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This paper is devoted to the proof of the following fact from com-
mutative algebra, which is a slight sharpening of a result of Wiles.
Let O be a complete discrete valuation ring, R a complete noethe-
rian local O-algebra, B a finite flat local O-algebra, and ¢ R — B,
7© B — O surjective (O-algebra homomorphisms. Suppose that the
length of the O-module (ker 7¢)/(ker mp)? is finite and bounded by the
length of ©/r(Anng kerr). Then p is an isomorphism and B is a com-

plete intersection.

We prove the following fact from commutative algebra, due to Wiles in the
case that B 1s a Gorenstein ring.

Theorem. Let O be a complete discrete valuation ring, R a complete noethe-
rian local O-algebra, B o finite flat local O-algebra, and ¢: R — B, n: B — O
surjectwe O-algebra homomorphisms. Then the follouwsng are equivalent.

(i) the length of the O-module (ker myp)/(ker mp)? 1s finste and less than or
equal to the length of O/m(Annpg ker7);

(1) the length of the O-module (kermy)/(kermp)? s finite and equal to the
length of O/m(Anng ker ),

(i) B s a complete 1utersection, w(Anngkerw) # 0, and ¢ 15 an somor-
phism.

The terms are explained below

Rings are supposed to be commutative with 1. For the basic definitions from
commutative algebra we refer to [1]. We write mpg for the maximal ideal of a
local ring R. By (7 we shall always denote a complete discrete valuation ring; the
completeness assumption can be dropped, except where complete intersections
are involved (this is mostly due to the naive nature of our definition of a complete
intersection below).

Fanate flet. We shall call an O-algebra finste flat if it 1s finitely generated and
free as an O-module. This is equivalent to it being finitely generated and flat as
an O-module, which is an easy fact that we shall not need (cf. [1], Exercise 7.16).
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For a finitely generated free O-module M we shall put Mt = Home (M, O),
this 1s an autoduality of the category of fimtely generated free O-modules

Local O-algebras A local O-algebra 1s an O-algebra B that 1s local as a ring
and for which the structure map O — B maps me mmside mp

Gorenstewn rings A finite flat local O-algebra B 1s called Gorenstewn 1f BY 1s
free of rank 1 as a B-module This 1s not a relative notion there 1s an absolute
notion of “Gorenstemn ring” that 1s equivalent to the given one for finite flat
local algebras over a discrete valuation ring (see [3], Section 18), and which we
will not need

Complete wntersections Let B be a finute flat local O-algebra that has
the same residue class field as O The latter condition means that the nat-
ural map O/me — B/mp 18 an 1somorphism, 1t 1s satisfied if there 1s an O-
algebra, homomorphism B -+ O, which 1s the case i the Theorem We call
B a complete wntersection if, for some non-negative integer n, there are ele-
ments fi, , Jn € O[[X1, ,X,]] (the two n’s are the same!) such that
B =0[[X1, Xall/(fi, ,fn) as O-algebras Agam, this is not a relative
notion there 18 an absolute notion of “complete intersection” that 1s equivalent
to the given one for finite flat local algebras over a complete discrete valuation
ring with the same residue class field (see [3], Section 21) We will not need
this fact What we do need about complete mtersections 1s summarized in the
following lemma

Lemma 1. Letn be a non-negatwe wnteger and f1, , fn € O[[X1, ,X4]]
Suppose that B = O[[X1, ,Xall/(f1, ,fn) s finately generated and non-
zero as an O-module Then B 1s a finste flat local O-algebra with the same
residue class field as O, it 15 Gorenstein, and Bt has o B-generator A unth the
property that the trace map Trp/0 B — O 15 gwen by Trpyo =d A, where d

of
15 the wmage of det(ﬁ:)m mn B
Proof (sketch) Let o be a prime element of @ For the first statement, 1t suf-
fices to check that fi, , fn, o 15 @ “regular” O[[X1, ,Xx]]-sequence One

way to do this 15 by means of the “Koszul-complex” ([8], Theorem 16 8) Once
one knows about regular sequences and the Koszul complex, one can prove the
remammng  statements by means of an  argument due to
Tate ([4], Appendix) O

A more general version of Lemma 1, 1n which O 15 allowed to be any noethe-
rian rng, 15 proved m [2] The mam tool in the proof 15 agamn the Koszul
complex

The congruence ideal Let B, C be rings and let 7 B — C be a surjective
ring homomorphism Then the congruence ideal 7« of 7 15 defined to be the
C-deal 7( Annp ker 7), where Anng ker m denotes the annthilator of ker w in B

The terminology 15 explained by the following example Let C, D be rings
with 1deals I, J, and suppose that an 1somorphism C/I = D/J 1s given Put
B=Cxg/ D={(zy) €CxD zandy have the same image n C/I}, and
let 7 B — C be the first projection Then kerm = {0} x J, and if AnnpJ =0
then Annpkerm = I x {0} so that 7, = I Smnce the elements of B are defined
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by means of a congruence mod I (more precisely, an equality in C/I), the ideal
I may indeed be called a “congruence ideal”.

