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SUMMARY

Likelihood calculation for pedigrees is complicated and often time-consuming. Testing correlation
structures due to familial aggregation is therefore a preliminary procedure. A score statistic is given
to check correlations between relatives of randomly chosen pedigrees. This statistic can be used for
quantitative and dichotomous data. For both data types, the distribution of the statistic under the
null hypothesis is derived. To demonstrate the performance of the statistic, results of simulations
under various models are given. Finally, the test is applied to data on a continuous blood factor.

1. Introduction

The general genetic models of Elston and Steward (1971) are often used to model familial data. Since
1971, many other genetic models have been developed and introduced. Thompson (1986a) gives an
overview of the range of genetic models available. A useful class of genetic models is the regressive
models introduced by Bonney (1984, 1986). These models specify a major gene effect and a residual
effect that represents the combined effects of environmental, familial, and polygenic factors. For
both effects, the distribution is specified by conditioning each response on those of the preceding
relatives. However, since these genetic models have many model parameters and the maximum
likelihood estimates are highly interdependent, statistical conclusions are often difficult to make
(Thompson, 1986b). Hence, these genetic models cannot be applied to small data sets concerning a
trait for which the genetic effect is rather unclear.

For simplicity, we consider a set of pedigrees from a population of individuals who mate
completely at random and where no natural selection exists and no mutations occur; hence the
genotype probabilities for the founders of a pedigree are the Hardy-Weinberg equilibrium proba-
bilities, and the conditional genotype probabilities for the nonfounders follow via the Mendelian
laws from the genotypes of the parents. A discussion about these assumptions can be found in
Thompson (1986a, chapter 1). Now, the likelihood is the weighted sum over all genotype combina-
tions G:

L(8]Y) = gengypc P(Y|G, 9)P(G|8),

combinations

where 8 is a vector of model parameters and P(G|8) can be computed using Hardy-Weinberg and
the Mendelian laws.

In studies on familial aggregation of a certain trait, investigation for a possible correlation between
relatives is an essential preliminary procedure. The genetic distance between individuals should
determine the correlation between two individuals of the same pedigree. The aim of this paper is to
develop a test for correlation structures between relatives that is less specified than the conventional
genetic models. This test is a scaled version of the goodness-of-fit test based on models for random
effects derived by le Cessie and van Houwelingen (1995).
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In Section 2, a random effect model is introduced. In Section 3, the statistic to test the hypothesis
of no correlation is given. In Section 4, the distribution of the statistic under the null hypothesis is
derived. To investigate the performance of the test, simulations were carried out. The results of
these simulations are given in Section 5. In Section 6, the test is applied to a study of familial
aggregation of a blood variable. Section 7 discusses the implications of our findings.

2. The Model

LetY be a response vector of members of randomly chosen pedigrees and Y, the response variable
of member j. The response variables of members of the same pedigree may be correlated because
of genetic effects. These genetic effects are random effects and the following family of random effect
models is proposed to model the data:

E(Yju)=h~ p +u,), (2.1)

where %2 is a link function (McCullagh and Nelder, 1989) and the values of uj are correlated
zero-mean genetic (random) effects with covariance matrix +?R (the correlation matrix R will be
specified below). The genetic effects u, induce a correlation between the response variables Y, and
it can be assumed that Y, are conditionally independent given the genetic effects u,. The variance
of Y, given u, represents the unpredictability of the response variable given the genetic effect.

For 72 = 0, the response variables Y, are independent and identically distributed. Testing whether
the genetic effects are present in the data is equivalent to testing the hypothesis 72 = 0 versus 7° >
0. In the following section a test statistic is given.

