For suchann € N,

RO+ 120 ) Fost fuet Fy
(1+8) lgéll fn Fn+1

lfn+lzn+1| >
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and the expression on the right tends to (1 +¢) ™' as n — oo. Hence, {f;, z,} does
not converge. Finally, if d, —d] = (¢ +0(1)) A(F, '), ¢ < —1, then {d,} >
{(e/2+ §)AF +4d)} and Y% \ |d)|Fus1 < oo so that F({d,},{fx}) is
indeed of diverging type (by Lemma 3.1 again). O

Example. Consider the linear recurrence
(3.4) Uny2 —2upi1+ (1 —c(n))u, =0.

For {u,} # {0} a solution of (3.4), {(tn+1/un)—1} is a solution of
F({~c(n)},{1}) and conversely. Suppose ¢(n) € R (n € N). We take {F,} = {n}.
By Proposition 3.5(c) the following facts hold: If n?c(n) < —1 — e (¢ > 0) for n
large enough, then lim, . o (#y+1/u») does not exist for any real solution of (3.4).
Ifn’c(n) > =% + € (¢ > 0) for nlarge enough, then lim,, _. o (s +1/u,) = 1 forall
non-trivial solutions {u,} of (3.4). Moreover, if lim, . o, #%c(n) = v > —%, then
lim, oo n((!"), /1) — 1) = 6 for solutions {u{} (i =1,2) of (3.4), where
81,6, are the zeros of X? — X — ~. The last result holds also if ¢(n) complex,
and not y< -1 Finally, if c¢(n)€C, lim,.on’c(n)=v#—1 and
S v [nc(n) —~/n| < oo then (3.4) has solutions {u{)} (i =1,2) such that
lim, _, & n((u,f’ll Jul)y — 1) = &, This follows from the proof of Proposition
3.5(c), but in fact, this case (and its n-th order analogon) has been treated ex-
tensively in [5].

§4. AFFINE RENORMALIZATIONS

Under the conditions of Proposition 3.5(c) we see that if € approaches —i

from above, then lim,_. o0 z\" /2, (where {2,51)} is the subdominant solution of
F({du},{fn}), and {z,} any other solution) tends to 1. If £ < —1, then
F({dy},{fs}) is of diverging type. So ¢ = — 1 constitutes in a way a boundary
case. We shall investigate such cases more closely with the aid of what will be
called ‘affine renormalizations’.

Let {f,} € Sbe a fixed sequence and {d,} some sequence of real numbers such
that lim, o d,f, = 0 and F({d,}, {f,}) is of converging type. Let {C(n)} be its
subdominant solution and define

(1) Gn=Gn({<(n)},{fn}>=:1j1 LHeCl) e Ny,

o 1—fidlk+1)
Note that (1+ £ ¢(k))/(1— filk +1)) = (1+ £ C(K))? /(1 + difi) > 0 if difie >
—1 unless f3 ¢(k) = —1 or (k) = co. If f {(k) = —1, then {(k+ 1) = 00 and

fer1§(k +2) = 1, and
L Gk) Lt fearCk+1) _ tfide  (HfeCle+ D))

= fiClk +1) 1= firtCk+2) ~ 14 firrdesr (I—fiCle+1))?

So, assuming (as 1s legitimate) fx di > —1 for all k, we have G, > 0 for almost all
n. By Proposition 2.3, 377\ f,G; ! = o0 (N solarge that G, > 0forn > N). The
recurrence F({d,}, {f.}) defines an affine transformation as follows:
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Proposition 4.1. Every solution {z,} of a non-degenerate recurrence F({du},
{f}) corresponds uniquely to a solution {z}'} = {Gn(za — C(n))} of F({d,;}, {1 })
where

d’ =Gy 1(dy—d)/(L+ 1), £ =f G (L + £ C(n)),

and { ¥} € S. In particular, lim, _ « d} f,¥ = 0 if and only if lim, . dnfn = 0.
Furthermore, F({dy},{fu}) is of converging type if and only if F({d/},{f,/}) is

Proof. Putting

M":(;n —ld> g m:(%’ —Gn1<<n))

we find
1 —dY
n+1M P b= <f,/ ln ) (n € N)

(where we take representants for elements of PSL(2,R)). Since lim, . o, f, {(n) =
0 we have lim,_G,:1/G,=1, so that lim,_ f",/f,, =1 From
Sy f2G71 =oc it then follows that {f,"} € S. Finally, lim, .. dufu =0,
liMy—oo Zufp =0 imply lim, . d¥f/=0, lim,_.o z;f,”=0 and con-
versely. O

Remark 4.1. Transformations of the type described in the above propostion
will be called ‘affine renormalizations’ and will be denoted by v({{(n)}, {/x}).
Note that an affine renormalization defines the sequence (germ) {G,} up to a
multiplicative constant A € R, A # 0, so the same holds for {d}'}, {z/}, {( fn”)_1 1.