The definition can be reformulated as follows. View C as a B-algebra via .
Then there is an isomorphism Homp(C, B) 2 Anngkern sending f to f(1),
S0 7 is just the image of the map Hompg(C, B) -+ Hompg(C, () = C induced
by «.

If 7, = C then the sequence 0 — kerm — B — C — 0 of B-modules splits,
so that B becomes a product of two rings. Hence if B and C are local, then
one has 5, = C if and only if 7 is an isomorphism. A “relative” version of this
statement will, under additional hypotheses, be proved below (Lemma 3).

Suppose now that B is a flat O-algebra and that w: B — @ is an O-algebra
homomorphism (necessarily surjective) with n, # 0. We prove that

(2) (kerm) N ( Anng ker7) =0,

so that the surjective map Anngkern — 7, given by = is actually an isomor-
phism. Let z € (ker7)N( Annp ker ), choose a € 7,, a # 0, and write a = 7 (b)
with b € Anngkerw. Then we have az = (a — b)x = 0, the first equality be-
cause b € Anngkerw and z € kerw, and the second because a — b € ker w and
r € Annpkern. Since B is flat, multiplication by a is injective, so x = 0, as
required.

Gorenstein rings and the congruence ideal. Suppose that B and C are finite
flat local O-algebras that are Gorenstein, and let 7: B — C be a surjective
O-algebra homomorphism. Choosing isomorphisms B = Bt, C = C' of B-
modules we find that Homp(C, B) =g Homp(CT, Bt). The latter module is,
by duality, isomorphic to Hompg(B, (), which is easily seen to be generated
by the map w. Thus 7, is a principal C-ideal, generated by the image of =
under the map Homp(B,C) = Hompg(C,B) — C. This can be used as an
alternative definition of the congruence ideal in the Gorenstein situation.

Lemma 3. Let A and E be finite flat local O-algebras, and let ¢: A —
B, n: B = O be surjective O-algebra homomorphisms. Suppose that A is
Gorenstein and that Ny, = 7 # 0. Then ¢ is an isomorphism.

Proof. One easily checks that ¢ induces a map Anny kermy — Annpgker.
Applying (2) to m and to mp we find that = and wy induce isomorphisms
Anngkerm — 7, and Anngkermy — 1.,. Thus from 7, = 7y it fol-
lows that Anngkermy — Anngkerw is an isomorphism as well, and that
@ Anng kermp = Annpg kern. Therefore we have

Al(kerp + Anngkermp) = @A/ Anngkermp = B/ Anng kerm,

which is free as an O-module since B/ Annp ker 7 can be viewed as a submodule
of Endgp kerw. Also, applying (2} to mp we obtain

kero N Anngkermyp C kermp N Anng kermyp = 0.
We conclude that there is an exact sequence of A-modules

0 kero® Anngkermp — A — B/ Anngkerm — 0
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consisting of finitely generated free O-modules. Dualizing, we obtain an exact
sequence of A-modules

0 — (B/ Annpkerm)t — At — (ker o)t @ ( Anng ker m)t — 0.

Since A is supposed to be Gorenstein, we have At =4 A. Tensoring with the
residue class field k of A we find that dim; (At ® 4 k) = 1. By the exact sequence,
this implies that one of dimy((ker ¢)f® 4 k) and dim,(( Ann s ker mp)T® 4 k) is 0.
Hence by Nakayama’s lemma and duality one of kerp and Anng kermy is 0.
But Anny ker mp = 15, # 0, s0 kerp = 0 and ¢ is an isomorphism. |

The condition that A be Gorenstein cannot be omitted in Lemma 3. This
is shown by the example A = {(z,4,2) € Ox O x O : z =y = zmod mp},
B = {(z,y) € Ox 0 :z=ymodmo}, o((z,y,2)) = (z,9), n((z,y)) = =,
in which 7z, = 1 = me. The ring B in this example is Gorenstein (even a
complete intersection).

