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Giant backscattering peak in angle-resolved Andreev reflection
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It is shown analytically and by numerical Simulation that the angular distribution of Andreev reflection by a
disordered normal-metal-superconductor junction has a narrow peak at the angle of incidence. The peak is
higher than the well-known coherent backscattering peak in the normal state, by a large factor G/G0 (where G
is the conductance of the junction and GQ=2e2/h). The enhanced backscattering can be detected by means of
ballistic point contacts.

Coherent backscattering is a fundamental effect of time-
reversal symmetry on the reflection of electrons by a disor-
dered metal.1'2 The angular reflection distribution has a nar-
row peak at the angle of incidence, due to the constructive
interference of time-reversed sequences of multiple scatter-
ing events. At zero temperature, the peak is twice äs high äs
the background. Coherent backscattering manifests itself in a
transport experiment äs a small negative correction of Order
G0 = 2e2/h to the average conductance G of the metal (weak
localization3). Here we report the theoretical prediction, sup-
ported by numerical simulations, of a giant enhancement of
the backscattering peak if the normal metal (N) is in contact
with a superconductor (S). At the NS interface an electron
incident from N is reflected either äs an electron (normal
reflection) or äs a hole (Andreev reflection). Both scattering
processes contribute to the backscattering peak. Normal re-
flection contributes a factor of 2. In contrast, we find that
Andreev reflection contributes a factor G/G0, which is

If the backscattering peak in an NS junction is so large,
why has it not been noticed before in a transport experiment?
The reason is a cancellation in the integrated angular reflec-
tion distribution which effectively eliminates the contribution
from enhanced backscattering to the conductance of the NS
junction. However, this cancellation does not occur if one
uses a ballistic point contact to inject the current into the
junction. We discuss two configurations, both of which show
an excess conductance due to enhanced backscattering which
is a factor G/G0 greater than the weak-localization correc-
tion.

We consider a disordered normal-metal conductor (length
L, width W, mean free path /, with N propagating transverse
modes at the Fermi energy E p) which is connected at one
end to a superconductor (see inset of Fig. 1). An electron
(energy Ep) incident from the opposite end in mode m is
reflected into some other mode n, either äs an electron or äs
a hole, with probability amplitudes re

n
e
m and rh

n
e
m, respec-

tively. The NXN matrices ree and rhe are given by4

(la)

The s^'s are submatrices of the scattering matrix S of the
disordered normal region,

S =
sn u 0

Ο υ

u' 0

0 v"'

where u,v,u' ,v' are NXN unitary matrices, &=-l — &~, and
ST is a diagonal matrix with the transmission eigenvalues
Ti,T2, ·.. ,TN on the diagonal.

We first consider zero magnetic field (5 = 0). Time-
reversal symmetry then requires that S is a Symmetrie ma-
trix, hence U'=UT, ν' = ντ. Equation (1) simplifies to

ree=-2u (2)

We seek the average reflection probabilities (|r„m|2), where
(· · ·} denotes an average over impurity configurations. Fol-
lowing Mello, Akkermans, and Shapiro,5 we assume that u is
uniformly distributed over the unitary group. This "isotropy
assumption" is an approximation which ignores the finite
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FIG. 1. Numerical Simulation of a 300X300 tight-binding
model for a disordered normal metal (L = 9.5/), in series with a
superconductor (inset). The histograms give the modal distribution
for reflection of an electron at normal incidence (mode number 1).
The top two panels give the distribution of reflected holes (for B — 0
and B = Wh/eL2), the bottom panel of reflected electrons (for
B — O). The arrow indicates the ensemble-averaged height of the
backscattering peak for Andreev reflection, predicted from Eq. (7).
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time scale of transverse diffusion. The reflection probabilities
contain a product of four H 's, which can be averaged by
means of the formula6

(3)-(Ν3-ΝΓ1(διιδ}Ι[+

The result is [with the definition rk=Tk

In the metallic regime N^>L/1>1. In this large-ΛΓ limit we
may factorize (Σ^^ΤΛ>) mto (Σ^)2, which can be
evaluated using

f°

Jo
/( 1/cosh2*) . (5)

The result for normal reflection is

(6)

Off-diagonal (ηφιη) and diagonal (n = m~) reflection differ
by precisely a factor of 2, just äs in the normal state. In
contrast, for Andreev reflection we find

(\rh
n

e
m\2)=\HNL (7)

Off-diagonal and diagonal reflection now differ by an order
of magnitude Nl/L^G/G0>l.