The following proposition asserts that a sort of converse of Proposition 4.1 holds:

Proposition 4.2. Let {f,} €S be fixed Any (affine) transformation that
transforms solutions {z,} of recurrences F({d,},{fu}) into solutions {z!} =
{Gu{zn — ((n))} of some recurrence F{du}, {fu}) with {f,} €S, G, #0, is an
affine renormalization v({C(n)}, {fu})-

Proof. From the fact that {z} is a solution of F({d,},{f:}) it follows that
Guy1/Gy = (1 +£,¢(n))/(1 — fn¢(n+ 1)) (n € N) as in Proposition 4.1, and
=£G, U+ fuCm), dp = Guii(d — dn) /(1 + fu(n)
with i
dy = ((n) —Cn+1) = fu {(n) - ¢(n+ 1) (neN).
S0 fur1/fa =Fuwi/fu (L= fuCln+ 1)/(1+fr41{(n+ 1)) (1 € N) and
Jim fo1/fa =1

imply lim, o0 fn ((n) = 0, so that {¢(n)} is the solution of a recurrence
F({d,}, {f}) with lim, _, oc dy fy = 0. This in its turn implies limy, — 0o Gny1/
G, = 1 and from Y_°° ,, f, = oo it then follows that 320 v £,G"! = oo, so that

{¢(n)} is indeed the subdominant solution of 7 ({d.}, {f,}). O
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Corollary 4.3. The composition of two affine renormalizations v = v({{(n)},

{fa}) and v' =v({¥(n)},{f}}) is an affine renormalization v({n(n)},{f:}),
where n(n)” = 9(n) for all n. Moreover,

Ga({n(m)}, {fu}) = Ga({n(m)"}, {£"}) - Gu({C(m)}, {/})-

Proof. Putting G, = G,({¢(n)},{fn}), G, = G.({n(n)"},{f}}) for n €N, we
have

(2)" = Go(Gulzn = C(m)) = Guln(n) = C(n))) = G Gu(z, — n(n)).

From Proposition 4.2 it now follows that G,G, = G,({n(n)},{f»}) and v’ ov =
v({nm} {fH}). O

Application. Let{f,} € S,d, = —% AF '+ d/ where F,, .| — F, = f, (n € N).
If {d,} = {0}, then {¢(n)} = {}F, 1} is a solution of F({d,}, {f.}). Moreover, it
is the subdominant solution, by (G, {C( LA/ (G}, {fa}) = Fu/Fn
(n>N)and 3372y f;G' = Fy Gy' Y72 fj/Fj = oo (see Lemma 3.3), where
G = G,({¢(n )} {f:}). So {¢(m)} deﬁnes an affine renormalization v =

v({C(m)}, {/x}) with

Zny =F,z, — %1 an =fu(Fn + %fn)‘l
and
dl = Fy1d)(1+ L fu/F)™

Repeating the argument and using the fact that a (finite) succession of affine re-
normalizations gives an affine renormalization, we obtain

Theorem 4.4. Deﬁnesequences (Y as follows: { £,° } ={fa} €S, {fn(iH)} =
{OFED + L8N, where FID = )\ € R and AF =fD (n,i € N). Then
{¢;mYy = {L(1/(FE +1/(F OEO) L ED RO s the sub-
dominant solutlon of F({di{nm)},{ f,,}) and deﬁnes an aﬁ?ne renormaluatton
v({Gmb ) with 2y = F - B oy — ), S =SV a

dm =13 - AT (1+ £,

1) =3 3 ——— g AEDT (4G 0) (e N).