Intermezzo on the Fitting ideal. Let B be a ring and let M be a finitely
generated B-module, with generators mi, ..., m,. Let f: B” - M map
(b)r_( to >, bym,. Then the Fitting ideal FgM is the B-ideal generated by
all elements of B of the form det(vy,... ,v,), with v; € ker f, ..., v, € ker f
(viewed as column vectors); evidently, it suffices to let the v, range over a
set of generators for ker f. The Fitting ideal is independent of the choice of
the generators m,. To see this, let m,q1 = 3,_; ¢,;m,, with ¢, € B. One
obtains generators for the kernel of f': B! — M, f/((b,);1]) = S0+ bym,,
by taking generators for ker f (with a zero coordinate appended) together with
the element (—ci,. .., —¢c;, 1). The latter element will have to occur in any non-
zero determinant built up from these generators of ker f'. It follows that the
Fitting ideal does not change if the system of generators my, ... , m, is changed
intomy, ..., My, Mry1. Inductively, this implies that any two systems my, ...,
m, and m}, ..., mj of generators give rise to the same Fitting ideal as their
union mi, ..., My, My, ..., M.

We need three properties of the Fitting ideal. The first is

(4) FpM C AnngM.

Namely, if Z;zl vyymy; =0 for 1 <1 < r, then “multiplying by the adjoint” we
see that det(v,,) annihilates each m, and therefore M. Secondly, we have

(5) Fo(M ®p C) = n(FgM)

when 7: B — C is a surjective ring homomorphism. This is because M ®@p C
is, as a C-module, defined by the ‘same’ relations as those that define M as a
B-module.

Thirdly, for B = O the Fitting ideal just1 measures the length: if M is a
finitely generated O-module, then Fo M = mq 8" ¥ (if M does not have finite
length, interpret the right side to be 0). To prove this, one writes M as a direct
sum of cyclic modules /1, and checks that Fo M is the product of the ideals I,.

The congruence ideal and (kerw)/(ker 7)?. Let B and C be rings and let
7: B = C be a surjective ring homomorphism for which ker 7 is finitely gener-
ated. Then (ker7)/(ker7)? is a C-module, and one has

(6) Fo((ker )/ (kerw)®) C 1 C Anng((ker )/ (ker 7)?).
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Namely, we have Fg(kern) C Anngkerm C Anng((ker7)/(ker7)?), the first
inclusion by (4) and the second one trivially. Now apply 7. By (5) and
Anng((ker 7)/(ker 7)?) = 7! Anne((ker 7)/(ker m)2) this gives (6).

In the case that is of interest to us, the first inclusion of (6) can be found in
[5], Proposition 6.2, with a rather more complicated proof.

Complete intersections and the congruence ideal. Let B be a finite flat lo-
cal O-algebra, let 7: B = O be an O-algebra map, and suppose that B is a
complete intersection. Then we have

(7) Fo((kerm)/(ker m)*) = 7).

This is proved by an exphcit computation. Let B = O[Xi,...,X,]]l/
(fi,..., fn). The mmages b, of X, in B belong to mp, and replacing X, by
X, —w(b)) we mav assume that b, € kerm Then f,(0) = 0 for all ¢. To describe
the O-module (ker 7)/(ket 7). one considers the ideal p of O[[ X1, ..., X,]] gen-
erated by X;. . Y. then p/p?1s O-fiee of rank n, and (ker 7)/(ker 7)? is p/p?
modulo the submodule spanned bv the mmages of f;, . , fn. The definition of
the Fitting 1deal now gives

Fo((ket 7)/ (ke m)%) = Odet(%’;—(O)) ., = 0r(@),

with d as in Lemma 1. To prove (7), it suffices, by (6), to prove the inclusion D.
Let x € 7., and write £ = w(y) with y € Annpkerwn. By Lemma 1, we
can choose A € Bt with Trp/o = dX. From w(d) ~d € kerm we see that
(m(d) — d)y = 0, so n(d)A(y) = (d\)(y) = Trg,o(y). The trace of y can be
computed from the action of y on the exact sequence 0 = kerm =+ B = O — 0,
and one finds that Trg/o(y) = 7(y) = x. Therefore z = n(d)A(y) € On(d) =
Fo((kerm)/(ker m)?), as required.