Equations (6) and (7) hold for 5 = 0. If time-reversal
symmetry is broken (by a magnetic field B^Bc^h/eLW),
then the matrices u, u', u, v' are all independent.7 Carrying
out the average in the large-ΛΓ limit, we find

<Κ;|2>=ΛΠ(1-|//£), (\rh

n

e

m\2}^l/NL. (8)

Diagonal and off-diagonal reflection now occur with the
same probability.

We have checked this theoretical prediction of a giant
backscattering peak by a numerical Simulation along the
lines of Ref. 9. The disordered normal region was modeled
by a tight-binding Hamiltonian on a two-dimensional square
lattice (dimensions 300X300, N =126), with a random im-
purity potential at each site (L 11 = 9. S). The scattering matrix
S was computed numerically and then substituted into Eq.
(1) to yield ree and rhe. Results are shown in Fig. 1. This is
raw data from a single sample. For normal reflection (bottom
panel) the backscattering peak is not visible due to statistical
fluctuations in the reflection probabilities (speckle noise).
The backscattering peak for Andreev reflection is much
larger than the fluctuations and is clearly visible (top panel).
A magnetic flux of 10 hl e through the disordered region
completely destroys the peak (middle panel). The arrow in
the top panel indicates the ensemble-averaged peak height
from Eq. (7), consistent with the Simulation within the sta-
tistical fluctuations. The peak is just one mode wide, äs pre-
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FIG. 2. Excess conductance AG = {G(ß = 0))- (G(B>BC)) of
a ballistic point contact in series with a disordered NS junction
(inset), computed from Eqs. (11) and (12). At B = 0 the contact
conductance is twice the Sharvin conductance N0G0, provided

dicted by Eq. (7). If W>L the isotropy assumption breaks
down5 and we expect the peak to broaden over W/L modes.
Figure l teils us that for L = W the isotropy assumption is
still reasonably accurate in this problem.

Coherent backscattering in the normal state is intimately
related to the weak-localization correction to the average
conductance. We have found that the backscattering peak for
Andreev reflection is increased by a factor G/G0 . However,
the weak-localization correction in an NS junction remains
of order G0.4'8 The reason is that the conductance

„Λε 12
(9)

n,m

contains the sum over all Andreev reflection probabilities,10

so that the backscattering peak is averaged out. Indeed, Eqs.
(7) and (8) give the same G, up to corrections smaller by
factors l/N and l/L. In order to observe the enhanced back-
scattering in a transport experiment one has to increase the
sensitivity to Andreev reflection at the angle of incidence.
This can be done by injecting the electrons through a
ballistic11 point contact (width <§/, number of transmitted
modes N0). For 5 = 0, one can compute the average conduc-
tance from4

dT ρ(Γ)Γ2(2-Γ)-2 (10)

The density of transmission eigenvalues p(T) is known,12'13

in the regime ΛΌ^Ί, N^-L/l. One finds

1-1 (lla)

(Hb)

In the absence of time-reversal symmetry (B^BC) we find
from the large-JV~ limit of Eqs. (1) and (9) that

= G0(l/N0+L/Nl)-i (12)

This is just the classical addition in series of the Sharvin
conductance N0G0 of the point contact and the Drude con-
ductance (Nl/L)G0 of the disordered region.

In Fig. 2 we have plotted the difference AG
{G(5S5C)> of Eqs. (11) and (12). If

the conductance drops from 2NoGo to
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where we have abbreviated

«11 «12 ί«13
a = \ l, b=\ C =

«33 «34

«21 « 2 2 / ~ \«23 « 2 4 / " \ «43 «44

10/2 Q

d =
«3l «32

«41 «42 0 ,-ίφ/2 ·

The four-terminal generalization of Eq. (9) is18

s~i //-i D^e ι O»e ι Ν li Λώ

G/G0-Ä21 + Ä21+ -Ä——j——j- (14a)

FIG. 3. Solid curves: excess conductance AG
— (G)CUE of a four-terminal Josephson junction (inset), computed
(Ref. 20) from Eqs. (13) and (14) ίοτΝγ=Ν2=Ν, N3=N4=pN,
with N= 10. The dotted curves are the large-W limit (Ref. 21). The
excess conductance at φ=0 is a factor G/G0=O(N) larger than the
negative weak-localization correction at φ=π.