(=0 0y g

Proof. Putting v; = v({1/(2F"))}, {£'}), (j € N), we have by Corollary 4.3,
vi_10-ouy=v({¢i_1(m} {f}) and if we set ) = (z <f—1>)”f then z\/) =
FY™1; “ Y _ 1 by the above remarks. Soz\V=FY V. L FO(z, — (i (m),
so that {( i—1(n)} is indeed of the form mentioned in the statement of the
theorem. The fact that the {(;(n)} are subdominant solutions of recurrences

F{di{nm)},{fa}) follows from Proposmon 4.2, so it suffices to determine the
numbers d;(n). Writing d\’ *") = (/)% *' we have

dU+h = Fn(i)1(dn(j) + %A(Fn(j))_])(l + %fn(j)/FnU))_l
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and, by Proposition 4.1,

d9 =FY Y ED (@O —dis () (1 ¢ )7
Hence,
dimV = FY7 o EO (dn) — di () (L () f)

7 1

L ~ < s 8
ITH — 0, so that dj(n)(“ =

and, on the other hand, dj(n)(jH) = 0 since (j(n)(
—}‘A(Fn“))"1 and

dy(n) — d; 1 (n)

_L _1+f"cf‘l(") C—AFEUNYTY (>0, neN). O
4 pU-bH . FO "
n+1 n+1

Corollary 4.5. Deﬁnef,,(” and F,\") (i,n € N) as in Theorem 4.4. Then if for some
jeNande > 0,d, =d) + d with

d, < d;(n) — e(dj(n) — d;—1(n))
and

g\ [ X241 r(o) r-() PR

20 NG |y fy m e ’n‘il < 00,

n=N

then F({d,}, {fn}) is of converging type, and if

dy > di(n) + <(d)(n) — d;1(m)
and

o0

(0) )
N’dn/’an+l s B < oo
n=

then F({d,}, {fu}) is of diverging type.

Proof. By Theorem 4.4, application of the affine renormalization v =

v({¢i-1(m)}, {/a}) yields

dy = FLY e B = d () S G ()
P~ 1) 11—« Ay —
<FO e B+ £ G o) g [T

for large n. Now apply Lemma 3.1, Proposition 3.5(c) and Proposition 4.1. The
second case is completely analogous to the first one. O

Remark 4.2. If we choose FO(O) , Fo(l), ... in such a way that for a certain number

N €N, )\i:FI\(,i) >1 for all i and s:= Z]?“:O(F]i,o) ceee F}Vj))f1 < 00, then
F >\ for n> N and ((n) = limj o j(n) = 1370 (FO - B!

exists for n > N, and 0 < {(n) <s- (FI(\?)/F,SO)), so that lim,_ . ((n) =0.
Moreover, since {{(n)} is the uniform limit (in n) of {{;(n)}, it is the sub-
dominant solution of F({d,},{f,}), where d, = lim; ., dj(n). So it defines an
affine renormalization {z,} — {z/} = {G,({¢(n)}, {/»}) - (2. — ((n))}. We de-
termine G,({¢(n)}, {/u})-
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Lemma 4.6. {(XA----- )\,-)AIF,fO) ceen ~F,,(i)} converges asi — oo foralln > N.

Proof. Since f,,(iH) zj",,(i)/(F,,(i) + %f,,(i)) < loan(Ql/Fn(i) (ieN, n>N) we
have

Ef+0 — Fi*) < 1og ) —log FY,
SO

0<FIY /N~ 1< A7) log(FY /N < log E /)
so that lim; _, F,,(i)//\,- =1forn > N. Furthermore, if we put Fn(i)//\,- —1=¢;(n),
we have

eiv1(n) < ALy -log(1+ei(m)) < A7), - ei(n)
so that

0<e(m)< (A - N) eo(n)

and Y ;2 gei(n) <ocoformn>N. O

We claim: G, =lim;, « F,,(o) Cee F,,(i)()\o Ceees /\,-)71. We write H, for
lim; oo B oo .F,,(’)()\o Ce )T By Proposition 4.1 and Theorem 4.4,
we have that {z,,l)} = {Fn(o) oo  FYD(z,— ¢ (n))} is a solution of
F({di"},{£"}) where

a0 =Fy o B = di () (L S G ()
and

LD = (f/FO o B+ fi¢ioi(n)™h ((€N).
So, {{(Ag -+ - )\i_l)flz,gi)}isasolution of

FHUAD Do - M) TR0 - Mo
Taking limits, we find that {lim; , z,,i)(/\o Cee )\i_l)‘l} = {H,(z, — ((n))}

is a solution of F({d,}, {f,}) with
dy = Hyir(dy = d)(L+£,C0)7" o =fu H7 N1+ fuCOn) ™

In particular, {G,} = {H,}.
The affine renormalization v({({(n)},{f,}) is in a way the limit of

viro---ovy =v({i-1(n)}, {fa}).
§5. APPLICATION TO LINEAR SECOND-ORDER RECURRENCES

We apply the theory derived above to linear recurrences, although we shall use
slightly different affine renormalizations than those defined in §4, in order to
obtain explicit formulae for the coefficients of the renormalized recurrences.