The following result shows that one can recognize isomorphisms to complete
intersections by looking at (ker r)/(ker 7)2.

Lemma 8. Let R be a complete noetherian local O-algebra, let B be o finite
flat local O-algebra, and let p: R — B, n: B = O be surjectwe O-algebra
homomorphisms. Suppose that B s a complete wntersection, that the map
(kermp)/(ker mp)? — (kerm)/(ker )2 wnduced by ¢ 15 an 1somorphism, and
that these modules are of finite length over O Then @ 15 an 1somorphism.

Proof. Let n, f, and the elements b; € ker 7 be as above, so that EJ ayb, €
(ker 7)?, where a,, = a%%’]—(O). Since (ker7)/(ker 7)? is of finite length we have
det(a,;) # 0. Choose r, € R with ¢(r;) = b,. The hypothesis of the lemma
implies that 7, ..., rn generate kermyp module (ker mp)?, so by Nakayama’s
lemma they generate ker mp. Hence together with me they generate mpg, so
that there is a surjective O-algebra map ¢: O[[X,,...,X,]] & R sending X,
to r;. The hypothesis of the lemma implies that 3. a7, € (ker wp)?, so there

are g, € kervy with 533%‘;(0) = a,. We have g, € kerotp = (f1,...,fn) and
therefore g, = Y, hufi, with hy € O|[X1,...,X,]]. From a,, = %%‘J—(O) =
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> hzl(o)g)j(—';(()) = >, hu(0)a;, and det(a,;) # 0 we see that (h,(0)) is the
identity matrix. This implies that the matrix (hy) is invertible, so that f; €
kerty. Hence the map 1 factors through B and gives a map B — R that is
inverse to ¢. This proves the lemma. 1

We need one more technical result before we can prove the Theorem.

Lemma 9. Let B be a finite flat local O-algebra, and let m: B — O be an
O-algebra homomorphism. Then there 1s a finite flat local O-algebra A, together
with a surjectiwe O-algebra homomorphism @: A — B, such that A s a complete
intersection and the map (ker o)/ (ker mp)? — (ker)/(ker w)* winduced by o is
an isomorphism.

Proof. Let by, ..., by generate ker r. We first prove that Ob,... , b,] = B.
Let C = Olby,... ,bn]. Since B is finite over C the ring C is local, and its
maximal ideal mg = mp N C contains by, ..., b,. Clearly C' is Noetherian. We

have B = O + kerm = O + (3, Bb)) C C + wmg - B, so Nakayama’s lemma
implies that C = B.

The surjective B-linear map B"™ — kern sending (c;)}_; to 32, ¢;b; gives
upon tensoring with O a surjective map O™ — (kern)/(ker 7)%. Choose gen-

erators (ay)jer, & = 1, ..., n, for the kernel of the latter map. This can
be done, since every submodule of O™ is generated by n elements. For each
i we have 3, a;b, € (kerm)?, so g,(b1,...,b,) = 0 for some polynomial

g, € O[X1,...,Xn] of the form g, = (z] a,; X,) + (terms of degree > 2);
here, and below, “degree” means “total degree”.

Since B is finite over O, there is a non-negative integer m with the property
that the expressions H] b;n’ of degree Z] m; < m span B as an O-module.
Enlarging mn, if necessary, we can achieve that each g, has degree at most m+ 2.
Write 8™ = hy(b1, - - bn), where h, € O[X3,..., X,] has degree at most m.
We define

fi=X"2 — X2h, +9,€0[Xs,...,Xn) (1<i<n).

Evidently, we have

fz(bl, e ,bn) = 0,
fo = X3 4 (terms of degree < m + 2),

fi= Z a,, X, + (terms of degree > 2)
7

for1 <i<n.

Put D = O[X1,...,Xal/(fi,.-., fa). Then there is a surjective O-algebra
map v: D — B sending the image of X, to ;. Each monomial of degree
greater than n(m + 2) in X1, ..., Xn is divisible by X™+3 for some 1, so is
modulo f, congruent to an O-linear combination of monomials of smaller de-
grees. This implies that the monomials of degree at most n(m + 2) span D
as an (-module, so that D is finite over 0. Since @ is complete, it follows
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that D is a product of complete local rings: D = [], D,, where n ranges
over the maximal ideals of D; to see this, write for each positive integer ¢
the Artin ring D/m&D as a product of local rings (see [1], Theorem 8.7),
and take the projective limit over t. One of these maximal ideals is the im-
age of the maximal ideal m = (mo, X1,... ,X,) of O[X4,...,X,] in D; so
we have D = D' X Dy, where mD’' = D' and Dy, is complete. Thus, if we
complete at m then the equality D = O[Xq,...,X,]/(f1,.-., fn) turns into
D = O[[X41,..., Xull/(f1,-.-, fn), and the surjection ¢: D — B turns into
a surjection ¢: Dy, — B. By Lemma 1 it follows that D,, is a complete inter-
section. From f, =3 a,, X, + (terms of degree > 2) we see that the kernel of