N0G0 upon breaking time-reversal symmetry. A doubling of
the contact conductance at B = 0 is well known14 in ballistic
NS junctions (1>L}. There it has a simple classical origin:
An electron injected towards the NS interface is reflected
back äs a hole, doubling the current through the point con-
tact. Here we find that the conductance doubling can survive
multiple scattering by a disordered region (KL), äs a result
of enhanced backscattering at the angle of incidence.

As a second example we discuss how enhanced back-
scattering manifests itself when electrons are injected into a
Josephson junction. The system considered is shown sche-
matically in Fig. 3. A disordered metal grain is contacted by
four ballistic point contacts (with 7V; modes transmitted
through contact i = 1,2,3,4). The scattering matrix S has sub-
matrices si;·, the matrix element sijitim being the scattering
amplitude from mode m in contact; to mode n in contact i.
The grain forms a Josephson junction in a superconducting
ring. Coupling to the two superconducting banks is via point
contacts 3 and 4 (phase difference φ, same electrostatic po-
tential). Contacts l and 2 are connected to normal metals
(potential difference V). A current / is passed between con-
tacts l and 2 and one measures the conductance G—I/V äs a
function of φ. Spivak and Khmel'nitskn computed (Ο(φ})
at temperatures higher than the Thouless energy.15 They
found a periodic modulation of the weak-localization correc-
tion, with amplitude of order G0. Zaitsev and Kadigrobov
et al have discovered that at lower temperatures the ampli-
tude increases to become much greater than G0.

16>17 Here we
identify enhanced backscattering äs the origin of this in-
crease.

The reflection matrices ree and rhe (with elements
rij,nm) contain the combined effect of scattering in the nor-
mal grain (described by the matrix S) and Andreev reflection
at the two contacts with the superconductor. By summing a
series of multiple Andreev reflections we obtain expressions
analogous to Eq. (1),

-e = a-b üc*O*(l + <

rhe=-ib*ü*(l + c i

(13a)

(13b)

(14b)

Following Ref. 19, we evaluate (G) by averaging S over the
circular ensemble. At B = 0 this means that S = UUT with U
uniformly distributed in the group ^(M) of MXM unitary
matrices (Af = 2f=1.A/'I·). This is the circular orthogonal en-
semble (COE). If time-reversal symmetry is broken, then 5
itself is uniformly distributed in &Z(M). This is the circular
unitary ensemble (CUE). In the CUE we can do the average
analytically for any JV; and φ. The result is

(G}C(JB=G0N1N2/(N1+N2), (15)

independent of φ. In the COE we can do the average ana-
lytically for Nj>I and φ=0, and numerically20 for any Nt

and φ. We find that the difference
-{G)CUE is positive for (/>=0,

COE

(G)CUE
(16)

with p^(N3+N4)/(Nl+N2). The excess conductance (16)
is a factor G/G0 greater than the negative weak-localization
correction, which is observable in Fig. 3 at φ=ττ. For
N^IQ the finite-N curves (solid) are close to the large-N
limit21 (dotted) which we have obtained using the Green's
function formulation of Refs. 13 and 16.

The excess conductance is a direct consequence of en-
hanced backscattering. This is easiest to see for the symmet-
ric case N,=N2^N, when (RH

12) = (Rh

2!) , <*£> = </?£>.
Current conservation requires R^+R^+R^+R^N. For
Λ>1 we may replace {/(Äi;·)} by /((Äi;·)). The average of
Eq. (14) then becomes

The first term ^N is the classical series conductance.
The second term is the weak-localization correction due
to enhanced backscattering for normal reflection. Since
(R\\~Re2\) = O(l) this negative correction to ^V can be ne-
glected if JVi> 1. The third term gives the excess conductance
due to enhanced backscattering for Andreev reflection. Since
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this positive contribution is a factor
G/G0 = O(N) greater than the negative weak-localization
correction.

In conclusion, we have predicted (and verified by numeri-
cal Simulation) an order G/G0 enhancement of coherent
backscattering by a disordered metal connected to a super-
conductor. The enhancement can be observed äs an excess
conductance which is a factor G/G0 greater than the weak-

localization correction, provided ballistic point contacts are
used to inject the current into the junction. The junction
should be sufficiently small that phase coherence is main-
tained throughout. Several recent experiments22 are close to
this size regime, and might well be equipped with ballistic
point contacts.
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