Let % = 1 for all n € N and let ﬁ,(i) and F,") be as in §4, so

fn(i+1) :fn(i)/(pn(i) + %fn(i)) and Apn(i) :fn(i>7
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where Fo(i) =)NeR (i=0,...,J). We define sequences {h,g”}, {Hn(i)}
(i=0,...,J) 1nduct1vely h(o) —f(") H” = F” and, for i>0, AUt =
log Hﬂl —log H), AH{) = n{) with H(' chosen such that

lim (F' — HYy = 0.

Lemma 5.1. The above construction is well-defined. Moreover, f,,(i) —h,gi) =
O(n), K" ~ B = O(n~?) (n — oo).

Proof. For /=0 the lemma is trivial. Suppose the assertion holds for
i<j—1<J-1.Since for n— o0, £,/ ~ fU=D/EY™Y we have ;U /YT =
O(fn(l)) = O(n~"). Furthermore,

f,ff’:logF‘f' ~log KD+ O((£9V/FI= D))

=logFY " —log FV=Y 4+ O(n™?) (n — o0).
Hence,
f(j):h(j)+0(n—3)+0<f"({ 1)— f;r_(] 1)+O(}’1_3) )
n n Fn(J—l) F,,("l)(1+0(n*2))
= h,ff) +0(r73) (n— o).
and

. n—1 B o _
FU) = Aj+k§;0 {log(FV 5V /FY ™Dy + 0(k—3)}
=\ +log EY=D 102
=X +logH/" ' +0(n %) = H)) +0(n?) (n— o)

if we choose H\') = A O

Lemma 5.2. Let h,fi),H,q(i) be asabove (i=0,1,...,J,n € N). Put
1 hy
0 i

A
for neN,i=0,...,J. Then F({d(n)},{1}) is of converging type if, for some
e >0andd'(n) such that ¥, o |d' ()| HO) | -+ - HY)| < o0,

{d(m)} —d' ()} < {ds(n)(1 —€) +dy 1 (n) -},
and F ({d(n)},{1}) is of diverging type if for such £ and {d'(n)} as above,

{d(n) —d'(n)} > {ds(n)(1 + ) —d; () - c}.
Proof. Considering the fact that H, (0 ) ) can be chosen freely, it suffices
to show that 32  |di(n) — dj(n)| - F 1 F( )1 < oo for 0 < j < J with

d;(n) as in Corollary 4.5, since hm,HOO H(”/F !'Z =1(0<j<J). By Lemma
5.1,

da(n)=0,  din)—di_\(n) =

h,gj) N fn(j)—f—O(I’l_3)
- T - . —
) Hn(i)lH"(j) Fn(-+-)l . Fn(i)an(J)(l +O(l’l_2Fn<]) )

7O

n+l 07T
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so that dy(n) = dy(n) and

di(n) = d1(n)
= (d(n) = d_1(n))-(1+O(1/n)) + O(n ).

’

(0) )
Fn+1 e Fn-jf—le

where we use that Cj,l(n) = O(l/n). But

+1) @]
i n-jl—l oo B
n=N F(]
G+1) o)
<<§: L_Fn+l B Fn+1<oo
n=N n? F( )
forj=1,...,J,since F'™" = O(log F\")) fori e Nyn — oco. 0O

For J =0 we have dy(n) = }/((n+ Xo)(n+ X+ 1)) = 1/(4n?) + O(n~3). In
general
H = X; +log(X;_ + -+ +log(Ao +1n)...)

1
:/\’J+10gjn+0<log n)
71

where logyn = n, log;n = log(log; _, n) (j > 1), so that

- - Alog;n 1
&) = &1 (n) = (140552
4n(logn) - --- - (log;n) log; n
Since
oo 1 1 0 J
Z Hn(+)l ’ Hn(+)l

n=n log;n ' (2nlogn.‘.10g,-n)2

log; n...log;n
& &/ > < oo (N large enough),

n=N nlogn...(log;n)

we can reformulate Lemma 5.2 as follows:

Corollary 5.3. F({d(n)}, {1}) is of converging type if for some ¢ > 0 and {d’(n)}
such that for N large enough > "y |d’(n)| - (nlogn...log;n) < oo,

{d(n) —d'(n)} < {4_11 ZJ:O (nlogn...logjn)‘2 —¢e{nlogn.. .Iog,n)'z}

and of diverging type if, for such an ¢ and {d'(n)}

{dn) -d'(n)} > {% ZJ: (nlogn...logjn)"2 +5(nlogn...log1n)_2}.