the surjective map O™ — (ker wp)/(ker m)? that sends (c,)", to the image of

>, ¢ X, is generated by the elements (a,;)j, ¢ =1, ..., n. This implies that
the map (ker wp)/(ker mp)? — (ker w)/(ker m)? induced by ¢ is an isomorphism.
The lemma, follows, with A = D,,. |

Corollary 10. Let B be a finite flat local O-algebra, and let w: B — O be
an O-algebra homomorphism with 1, # 0. Then B 15 a complete intersection if
and only +f Fo((kern1)/(ker 7)?) = n,.

Proof. “Only if” we know from (7). To prove “if”, we choose ¢: 4 — B as
in Lemma 9. Then we have

Mhnp = Fo((kermp)/(ker mp)*) = Fo((kerm)/(ker m)*) = 1x,

the first equality by (7), the second from Lemma 9, and the last by hypothesis.
Lemma 1 asserts that A is Gorenstein. Now apply Lemma 3.

We prove the Theorem. The implication (iii)=>(ii) is immediate from (7) and
the second inclusion of (6), and (ii)=>(i) is clear. To prove (i)=>(iii), we note
that

N C Fo((ker ) /(ker mp)?) C Fo((ker 7)/(ker m)?) C 0,

the first inclusion by the hypothesis in (i), the second because there is a sur-
jective map (ker wy)/(ker m0)? — (kerw)/(kerw)?, and the third by (6). We
conclude that we have equality everywhere. The finite length hypothesis in (i)
now implies that 1, # 0, so Corollary 10 shows that B is a complete intersec-
tion. Lemma 8, finally shows that ¢ is an isomorphism. This completes the
proof of the Theorem.

REMARK. R. Pink pointed out that Lemma 1, of which we only sketched
the proof, can be bypassed entirely. To do this one verifies the conclusion of
Lemma 1 and the equality (7) directly for the only ring to which it needs to be
applied, namely the ring 4 constructed in the proof of Lemma 9. One proceeds
as follows.

One starts by proving that the O-algebra D = O[X4,... ,Xs)/(f1,--. , fa)
constructed in the proof of Lernma 9 has the two following properties: first,
D is free of rank (m + 3)" as an O-medule, the images of the monomials
H:;l Xz’“’ with 0 < k, £ m + 2 forming a basis; and, second, the D-module
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Dt = Home(D,O) is free of rank 1, a basis being formed by the linear map
A: D - O that sends the monomial [], X2 to 1 and the other basis ele-
ments to 0. The proof of these properties is a straightforward verification that
exploits the shape of the relations f,. It follows that D is Gorenstein. From
D = D" x A it follows that A is Gorenstein as well.

Next one studies 1y, where ¢: D — B is as in the proof of Lemma 9. Since
D is Gorenstein, one has Annp(kermy) = Homp(O,D) =2 Homp(D,O) =
O - w1, which shows that Annp(kerniy)) is free of rank 1 over 0. To ex-
hibit a generator, one writes f, = 2?:1 fyyX;, where the polynomials f,,
are such that f. — X**® and f,, (for i # j) have degree at most m + 1.
From (4), with M = kermi), one sees that det(f,,) belongs to Annp(ker 7)),
and it is in fact a generator of Annp(ker 7)) since Aldet(fy,)) = 1. Ap-
plying n¢ one finds that 7.y is generated by det(a,,). This is the same as
saying that Fo((kermi))/(ker74))?) = nny. Passing to A one concludes that
Fo((ker mp)/ (ker mp)?) = 1.