Now consider a Mendelian dominant autosomal gene that influences a quantitative trait. Individ-
uals who have the allele 4 have a larger mean response than individuals who do not have the allele
A. Define G, to be the genotype of person j. By taking the identity as link function, the model
becomes

E[Y,G,] = u + B(G, € {4A, Aa}] - P(G, € {44, Aa})), (2.2)

where [ ] is the indicator function and B([G, € {44, Aa}] — P(G, € {44, Aa})) is the genetic
effect u,. Let p be the allele frequency of A, then P(G, € {44, Aa}) = p?> + 2p(1 — p) =
p(2 — p) and the variance of the genetic effect 7> = B%p(2 — p)(1 — p)?. Elandt-Johnson (1971,
pp- 138-149) derives the correlation between individuals of a sibship as (4 — 3p)/(8 — 4p) and
between a parent and a sib as (1 — p)/(2 — p). Therefore, as p approaches zero, the correlation
of the genetic effects of a pedigree tends to the following natural correlation structure R:

+ individuals within a sibship have correlation 1/2.

+ parent-offspring have correlation 1/2. 53
« grandchild—grandparent have correlation 1/4. (2.3)

» aunt/uncle-niece/nephew have correlation 1/4, etc.
For a Mendelian autosomal gene with incomplete penetrance, the following model can be used:
E[Y)|G]=u + B(G, = AA] + b[G, = Aa] — P(G, = AA) — bP(G, = Aa)), (2.4)
where 0 < b < 1. Here the genetic effect &, is equal to
B([G, = AA] + b[G, = Aa] — P(G, = AA) — bP(G, = Aa)).

For b = 0.5, P(G, = AA) — bP(G, = Aa) = p, 7> = 0.58%p(1 — p), and for every allele
frequency the correlation matrix is equal to correlation matrix R (2.3).

If the response variable is dichotomous, the link function A in mode! (2.1) is usually the logit
function of £[Y,], and regression model (2.2) corresponds to a logistic regression model for a locus
with dominance:

logit E[Y,|G,]1 = n + B([G, € {44, Aa}] - P(G, € {44, Aa})). (2.5)
This model reduces to two probabilities:
P(Y, = 1|G, € {44, Aa})

P(Y, = 1|G, = aa). (2.6)
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In the following sections, we use the matrix R (2.3) as the working correlation matrix of the
genetic effects:

COV(u) = r2R.

As will be discussed in Sections 5 and 7, for testing dependency between relatives, it is not
necessary that the working correlation structure agree with the correlation structure of the genetic
effects completely.

3. The Statistic Q

Suppose the data are obtained from k pedigrees containing n persons. Le Cessie and van Hou-
welingen (1995) show that the score test for testing the hypothesis of 72 = 0 is based on the quadratic
form 2., (Y, — ul,)'R,(Y, — rl,), where Y, is the response vector of pedigree i, 1, is a vector of
ones of same length as Y,, u is the mean of Y,,, and R, is the correlation matrix of pedigree i. We
will use the following version of this statistic:

k
(Yx - ""ll),Rl(Yl - IJ'll)
Q = 2 2 b
1=1

g

where o2 is the variance of Y, , under the null hypothesis. By defining

R,

Ry
and Y = (Y, ..., Y},), Q can be written

(Y - u1)'R(Y — p1)
0= ® B

s
0,2

where 1 is a vector of ones of length n. This last formula of Q will be used in the following sections.
To get an impression of the statistic O, let Y, be a dichotomous response variable of person j with
known mean g and variance o> = (1 — u) and write

5o (Y- pIRY(Y, - p)
Q= Z 2 >

(o

where R, is the natural correlation (2.3) between person i and person j of the same pedigree and R,
is zero if i and j are members of different pedigrees. Now, for the pair of individuals i, j,
=(1- p)°R, Y, =Y, =1
(Y, = IR, (Y, = u) = u’R, ifY,=Y,=0
~u(l= )R, ifY,=Y,

Q tends to be large, if Y, = Y, for those individuals for which R, is large. Hence, Q measures
familial aggregation.
Note that for p = 1/2:

Q= Z R, - 2 R,
concordant discordant
pairs pairs

The value of Q is determined mainly by sibship and parent-child relations, but the other relation-
ships also contribute to the value of Q.

