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Andreev Reflection in Ferromagnet-Superconductor Junctions
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The transport properties of a ferromagnet-superconductor (FS) junction are studied in a scattering
formulation. Andreev reflection at the FS Interface is strongly affected by the exchange interaction in
the ferromagnet. The conductance Gps of a ballistic point contact between F and S can be either larger
or smaller than the value GFN with the superconductor in the normal state, depending on the ratio of the
exchange and Fermi energies. If the ferromagnet contains a tunnel barrier (I), the conductance OFIFS
exhibits resonances which do not vanish in linear response—in contrast to the Tomasch oscillations for
nonferromagnetic materials.
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Electrons in a metal cannot penetrate into a supercon-
ductor if their excitation energy with respect to the Fermi
level is below the superconducting gap Δ. Still, a current
may flow through a normal-metal-superconductor (NS)
junction in response to a small applied voltage V < Δ/e
by means of a scattering process known äs Andreev reflec-
tion [1]: An electron in the normal metal is retroreflected
at the NS Interface äs a hole, and a Cooper pair is car-
ried away in the superconductor. Andreev reflection near
the Fermi level conserves energy and momentum but does
not conserve spin—in the sense that the incoming elec-
tron and the Andreev reflected hole occupy opposite spin
bands. This is irrelevant for materials with spin-rotation
symmetry, äs is the case for normal metals. However, the
change in spin band associated with Andreev reflection
may cause an anomaly in the conductance of (metallic)
ferromagnet-superconductor (FS) junctions, because the
spin-up and spin-down bands in the ferromagnet are dif-
ferent. This Letter contains a theoretical study of Andreev
reflection in FS junctions. We use a scattering approach
based on the Bogoliubov—de Gennes equation to study
the transport properties for zero temperature and small V
(eV <C Δ). We will concentrate on two distinct effects,
which we think are experimentally observable. First, be-
cause of the change in spin band there is no complete
Andreev reflection at the FS interface. This has a clear
influence on the conductance and the shot-noise power
of clean FS point contacts. Second, the different spin-
up and spin-down wave vectors at the Fermi level may
lead to quantum-interference effects. This shows up in
the linear-response conductance of FIFS junctions, where
the ferromagnet contains an insulating tunnel barrier (I).

In the past, FS junctions with an insulating layer
between the ferromagnet and the superconductor have
been used in spin-dependent tunneling experiments [2].
There the emphasis was on the voltage scale eV & Δ,
and Andreev reflection did not play a role. Tunneling
through S-Fi-S junctions, where Fi is a magnetic insulator,
has been studied both experimentally [3] and theoretically
[4,5]. In addition, there has been theoretical work on the

Josephson effect in SFS junctions [6,7]. An experimental
investigation of the boundary resistance of sputtered SFS
Sandwiches has also been reported [8]. The importance of
phase coherence was demonstrated in a recent experiment
[9], in which the effect of a remote superconducting
island on the conductance of a ferromagnet was observed.
We do not know of any previous theoretical work
on the influence of Andreev reflection on the subgap
conductance of a FS junction.

In order to clarify the effects we are aiming at, let us first
give an intuitive and simple description of the conductance
through a ballistic FS point contact. A ferromagnet is
contacted through a small area with a superconductor.
The transverse dimensions of the contact area are much
smaller than the mean free path and the interface is clean,
so that the conductance is completely determined by the
scattering processes that are intrinsic to the FS interface.
In a semiclassical approximation all scattering channels
(transverse modes in the point contact at the Fermi level)
are fully transmitted, when the superconductor is in the
normal state. Let Nf (N\) be the number of up- (down-)
spin channels, so that Ν·\ ^ NI. At zero temperature, the
spin channels do not mix, and the conductance is given by
the Landauer formula

GFN = (D

In the superconducting state, the spin-down electrons of all
the NI channels are Andreev reflected into spin-up holes.
They give a double contribution to the conductance since
2e is transferred at each Andreev reflection. However,
only a fraction /Vj/Wj of the Nf channels can be Andreev
reflected, because the density of states in the spin-down
band is smaller than in the spin-up band. Therefore, the
resulting conductance is

GFS = (2)

Comparison of Eqs. (1) and (2) shows that GFS may
be either larger or smaller than GFN depending on the

0031-9007/95/74(9)/1657(4)$06.00 © 1995 The American Physical Society 1657



VOLUME 74, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 27FEBRUARY 1995

ratio NI/NI- If Ni/fy < 1/3 then GFs < GFN, and vice
versa. This qualitative argument can be substantiated by
an explicit calculation, äs we now show.

For the conduction electrons inside the ferromagnet we
apply the Stoner model, using an effective one-electron
Hamiltonian with an exchange interaction. The effect of
the ferromagnet on the superconductor is twofold. First,
there 3s the influence of the exchange interaction on states
near the interface. This will be fully taken into account.
Second, there is the effect of the magnetic field due to
the magnetization of the ferromagnet. Since this field—
which is typically a factor of a thousand smaller than the
exchange field—does not break spin-rotation symmetry,
it will be neglected for simplichy. Note that in typical
layered structures the magnetization is parallel to the FS
interface, so that it has no influence on the superconductor
at all.