Now that one knows the Gorenstein property and equality (7) for the com-
plete intersections constructed in Lemma 9 one can pass to the more general
case of Corollary 10. That is, if B and 7 are as in Corollary 10, then B is a
complete intersection if and only if B is a complete intersection and Gorenstein,
and if and only if Fo((ker m)/(ker )%) = n,. To prove this, suppose that B has
one of these properties, and let w: A — B be as in Lemma 9. Since A is known
to have all three properties, it suffices to show that ¢ is an isomorphism. In
the case that Fo((kerm)/(ker 7)*) = n, this is done as in the proof of Corollary
10 given above. In the other cases B is a complete intersection, so ¢ is an
isomorphism by Lemma 8; note that (kern)/(ker7)? has finite length by the
second inclusion of (6).

In all our results we assumed that the finite flat local O-algebra B is provided
with an @-algebra homomorphism #: B — . Similar results can be proved for
more general finite flat (J-algebras B. The role of 7 can then be played by the
multiplication map p: B®o B — B, which is defined by p(by ® be) = b1b2, and
the role of the base ring O is taken over by B. As an example, we prove the
following proposition, which was suggested by B. Mazur. Recall that the module
Qg0 of Kahler differentials is defined to be the B-module (ker )/ (ker p2)? (see
(8], Section 25).

Proposition. Let B be a finite flat local O-algebra that has the same residue
class field as O, and denote by p the multiplication map B ®0c B — B. Suppose
that the B-module Qg0 has finite length. Then B is a complete intersection if
and only if the congruence ideal 1, is principal and equal to Fp(Qp/0)-

We note that the finite length condition for 25,0 is equivalent to the K-
algebra B ®o K being étale, where K is the field of fractions of O, if K has
characteristic 0, then it equivalent to the nil-radical of B being zero.

The proof of the Proposition is analogous to the proof of Corollary 10. We
go through the changes that need to be made.

For the “only if” part, suppose that B = O[[X,,... , X,]}/(f1,..., fa) as
O-algebras. Since B is finite flat over O, there is a B-algebra isomorphism
Ol[X1,...,X,]]®0 B = B[[Xy,...,Xn]]. This implies that we have B®o B =
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B|[X1,..., Xu)l/(f1,- .., fn) as B-algebras, where B ®¢ B is viewed as a B-
algebra via the second factor. As in the first half of the proof of (7) one now
checks that Fip(f2p,0) equals the principal ideal B-d, where d is as in Lemma, 1.
The equality Trp;o = dA from Lemma 1 implies that Trpgp/p = (d®1)(A®1).
This is used to show that 5, C B -d, as in the second half of the proof of (7).
Hence the inclusion 7, C Fp({2p/0) holds, and by (6) one has equality. This
proves the “only if” part.

The proof of the “if” part depends on the following generalization of Lemma, 3.
Let a finite flat local algebra over a noetherian local ring C be defined in the
same way as for C = O.

Lemma 11. Let C be a one-dimensional local noetherian ring, let A and
B be fimte flat local C-algebras, and let ¢: A — B, m: B = C be surjective
C-algebra homomorphisms. Suppose that Homg (A, C) 1s free of rank 1 as an
A-module, that Nry = nx, and that 1, 15 free of rank 1 as a C-module. Then ¢
1s an tsomorphism.

Proof. If n, = C then =y and = are both isomorphisms, so ¢ is an iso-
morphism as well. For the rest of the proof we assume that n, # C, so that
Nx C m¢. Since 7, is C-free of rank 1, we have n, = Ca, where a is a non-
zero-divisor of C. The proof of (2) now carries through. Hence 7 induces an
isomorphism Annpg kerm — ;.

Let p be a minimal prime ideal of C. Then C is an Artin ring, and (n,),
is a Cy-ideal that is free of rank 1. Since C, has finite length as a module over
itself, this implies that (7r)p = Cy, 50 7. ¢ p. Because C is one-dimensional,
this implies that the only prime ideal of the ring C/n, is me/n.. It follows
that C/n, is a local Artin ring. Therefore there exists ¢ € C, ¢ ¢ n,, such that
eme C Ny

Next we prove that B/ Anngkerw is free as a C-module. Write I =

Anngkerm, so that I = n, Both B and I are C-free, so it suffices to prove
that a basis for I can be supplemented to a basis for B. By Nakayama’s lemma,
this can be done if the natural map I/mcl — B/m¢B is injective, i.e., if
mol =INmeB. Let c € INmegB. Thencx € INemgB CINn, B =1NaB.
Since a acts as a non-zero-divisor on the free C-module B, it follows from the
definition of I that I M aB = al, which equals n,]. Hence z is an element of
I with cz € n,I. Since I is C-free and ¢ ¢ 7, this implies that € mc/, as
required.