This result can now be applied directly to recurrences of type (1.4), using the
correspondences shown in §1.
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§6. A NECESSARY AND SUFFICIENT CONDITION FOR CONVERGENCE

The following theorem gives a characterisation in terms of affine renormali-
zations for a recurrence of type F({d,},{f.}) to be of converging type.

Theorem 6.1. Let {f,} € S,{d,} areal-valued sequence such thatlim,,_. o d, f, =
0. Then F({d,},{fs}) is of converging type if and only if for all affine renormali-
zations v = v({C(n)}, { fn}) such that {d¥} > {0} we have 3_" \ d) < oo

We shall need the following results:

Theorem 6.2. Let {z,},{z.} be solutions of recurrences F({dn},{fn}),
F({d}, {fu}) respectively, with {f,} € S and {1} > {d fu} > {0} as well as
{1} > {d] f} > {0} such that for some p,q €N, z, =z,, 2y =z, and 0 < z,,z,
(or 0>z,,z)) for p<n<gq: If d =0 for p<n<q—1 (d/ =0 for
g — 1 >n> p, respectively), then 51 _ la <> 1q,

n=p~n — n=p

Proof. It suffices to show the result for ¢ = p + 2, the general case then follows
by induction. Thus

c+dy(zpfp+ Zps2fpr1)

L+ 20
with ¢ independent of d,,, d,, . 1. The result holds for all values of z,, z, 1 1,2, +2. So
ifz,>0forn=p, p+1, p+2, then d, + d,, 1 is minimal if d, = 0. The other
case goes analogously. O

(6.1) dﬁ+dp+1:

Lemma 6.3. Let {z,} be a solution of F({d,},{f}) such that {f,'} > {d,} >
{0} and such that for some numbers NNLEN, zy,; >0 (I=0,...,L) and
snyr41 L 0. Then

N+L | .
Yoo dy > (zy ANt o)
n=N

Proof. By Lemma 6.2 we may assume that d, =0 forn=N,... N+ L -2,
Moreover, by (6.1), dy 11 +dnr > df,,_; +dy . whereeitherdy , , _, or
dy ., =0.In the first case, dy, ; > zy . =28/ + (v + - +fvrr-1)zn).
Inthe second case, dy ., _ > zy,; =:2n/(L+ (v 4+ +fvyL-2)zn). O

Proof of Theorem 6.1. The necessity of the condition follows from Proposition
3.5(b). Conversely, let F({d,},{f:}) be of diverging type. We first assume that
{d,} > {0}. Let {z,} be a solution of F({d,},{/s}) and let {m(j)},{n(j)} be
sequences of indices (still to be fixed) such that —oo < z,,(;) < 0 < z(;y4| and
Zn(jy+1 < 0 <z, and m(j — 1) < n(j) < m(j) for j € N. We construct an affine
renormalization v = v({{(n)}, {/fx}) such that {¢(n)} > {0} and {d}} > {0},
Z"(j) 0t ( df > 1for allj. Suppose that {{(n)}, < ;1) has been constructed.
Set G = Gy {(j(n b Aa}) (50 {Gn}ycpi—1) is known), and

Iy = Guiy(1 + fuiy C(n(i)))  (n,i € N).
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Moreover, we assume that for some 0 < ¢;_; =€ < %
(6.2) fn(j—l)/Gn(j—l)<6a l—e< fu/fuci<l+e

for n > n(j—1). Let now n; be such that n; >n(j—1), fu;—n+1+---+
Jm—1>Ij_1and let p(j),m(j — 1) be such that p(j) > m(j — 1) > n; and

v—1
O<z' <y ~fhyopar++A-0) )T+ S A
I=n(j=1)+1
form(j — 1) < v < p(j) and either
v—1
2 > (0 = gy v+ o)™ T
I=n(j—1)+1