4. The Distribution of Q under the Null Hypothesis

If Y follows a normal distribution then E(Q) = trace(R) and VAR(Q) = 2trace(R?) under the null
hypothesis of no correlation (Kendall and Stuart, 1963), and if Y follows a binomial distribution
(0% = u(l — w)), E(Q) = trace(R) and
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1
VAR(Q) = —3 VAR((Y — p)'R(Y — n))

1 ”n
=—| ¥ R2u(1— u)(1~6up + 602 +2u3(1 ~ p)trace(R?) (4.1)
g
=1
1—6up +6up?
= p ————————— + 2trace(R?)
p(l—p)

(le Cessie and van Houwelingen, 1995).

The distribution of Q can be approximated by a y? distribution with scale parameter ¢ =
VAR(Q)/2E(Q) and v = 2E*(Q)/VAR(Q) degrees of freedom. By means of simulations le Cessie
and van Houwelingen (1995) show that the performance of the scaled y? is better than the
straightforward approximation by a normal distribution.

The parameters u and o2 are often unknown and have to be estimated from the data. Since the
estimated mean will be closer to the observed data, it leaves less variance to the residuals.
Moreover, when o2 is unknown, Q is a quotient of two quadratic forms, the numerator N = (Y —
2)'R(Y — i) and the denominator D = [1/(n — 1)[(Y — 4)'(Y — f). These quadratic forms
are positively correlated, and neglecting this correlation gives an overestimation of the variance of
Q. Therefore, it is necessary to adjust for the estimation of these parameters.

Let H = (1/n)11’, with 1 the n-dimensional vector (1, ... , 1)’, then H is the projection of Y on
1.Since Y — i = (I — H)(Y — ), the matrix R has to be replaced by R = (I — H)'R(I — H)
when we compute the expectation and variance of Q (see le Cessie and van Houwelingen, 1995).
Now, we can write Q as follows:

(Y—ﬂYMY—ﬂ[wn_U (Y- u)R(Y - )
B (Y=w)I-H)Y-p)

0=p=-V v -pn

If Y, are independent and normally distributed, the mean and variance of Q under the null
hypothesis can be computed taking the dependency of the numerator N and the denominator D into
account (see Appendix):

E(Q) = trace(R)

and

VAR(Q) =

_ 52y _ 2(%
i ((n — 1)trace (R?) — trace“(R)).
Indeed, the variance of Q is smaller than the variance computed without correction for the
estimation of the variance of Y. Observe that the E(Q) and VAR(Q) are constants, in contrast with
the version of le Cessie and van Houwelingen (1995). Observe also, that E(Q) = E(N)/E(D) and
VAR(Q) agree with the following approximation except for a factor (n — 1)/ (n + 1):

VAR N VAR(Y) | EZV) VAR(D) - 2 E(V) COV(N, D 4.2
—| = + -2 == . .
(5) =~ Fwr * 5wy YARD) - 2 £7p5 OV, D “2)
This approximation follows by a first-order Taylor expansion of Q = N/D around (E(N), E(D))
and by the fact that E(Q) = E(N)/E(D).

For Y binomially distributed, the conditional expectation of Q given 2 Y, = s under the null
hypothesis can be computed:

E(Q|Y Y, =s) = trace (R).