Once (2) and the fact that B/ Anngkerw is C-free are known, the proof
that we gave for Lemma 3 generalizes easily to a proof for Lemma, 11. O

Let now B and u be as in the Proposition, and suppose that the congruence
ideal 7, is principal and equal to Fp(flp,»). We wish to prove that B is a
complete intersection.

View B ®¢ B as a B-algebra via the second factor. We start by constructing
a finite flat local B-algebra A of the form A = B[[X1,...,X,]]/(f1,.-.,fn)
together with a surjective B-algebra homomorphism ¢: A = B ®¢ B for which
the induced map (ker pp)/(ker pp)? — (ker u)/(ker p)? is an isomorphism. This



108 H.W. LENSTRA, JR.

is done as in the proof of Lemma 9, with B ®¢ B, u, and B in the roles of B,
7, and O. There are two changes.

First, we need a new argument, in the second paragraph, to show that the
kernel of any surjective B-linear map f: B™ — (ker u)/(ker 1)? is generated by n
elements. This depends on the hypothesis that the ideal Fig((ker p)/(ker u)?) is
principal, say with generator a. Since the module (ker p)/(ker p1)? is supposed to
be of finite length, its Fitting ideal contains a power of a prime element of @, and
therefore a is not a zero-divisor. This implies that Fig((ker u)/(ker p)?) is B-free
of rank 1. By Nakayama’s lemma, any set of generators for F{(ker p1)/(ker )?)
contains a basis, so one can choose the element a to be of the form det(vy,... ,v,),
where vy, ..., v, € ker f. Let v € ker f, and replace, for some 1 <7 < n, the
ith column of the matrix (vy,...,v,) by v. The determinant of the resulting
matrix belongs to Fp((ker ) /(ker 1)?), and is therefore equal to b,a for some
uniquely determined b, € B. One now verifies in a straightforward way that
v=73" bw, (“Cramer’s rule”), so that vy, ... , v, span ker f.

Second, we need a new proof that A is finite flat as a B-algebra. For this
one can apply a version of Lemma 1 that is valid for general base rings (as in
[2]), or one uses R. Pink’s argument that we sketched above. In the same way
one proves that Homp(A, B) is A-free of rank 1 and that the analogue of (7)
is valid for A, that is, Fp((ker uy)/(ker pp)?) = n,,.

Having constructed A, one shows that the map

w: A=B[[Xy,..., X.))/(f1,... ,fn) = B®p B

is an isomorphism of B-algebras. To do this one simply copies the proof of
Corollary 10, replacing Lemma 3 by Lemma 11 (applied to B ®o B and B in
the roles of B and C).

We now know that B becomes a “relative complete intersection” after base
extension with itself. To finish the proof of the Proposition we descend to ©.

Let, generally, C be a complete local noetherian ring, and R a complete local
noetherian C-algebra with the same residue class field k as C'. Then there exists
m such that C[[Xi,... ,Xm]] has an ideal J for which R = C[[X1,..., Xm]]/J
as C-algebras. The minimal number of generators of the ideal J equals
dimy, J/mJ, where m denotes the maximal ideal of C[[Xy, ... , Xp]]. The num-
ber m — dimy J/mJ only depends on the C-algebra R, and not on the presen-
tation R = C[[X1,...,Xm]]/J; this is proved by a straightforward argument,
which resembles the proof, given above, that the Fitting ideal is well-defined.
Write ¢(R,C) = m — dimg J/mJ. If D is a finite flat local C-algebra, then one
readily verifies that e(R ®c D, D) = ¢(R,C).

With ¢ = O, D = R = B we now find that (B,0) = ¢(B ®o B,B) > 0,
the inequality coming from the isomorphism B[[Xy,..., Xn]l/ (fi,..., fa) =
B ®q B. 1t follows that there exist m and g3, ..., gm € Ol[X1,...,Xp]] such
that O[[X1,-.-,Xm])/(91,--. ,9m) = B as O-algebras. Hence B is a complete
intersection. (One actually has e(B,0) = 0, by [3], Theorem 21.1.) This
completes the proof of the Proposition. O
REMARK. Under the hypotheses of the Proposition, B is actually a complete
intersection if and only if the Fitting ideal Fp(f1p o) is principal. This can
be deduced from Theorem 9.5 in E. Kunz, Kdihler differentials (Vieweg, Braun-
schweig, 1986).
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