Transport through NS junctions has successfully been
investigated through the Bogoliubov-de Gennes equation
[10-13]. Here, we adopt this approach for a FS junction.
In the absence of spin-flip scattering in the ferromagnet,
the Bogoliubov-de Gennes equation breaks up into two
independent matrix equations, one for the up-electron,
down-hole quasiparticle wave function («t, v{) and another
one for (m, vT). Each matrix equation has the form [14]

v -(J/Ό + h)X;)
Here, ε is the quasiparticle energy measured from the
Fermi energy EF = K2k}/2m, 3f0 = p2/2m + V - EF

is the single-particle Hamiltonian with V(r) the potential
energy, /z(r) the exchange energy, and Δ(Γ) the pair po-
tential. For simplicity, it is assumed that the ferromagnet
and the superconductor have identical J-C^. For compari-
son with experiment, our model can easily be extended
to include differences in effective mass and band bottom.
We adopt the usual step-function model for the pair po-
tential [10—13] and do the same for the exchange energy
[6,7]. Defining the FS interface at χ = 0 with S at χ > 0,
we have Δ (r) = A®(x) and A(r) = h0®(-x), with &(x)
the unit step function.

A scattering formula for the linear-response conduc-
tance of a NS junction is given by Takane and Ebisawa
[12]. Application to the FS case is straightforward,

GFS 2 ~ ~ Tr r/,,5. . ΓΑΟ·,,? (4)

where the matrix fha,ea· contains the reflection amplitudes
from incoming electron modes with spin σ to outgoing
hole modes with spin σ (opposite to er) evaluated at
the Fermi level (e = 0). We first consider a ballistic
point contact. We assumer that the dimensions of the
contact are much greater than the Fermi wavelength, äs
is appropriate for a metal, so that quantization effects can
be neglected. The number N± of minority spin modes in
the point contact (with area Ω) is NI = N0(l — h0/EF),
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with NO = $Ω,/4ττ the number of modes per spin for
a nonferromagnetic (ho — 0) contact of equal area. The
reflection matrices for this case can be evaluated by
matching the bulk Solutions for the ferromagnet and
for the superconductor at the interface. An incoming
electron from the ferromagnet is either normally reflected
äs an electron of the same spin or Andreev reflected äs
a hole with the opposite spin. (Transmission into the
superconductor is not possible at ε = 0.) The reflection
matrices are diagonal, with elements

(Sa)

(5b)

where the longitudinal wave vectors %> in the ferromag-
net and q in the superconductor are defined in terms of the
energy En of the nth transverse mode by

- Εα), (6a)

γ(2«//ζ2)(£> ~E„ + h0), (6b)

- E„ -h0). (6c)

In the above expressions terms of Order Δ/Ε/τ are ne-
glected [15]. Note that \ree\

2 + \rhe\
2 = l, äs required

from quasiparticle conservation. It follows from Eq. (5)
that a clean FS junction does not exhibit complete An-
dreev reflection, in contrast to the NS case. This is due to
the potential step the particle passes when being Andreev
reflected to the opposite spin band.

Because of the large number of modes the trace in
Eq. (4) can be replaced by an Integration, which can be
evaluated analytically. The result is

X [-yl-772(6-7772 + η4) - 6 + 10η2 - 4η5],

(7)

where η = ho/Ep. The conductance is plotted in Fig. l,
and compared with the semiclassical estimate from
Eq. (2), which turns out to be quite accurate. Since
Wj + NI = 2N0 one has from Eq. (1) GFN > GFS if
h0 > OA7Ef, or equivalently N^/N^ < 0.36.

Further Information on the Andreev reflection at the FS
interface can be obtained from the shot-noise power P of
the junction. Shot noise is the time-dependent fluctuation
in the current due to the discreteness of the charges. For
uncorrelated electron transmission, one has the maximal
noise power of a Poisson process ΡΡΟ,«ΟΙΙ = 2el, with /
the mean current. On the one hand, correlations due to
the Pauli principle reduce P below Pp0,^oa [16,17]. On
the other hand, Cooper-pair transport across a NS junction
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FIG. 1. The conductance GFS (füll curves) and the shot-
noise power PFS (dashed) of a ballistic point contact in a
ferromagnet-superconductor junction (see inset), äs a function
of the exchange energy h0. The thick line represents the exact
result (7) for GFS, the thin line the estimation (2).

has been shown to manifest itself äs a doubling of the
maximal noise power [16,18]. We apply the general result
of Ref. [18] to the FS junction

8e3V
h

(8)
<r-T4

Substitution of Eq. (5b) into Eq. (8) yields the shot-noise
power of a ballistic point contact, plotted in Fig. 1. The
shot noise increases from complete suppression for a
nonferromagnetic (h0 = 0) junction to twice the Poisson
noise for a half-metallic ferromagnet (ho = EF). The
initial increase is slow, tndicating that the NI modes
undergo nearly complete Andreev reflection. However,
for higher exchange energies the Andreev reflection
probability decreases in favor of the normal reflection
probability. This is manifested by the increase in the shot-
noise power.