Since the conditional expectation is independent of s, it is equal to the expectation of Q and it
appears that also for Y binomially distributed E(Q) = E(N)/E(D). However, the conditional
variance of Q given X Y, = s depends on s. (Note that the conditional variance of Q given
S Y, = s can be derived, since we can calculate E(((Y — u)'R(Y = u))?) and the statistic = Y,
is complete.) We preferred to use approximation (4.2) to compute the variance of Q under the null
hypothesis, motivated by the facts that, for ¥ distributed normally and binomially, E(Q) is equal to
E(N)/E(D) and that for Y distributed normally this approximation agrees with the variance of Q
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except for a factor (n — 1)/ (n + 1). Now, VAR(N), VAR(D), and COV(N, D) can be computed

using

n

COV((Y = w) A(Y = p), (Y = p)B(Y = ) = 3 AuB.u(1— p)(1—6p +6p2)

=1
+2u2(1 — p)?trace(4 « B) (4.3)

and it follows from approximation (4.2) that the variance of Q under the null hypothesis can be
approximated by

no trace?(R) 2 _ -
VAR(Q)=K| > R? - - + — {(n — Dtrace(R?) — trace?(R)),
=1
where
1—6u +6u?
u(l— )

From simulations of dichotomous data, it appears that this approximation performs well. The results
of these simulations will be given in Section 5.

5. Performance of the Test Statistic
To study the performance of the test, 7 pedigrees (with sizes 10, 10, 5, 8, 5, 3, and 2) were simulated
under different genetic models. This data set of 7 pedigrees has the same structure as the data of the
example of Section 6. First the performance of the test for continuous data is studied. To check the
significance level of the test under the null hypothesis of no familial aggregation, a simulation of
10,000 samples of 43 standard normal distributed response variables is performed. The formulae of
Section 4 give E(Q) = 39.96 and VAR(Q) = 65.62, giving a scale factor of ¢ = .82 and v = 48.67
degrees of freedom. A nominal level of & = 0.05 corresponds to a cut-off point of 65.95-.82 = 54.05.
The test rejects the null hypothesis of no correlation in 5.5% of the cases. The estimated mean and
variance are 39.92 and 65.59, respectively. In Figure 1, the cumulative distribution function of the
simulated Q and the cumulative scaled y * distribution with v = 48.67 degrees of freedom are given.
It is clear that the scaled x * distribution is a good approximation of the distribution of Q under the
null hypothesis of no correlation.

To study the power of the test, 10,000 samples of the genotypes of the data set (43 individuals) for
the allele frequencies p = .01 and .1 are generated. For each group of 10,000 simulated gene
patterns, response variables under 10 different genetic models are simulated. The models are

E(Y,|G) = u + B(G, = AA] + b[G, = Aa] - p* — 2bp(1 - p)),

1.0 ;
0.8
oy
c D.s 1
[43)
&
x?:) 0.4 -
0.2 1 — cdf of Q
— — scaled chi—-square
0.0 T . . - - \
20 30 40 50 80 70 80
Q

Figure 1. The cumulative distribution function of the under the null hypothesia simulated
statistic Q and the cumulative scaled y? distribution with v = 18.67 degrees of freedom.
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Table 1
Ten thousand simulations under a dominant model with an allele frequency of .01 for continuous
response variables: the variance of the random effect (t?), the power, and the expectation and
variance of Q estimated from the simulated data and the computed expectation and
variance of Q

Estimated Computed
B 72 Power EQ) VAR(Q) E(Q) VAR(Q)
1 .02 .066 40.58 69.65 40.62 72.86
2 .08 .100 41.80 88.60 42.46 84.82
3 .18 134 43.07 120.01 45.13 103.14
4 31 .163 44.13 153.28 48.23 125.26
5 .49 .181 44.93 182.07 51.41 148.31

where b is equal to 1 (dominant model) or 0.5 (incomplete dominant model) and B varies from 1 to
5 (recall 0% = 1). The expectations and variances of Q under the different models are estimated from
the simulated data. The results for the dominant model are given in Tables 1 and 2 and for the
incomplete dominant model in Tables 3 and 4. It is clear that the power is larger for a stronger
genetic effect (large B and/or p). The power is small for a weak genetic effect, because of the
smallness of the data set.

The equality E(Q) = E(N)/E(D) does not hold under alternative models, but for small 72, the
expectation of Q can still be approximated by E(N)/E(D). When the working correlation (2.3) is
used as correlation matrix of the genetic effects, the expectation is

2
trace(R) + 53 trace(R?)