for v=p(j)+1 or zpjy41 <0. This is possible since {z,} is a diverging
solution. We now define lj’1 =(n(j-1)+1):= Fj’_ll - ¢j_1 where @; =
fagi=ny+1+ -+ foy—1- Then ;> I';_| > 0. Further, let n(j) be such that
Zuy+1 <0 and z, >0 for m(j—1) <n <n(j). Clearly, n(j) > p(j). For
0 <K <p(j)—n(j) we define sequences {((n,K)} which are solutions of
F({da(K)}, {fn}) such that ((n(j—1)+1,K)=1"", di(K)=0 for n=
n(j_l)"’_lv""p(j)_la C(an):Zn for n:p(j)+la"'7p(j)+[K]7
dp(j)+[K](K) = (K - [K]) : dp(j)+[1<] and d,(K) =0 for n=p(j)+ [K] +1,...,
n(j) — L. It is then clear that 0 < d,(K) < d,forn=n(j— 1)+ 1,...,n(j) — L.
Moreover, by Lemma 6.3 and for v = v({{(n, K)}, { fu}),
140)]

(6.3) X A =G (G — ¢p()))

k=m(j—1)+1
where {((n)} is the solution of F{d}, {f}) with ¢(n(j—1)+1) = I7! and
dp=0 for k=n(j—-1)+1,...,p(j)—1, and {%,} is the solution of
F({dub, {fu}) with Z,,_1) 1 = 00. Then %, = 7L, C(p(J)) = (; + &) and

Py} I L+ ®;
(6.4) 3 ' > Gy —2—>I_ - L—L=1.
k=n(j_1)+1 , ) @;(l; + &) ’ l; ®;

We show that we can choose K and m(j — 1) such that cAz’,,< j) =0 for all j and
lim, . fn¢(n) =0. In any case, m(j—1) >n;, so that [; > I',_,. Then,
by (6.2), fuj-n+16(n(j = 1) + 1) < {fuy-1)+1/Cnij-1)) < (1 +¢€)e. Writing
{¢(n)} for the solution of F({0},{f,}) with {(p(/)) = {(p())), we have, for
n(j—1) < n < nij),

. fo
ngnC(n)an((n)—lj+fn(jAl)+1+,_,+fn_l

1 » ; -
P LR SR L VA Vi SN BT S VES VE TNNRIS B )
_(6(1+6)( €) +(1—¢) 4+ 4 (1-¢)

€
<

1-¢
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Similarly, for m(j— 1) large enough, say m(j—1)>mn;, we find, by
limn_.oo(ﬁ,+1/ﬁ,) =1 thatf,, ¢(n) < g/2for p(j) < n < n(j) (using Lemma 3.2).

Put Gu(K) = Gy - [I1 2, (1 + /i C(n, K)) /(1 = i C(n + 1, K)) for p(j) <n <
n(j) and define functions g,h :10,n(j) — p{j)] — R0 by

g(K) = Gy (K) - ((n(}), K), h(K) = fu(j)/ Gy (K).
Then
0 <g(K)h(K) <e/2 for 0<K <p(j)-n(j)

provided that m(j— 1) > ny. In addition, g and 4 are monotonously non-
increasing, and non-decreasing (in K), respectively. Since ((n,0) = A(n) for
n(j-1)<n< n( ) and {((n)} is not a subdominant solution of F ({0}, {£})
we have that Zk n(j— 1)Jrlkak( )_1 converges as u(j} — oo, by 0 < f,,C(n)
e/(1 —¢) <1 and Proposition 2.3. So, if we choose m(j — 1) large enough, say
m(j — 1) > n3, then A(0) < £/3. Moreover, since $; — oo as m(j — 1) (and so,
p(j)) tends to infinity, we have /; < $I7,_; if m(j — 1) is larger than some num-
ber ns. We now choose m(j — 1) > max(n,n2,n3,ns) and we choose K as fol-
lows: if A(n(j) — p(j)) < 3¢ we set K_n(]) p(J), ¢(n) =<¢(n,K) for n=
n(j— 1) +1,...,8()). Thenf,,j)Gn ) < < 3deand dy > dn(]) Hence, by (6.4) we
have
n(Jj)
d’>1 and dY>0 for n(j—1)<n<n(j).
I=n(j—1)+1

If h(n(j) — p(j)) > 3¢, we may choose K such that A(K) <
0 < K <p(j)—n(j), by h(0)<e/3 Then ((n):={(n,K
n < n{j). Now again f G,y < ¢ and
n‘/(j) (1 =€) Gugjy +1(dng) ]))