The second System we consider is a FIFS junc-
tion which contains a planar tunnel banier (I) at
χ — —L. The barrier is modeled by a channel- and spin-
independent transmission probability Γ e [0, 1]. The

matrix Thä,ea*he-,ea· in Eq. (4) is diagonal, with elements

(9)

= Γ2|ΓΑβ|2{1 +

+ 2r«p(l +

+ 2/ip2[l + cosCrt + AI)]}'

where p = Vl — Γ and χσ = 2fcdrL. Equation (9) de-
scribes resonant Andreev reflection: Because of the differ-
ent wave vectors of up electrons and down holes, IrAö-.eo·!2

varies äs a function of χ^ and χι between Γ2, the value for
a two-particle tunneling process, and l for füll resonance.
The conductance GFIFS is evaluated by Substitution of
Eq. (9) into Eq. (4). It is depicted in Fig. 2 äs a func-
tion of L for h0 = Q.2EF and Γ =0.1. The resonances
have a dominant period 5L = πΚνρ/2Ηο (= STTÄ/T' in
Fig. 2), which is caused by the simplest round trip con-
taining two Andreev reflections and two barrier reflec-
tions. Superimposed one sees oscillations with smaller
period, caused by longer trajectories in which also nor-
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FIG. 2. The conductance GFIFS of a clean FIFS junction
containing a planar tunnel banier (transparency Γ) on the
ferromagnetic side, äs a function of the Separation L from the
Interface (see inset). The thick solid line is computed from
Eq. (9) for Γ = 0.1, h0 = 0.2EF. For the thin line normal
reflection at the FS interface is neglected (r« = 0). The dashed
line is the classical large-L limit.

mal reflections at the FS interface occur. This becomes
clear when we calculate GFS with ree set to zero, which
is also shown in Fig. 2. For large L, GFIFS approaches
the classical (i.e., all interferences are neglected) value
4(e2/h)N[T/(2 - Γ). The oscillations in Fig. 2 are dis-
tinct from the Tomasch oscillations known to occur in
the nonlinear differential conductance of NINS junctions
[19]. There, quasibound states arise because electron and
hole wave vectors disperse if ε > 0. However, in linear
response GNINS = 4(e2/h)N0r

z/(2 - Γ)2, independent of
L [10]. In the ferromagnetic junction the resonances do
not vanish in linear response, in contrast to the Tomasch
oscillations. The quasibound states at the Fermi level are
a direct consequence of the change in spin band upon An-
dreev reflection.

We believe that both phenomena are experimentally ac-
cessible. The FS point contact can be constructed accord-
ing to the nanofabrication technique of Ref. [20]. The
FIFS junction can be made by growing a wedge-shaped
layer of ferromagnet on a superconducting Substrate and
then depositing a thin oxide layer. This allows a measure-
ment of GFIFS for different values of L. It is not necessary
for the contact area to be small, so that no nanofabrication
techniques are needed. (Note that in order to observe the
resonances due to the quasibound states it is not essential
that the contact on top of the barrier is a ferromagnet.) To
estimate the effect of disorder (growth imperfections and
impurities) on the resonances, we have numerically calcu-
lated GFIFS for a disordered ferromagnet between the bar-
rier and the FS interface. The computations are similar to
the NS case treated in Ref. [21]. The disordered region is
modeled by a tight-binding Hamiltonian on a square lattice
with a random impurity potential at each site. (For com-
putational efficiency the geometry is two dimensional, but
this makes no qualitative difference.) The matrix Γ/,σ,^ is
obtained by combining the scattering matrix of the disor-
dered region with the reflection coefficients for the FS in-
terface (5). We then calculate GFS through Eq. (4). The
result for various disorder strengths is shown in Fig. 3. For
the clean case we recognize a behavior similar to Fig. 2.
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FIO. 3. Numerical calculation of the effect of disorder in the
ferromagnet on the oscillations shown in Fig. 2 for a clean
junction. The disordered region is modeled by a L X W
square lattice (lattice constant a) with random on-site disorder
(uniformly distributed between ±i//2). The width W = 101α
is fixed, and the length L is varied on the horizontal axis. The
results shown are for Er = fi2/2/na2, h0 = 0.2EF, Γ =0.1, and
for various U. For each disorder strength U the bulk mean
free path ΐ is given. Thick lines belong to one realization of
disorder, thin to an average over 20 realizations.

Adding some disorder removes the small-period oscilla-
tions but preserves the dominant oscillations. Only quite
a strong disorder (for the top curve kF X bulk mean free
path =9) is able to smooth away the resonances.

In summary, we have shown that the transport proper-
ties of ferromagnet-superconductor junctions are qualita-
tively different frorn the nonferromagnetic case, because
the Andreev reflection is modified by the exchange inter-
action in the ferromagnet. Two illustrative examples have
been given: For a ballistic FS point contact it is found that
the conductance can be either larger or smaller than the
normal-state value and for an FIFS junction containing a
tunnel barrier conductance resonances are predicted to oc-
cur in linear response.
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