E(Q)z(n‘ 1) 7_2 2 (5'1)
n-l+— trace(R)

and formula (4.2) can be used to approximate the variance of Q, where VAR(N), VAR(D), and
COV(N, D) can be computed using

COV((Y = u)' A(Y = w), (Y — w)'B(Y — p)) = 2trace((o?] + r°R)A(c2 + 72R)B). (5.2)

Table 2
Ten thousand simulations under a dominant model with an allele frequency of .1 for continuous
response variables: the variance of the random effect (t2), the power, and the expectation and
variance of Q estimated from the simulated data and the computed expectation and
variance of Q

Estimated Computed
B T2 Power E(Q) VAR(Q) E(Q) VAR(Q)
1 A5 137 43.87 88.74 44.57 99.26
2 .62 .349 50.97 135.90 53.30 161.99
3 1.39 .536 56.70 179.72 60.50 211.50
4 2.46 644 60.51 211.10 65.28 240.70
5 3.85 .705 62.97 231.97 68.33 257.33
Table 3

Ten thousand simulations under an incomplete dominant model with an allele frequency of .01
for continuous response variables: the variance of the random effect (v*), the power, and the
expectation and variance of Q estimated from the simulated data and the computed
expectation and variance of Q

Estimated Computed
B r2 Power E(Q) VAR(Q) EQ) VAR(Q)
1 .01 .058 40.18 66.20 40.30 70.84
2 .04 066 40.60 69.80 41.27 77.04
3 .09 .082 41.18 77.49 42.78 87.01
4 .16 101 41.83 89.44 44.69 100.08
5 25 119 42.49 104.57 46.84 115.30




1298 Biometrics, December 1995

Table 4
Ten thousand simulations under an incomplete dominant model with an allele frequency of .1 for
continuous response variables: the variance of the random effect (72), the power, and the
expectation and variance of Q estimated from the simulated data and the
computed expectation and variance of Q

Estimated Computed
B 2 Power E(0) VAR(Q) E(Q) VAR(Q)
1 .09 .081 41.34 73.62 42.81 87.18
2 36 159 44.60 95.91 49.18 132.11
3 81 272 48.51 126.20 55.68 178.90
4 1.44 .389 52.19 156.35 60.84 213.72
5 2.25 .488 55.30 181.78 64.58 236.68

The computed expectations and variance under the alternative models are also given in Tables 1, 2,
3, and 4. From these tables it can be concluded that only for weak genetic effects the computed
expectations and variances agree with the estimated expectations and variances.

Estimates of 72, the variance of the genetic effects, are obtained by a first-order approximation
(based on the score statistic for 72 = 0):

(7_2)~2.Q—E(Q)
2} 7% VAR(Q)

These estimates and the true values are given in Table 5. Only for weak genetic effects are the
estimates reasonable; for strong genetic effects the first-order estimates are too small.

= (5.3)

Table 5
The variance and the estimated variance of the genetic effects for an allele frequency of .1 and
continuous response variables

b =1 b = 0.5
B 7_2 %2 7_2 A2
1 0.15 0.12 0.05 0.04
2 0.62 0.34 0.18 0.14
3 1.39 0.51 0.41 0.26
4 2.46 0.63 0.72 0.37
5 3.85 0.70 1.125 0.47

For various marginal probabilities of getting a dichotomous trait (= £ P(Y = 1|G)}P(G)),
10,000 samples of 43 dichotomous response variables are simulated under model (2.6). The marginal
probabilities are .1, .2, .4, and .5. To study the power, dominant models are considered. Gene
patterns are simulated under allele frequencies .01 and .1 of 4 and response variables are simulated
for two different conditional probabilities of getting the disease given the genotype is A4 or Aa: .7
and .99, whereas the marginal probability of getting the disease is kept on .1, .2, .4, or .5. If the
response vector is zero (giving a zero denominator of ), the null hypothesis of no correlation is not
rejected. The results are given in Table 6. It appears that the four actual levels (4.3%, 5.4%, 5.3%,
and 5.4%) agree with the nominal level of 5% and that the power is reasonable for an allele frequency
of 0.1 and a large difference between the conditional probabilities of getting the disease given the
genotype is A4 or Aa and getting the disease given the genotype is aa. The power is small for an
allele frequency of .01.