> (1= &) Guiy sy - 1+ﬁmC@UD

1= fugiy C(n(7) + 1)
o (1= Guyy - (C(r(f) = Cn(j) + 1) - (1 + fuyy (1))
- L=/ Gy

3¢, g(K) < % and
) n(j-1) <

1 —¢?
> U2 v (-
€
2 1-& 3 1
> _Z. (1 — —
73 123 Tal €) >3 +0e)

where 6(¢) — 0 as ¢ — 0 (we may assume that F/I,H > 4 for all 7). So we
choose ¢ so small that [6(e)] < 12 Then dn () =0, so that d” >0 for
n(j—1) <n<n(j)and Z;'(jnu D4l dy > 1. Moreover,we havef,,(])/G ;) — 0
asj — oo. (In fact we have only constructed a solution {{(n)}, . y for N so large
that |6(¢)] < {5. Of course, this solution can be completed to a solution
{¢(n)},» o with {¢(n)} > {0} and d,, > 0 for all n.)

It remains to show that v({¢(n)},{/,}) is indeed an affine renormalization.
Since we have {G,} > {0}, lim,_, o f, ((n) = 0, the recurrence F({d,}, {fx}),
with d, = ((n) —C(n+1) —f, ((n) ((n+1), is of converging type and by
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Go(j)(Zp5) — C(p(J))) =1 (with {z,} as in (6.3)), we infer from (2.3) that
S v fe Gl = 00, so that {¢(n)} is the subdominant solution of F({d,}, {/}).
We now treat the general case. Thus, let {d,} be an arbitrary real sequence
with lim,_ d,f, =0. Put d;=min(d,,0). Then lim, . d, f, =0 and
{d,} < {0}. Hence F({d,},{/fx}) is of converging type (by Proposition 3.5(a))
and defines an affine renormalization v’ = v({n(n)}, {£,}). Then {d*'} > 0 and
FHdry, {£V'}) is of diverging type, by Proposition 4.1. Thus we can find an
affine renormalization v =v({n'(m)},{f'}) such that 3°°° \ (d"")" = oo and
{(d"y” }> {0}. By Corollary 4.3, there is an affine renormallzatlon v

"

v({n'(n)}, {fx}) such that {(d*")" } = {d}" }. This concludes the proof. [

§7. SUBDOMINANCE FOR LINEAR RECURRENCES RELATED TO CONVERGING
TYPE RECURRENCES

In this section we study the relationship between linear recurrences and
PSL(2,R)-recurrences. In §1 we saw that a linear recurrence (1.3a) can be
reduced to a linear recurrence (1.4) in almost all cases, and particularly in the
case that the limit recurrence has characteristic polynomial (X — a)2 ,a#0. . We
further saw that the study of (1.4) is intimately related to the study of (the solu-
tions of) (1.5), a PSL(2,R)-recurrence. We recall that, in the case that
Hmy, o c(n) = 0, lim, _, o (tin +1/4n) = 1 for all solutions {u,} # {0} of (1.4) if
and only if F({—c¢(n)},{1}) is of converging type. In the opposite case,
lim, , oo (#n+1/u,) does not exist for any solution {u,}.

We call a solution {v,} # {0} of a linear second-order recurrence sub-
dominant if lim, _, , (v,/u,) = 0 for all solutions {u,} that are linearly indepen-
dent with {v,}. If such a solution exists then lim,_. . {u,/u,) exists (including
infinity as a possible value) for all non-trivial solutions {u,}, {u,}. In what fol-
lows we show that convergence of F{({—c(n)},{1}) implies the existence of a
subdominant solution for (1.4), whereas the converse is not true, as a counter-
example will show.

Proposition 7.1. The linear recurrence (1.4) with lim,_, o c(n) = 0 has a sub-
dominant solution if and only if for some solution {u,} # {0} the sum " \ G,
converges in P! (R), where

Gn=( I M) (n > N).

k=N Uk 11

In this case, Z;’;N;}',, converges for all solutions {u,} # {0} of (1.4). (If up+ =
0, then we omit Gy, G+ 1 in the summation and replace (2u, > — Up+3)/(Un+1) by
l—chy1in Gy form>n+ 1)

Proof. leen {un}, (1.4) has a basis of solutions {u,},{v,} with u, =
Uy - S 771 Gy,. Further use the fact that lim, o, 1,/v, exists in P!(R) if and only
if (1.4) has a subdominant solution. O
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Corollary 7.2. If F({—c(n)},{1}) is of converging type, then the corresponding
linear recurrence (1.4) has a subdominant solution.