For weak genetic effects, 72 can be estimated using the score statistic, and the expectation and
variance of @ under an alternative model can be computed using formulae similar to those for the
continuous response variables (5.1) and (5.2).

To compare the correlation of the genetic effects under a dominant model with the natural
working correlation matrix R (2.3), these correlations are calculated using the formulae of Section
2 for two members of a sibship and for a child and a parent (Table 7). Since the true correlation
matrix hardly differs from our working correlation matrix R (2.3), we are confident that our test loses
very little power when compared with a score test based on the correct correlations.



Testing Familial Aggregation 1299

Table 6
Ten thousand simulations of dichotomous data under null models and alternative models:
various marginal probabilities P, allele frequencies p, P, = P(Y; = 1|G; € {44, Aa}),
P,, = P(Y;, = 1|G; = aa) and the power

P P P, P,, Power
.10 — .10 .10 .043
.10 .01 .99 .08 .139
.20 — .20 .20 .054
.20 .01 .99 .18 .097
.20 .10 .70 .08 .320
.20 .10 .99 .01 776
.40 — .40 .40 .053
.40 .01 .99 .39 .070
.40 10 .70 .33 110
.40 .10 .99 .26 328
.50 — .50 .50 .054
.50 .01 .99 .49 .063
.50 .10 .70 .45 .075
.50 .10 .99 .39 .219
Table 7

Correlations between two members of sibship and between a parent and a child for a dominant
model with allele frequencies .1 and .1

Pair p = .01 p=_.1

Sibs .499 .487
Child-parent .497 474

6. Example

In a study of familial aggregation of the response to endotoxin stimulation in whole blood (WB) and
monocyte cultures (MO), seven pedigrees from volunteers (with sizes 10, 10, 6, 8, 5, 4, and 2) were
collected randomly. The third and sixth families have one missing observation of the response in
whole blood (WB). The median, mean, and standard deviation of WB are 15216.0, 14667.4, and
5577.7, respectively; the median, mean, and standard deviation of MO are 6910.0, 8024.5, and
3942.0, respectively; the correlation between WB and MO is .47.

The question of interest is whether the response is genetically influenced. To show the test for
dichotomous variables, both response variables were dichotomized, using the medians as cut-off
point. The statistics are given in Table 8. The linear combination of the quantitative factors, for
which O takes its maximum, is also calculated. The statistics of the quantitative factors are given in
Table 9.

It is clear that the hypothesis of no family aggregation for these data cannot be rejected. The
quantitative and dichotomized response variable WB gives a lower value of O than the expectation
of Q under the null hypothesis. It can be concluded that the response WB shows no familial
correlation. The response MO shows some genetic effect, but the effect is not statistically signifi-
cant. This may be due to the small size of the data set.

Table 8
Statistics of the dichotomized responses WB and MO
Q E(Q) VAR(Q) c v P value
WB 9.81 9.99 4.40 .22 45.39 51
MO 13.44 10.49 4.67 .22 46.06 .09

7. Discussion

A test is given to verify whether familial aggregation in data in randomly chosen pedigrees exists.
From simulations with 43 people, it appears that the test performs well; with strong genetic effects
the power is reasonable, but with weaker genetic effects this particular data set seems too small.
When the variance of the genetic effect is small, an impression of the power can be obtained by using
the approximations of the expectation and variance of Q (formulae (5.1) and (5.2)). These approx-
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Table 9
Statistics of the quantitative responses WB, MO, and a linear combination for which Q takes its
maximum
0 E(Q) VAR(Q) c v P value
WB 35.81 39.96 65.62 .82 48.67 .68
MO 51.08 41.95 69.98 .83 50.30 .14
—WB+5.83MO 50.04 39.96 65.62 .82 48.67 1

imations probably perform better in larger data sets. Note that the power depends not only on the
number of individuals but also on the structure of the pedigrees. For weak genetic effects, 7% can be
approximated using formulae (5.3), but for stronger genetic effects this approximation is poor.