Proof. By Proposition 2.3, 3-°°  (IT/Zx (1 + Gu) /(1 — (mat))”" converges in
PY(R) for every solution {G,} of F({—c(n)},{1}). Setting ¢, = (ns1/tn) — 1,
we have Gp=(1—Cw)/(1+G) - Iy (1= Cuet)/(1 4 Gn) (n > N). By
lim, _, o ¢, = 0, the assertion follows. O

Remark 7.1. In particular, it follows from Corollary 7.2 that if (1.4) has a
solution {u,} with lim, . o1, +1/u,) = 1, then it has a subdominant solution.
The following example shows that the converse is not generally true.

Let {v(j)} be an increasing sequence of natural numbers such that
v(j+ 1) —v(j) ~a’ for some a > 1 (j — 0o0). We define a sequence of non-
negative real numbers {c(n)} such that ¢(n) = 0 if  is not one of the numbers
v(j), and F({—c(n)},{1}) has a solution {z,} such that ZV‘(}.)M =mj+k
(0 <k <v(j+1)—v(j)) with mj - —co and m;+v(j+1) —v(j) — o< as
j — o00.Then ¢(v(j)) < 0and lim, _ o, ¢(n) =0.Put G, = [[/_o (1 +2z)/(1 — z1)
(neN)and I'; = G,(; (j € N). Then

komi+1+1 (mj+k)(mj+k+1)
Gupsr =Ty Il =T~ ’

,:lmj+l—1_ Mj(Mj+1)
and
gL G '=r". _Lk_
nmo N1 bomt k]

If we choose m; = —¢;(v(j+ 1) — v(j)) such that 2m; =1 mod 2 and ¢; =
c+0(1),0 <c< (a+1)7", then

(l—cj)(l—i—mj—mjc-_l) 1-¢ 2
i =1, - L~ ~ r; (j
A —cj(m; + 1) ( c ) i U= )

and furthermore,

v il ritm(w(l+1) = v(l)
G = ! converges j
D S s By B A
and
koo -1 m; k -1 :

Hence, >°°° , G ! converges, so that, by Proposition 7.1, (1.4) has indeed a sub-
dominant solution. O

The problems treated in this paper are closely connected to the classical results
of Poincaré and Perron. If lim, o, ¢(n) = ¢ > 0 in (1.4), then the Theorem of
Poincaré and Perron says that limy,_, . (4, 1/un) exists for all non-trivial
solutions {u,} of (1.4), and, even more, for every zero o of P(X)=
X?—-2X 4 (1 - ¢) there is a solution {u,} such that lim, _ o (#n+1/tn) = cv.
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(See e.g. [4], [7], [8], [10].) This fact is no longer true if ¢ < 0, which is due to the
fact that in this case the zeros of P have equal moduli. The first counterexamples
were given by Perron (in [9]).

In addition, the matter is intimately related to the convergence of continued
fractions (see e.g. [4], Ch.7). If {U,S‘)} and {v,sz)} are the two solutions of (1.4)
with vl(l) =1, vz(l) =0, U1(2) =0, vz(z) =1, then

q(n)|
|1

_KT_ q(m)

1

Mzz.m Sk

Un+2 ’ 1

where g(n) = (c(n) — 1)/4 (n € N). So, the continued fraction K°_,(g(m)/1)
converges, i.e. lim, . K}, _,(g(m)/1) is a real number or is infinity, precisely if
(1.4) has a subdominant solution. Moreover, in this case the subdominant
solution can be expressed by means of the ‘queues’ KX_, (g(m)/1) of the
continued fraction. Namely, if we set y, = K%*_ (g¢(m)/1), we have y, =
q(n)/(1 4 yui1), sothat {(=2)"" 1oy, oo y1} = {wx} is a solution of (1.4)
if y; # co. In fact, it is a subdominant solution, since w; = 1, w, = —2 y|, whence
Wy = v,sl) -2y v,sz) (n € N), and hence lim,_ (w,,/v,fz)) = 0. Similarly, if
y1 = oo, then {w,} = {(=2)"" ' y_y - 2} is a subdominant solution of
(1.4), since by wp =1 and wy, = -2y, =2 it follows that {w,} = {U,SZ)} and
limn_.oo(v,fz) / vV ) = 0 by assumption. Thus we see that the problem concerning
the convergence of K_ | (a,/1) for lim, _ o a, = — 1 is equivalent to the ques-
tion if (1.4) with lim,_ . ¢(#) = 0 has a subdominant solution. Besides [4] and
[5], where the matter is treated from the latter point of view, we refer to [1], [2], [3]
for a treatment from the former point of view, i.e. as a problem about continued
fractions.
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