Because of the complex structure of the model parameters and the large set of genotype
combinations for a certain pedigree, genetic modeling is quite complicated. Moreover, incorrect
modeling may have large effects on the estimates of the parameters, whereas an incorrect correlation
matrix simply reduces power. Testing the correlation between relatives by means of our test is
therefore a necessary preliminary procedure. If these correlations are significant, genetic models can
then be fitted to the data to study the type of heritability.

Model (2.1) can be extended by incorporating covariates X:

E(Ylu)=h™"(X"y +u,).

Let d be the rank of X and H the projection matrix on the d dimensional subspace spanned by the
columns of X and R = (I — H)R(I — H). Then if Y follows a normal distribution the expectation
and variance of Q are

E(Q) = trace(R)

and

VAR(Q) = ((n - d)trace(R?) — trace?(R)).

n—d+2

For logistic regression, the variances of Y, are not identical, and we propose to replace the
denominator of Q, o2, by 1/(n — d) £ v,,, where v,, is equal to the variance of Y, under the null
hypothesis. To correct for estimation of u = A ~'(X'y) the following approximation can be used:
Y- fg=(-H)Y(Y ~ ), where H = VX(X'VX) 'X’, where V is the diagonal matrix with
elements v,, (le Cessie and van Houwelingen, 1991).

The test statistic can only be used for randomly chosen pedigrees. A suitable test for pedigrees
that are selected because of the response of a proband should be based on the conditional likelihood

given the response of the proband.

RESUME

Calculer la vraisemblance de généalogies est complexe et souvent consommateur de temps. Tester
des structures de corrélation dues a la présence d’une agrégation familiale constitue en conséquence
une procédure préliminaire. Une statistique du score est présentée pour tester les corrélations entre
membres de généalogies choisies au hasard. Cette statistique peut étre utilisée pour des données
quantitatives et qualitatives. Pour ces deux types de données, la distribution de la statistique sous
Phypothése nulle est dérivée. Pour démontrer la performance de la statistique, les résultats de
simulations sous divers modéles sont exposés. Finalement, le test est appliqué a des données sur un
facteur sanguin continu.
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APPENDIX

Derivation of the expectation and variance of Q for Y independently
and normally distributed

The distribution of Q under the null hypothesis when Y, are normally distributed can be derived by
defining

(Y—/l)’R(Y—ﬂ)_(n_l) (Y - ) R(Y - ) . _1)2 Az}
(Y-a)(y-a) Y- d-H¥-w >z

where A, are the eigenvalues of the matrix R = (/ — H)R(I — H) and z, are (n — 1) orthonormal
transformations of the response variables Y — pn. Since Y, are indegendent and normally distrib-
uted, the values of z, are independent andz and X, ., z? follow a x? distribution with 1 and (n —

2) degrees of freedom, respectively, hence

_N_
Q—B—(n~1)

z;
I T e
224 D,z

follows a B(1/2, 1/2(n — 2)) distribution. It follows that x, -+ x,,_, are identically distributed
with correlation —1/(n — 2),

1
E(x,) = —
and
n—2
(n—13n+1)

(Bickel and Doksum, 1977, p. 44). Hence, the mean and variance of Q are

VAR(x,) = 2

E(Q) = D A, = trace(R)

and

2
VAR(Q) = i1 ((n — Dtrace(R?) — trace?(R)).



