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Approximatting rings of integers in number fields.

par J. A. BUCHMANN AND H. W. LENSTRA, JR.

RESUME. - Nous etudions dans cet article le probleme algorithmique de la
determination de l'anneau des entiers d'un corps de nombres algebriques
donne. En pratique, ce probleme est souvent considere comme resolu mais
des resultats theoriques montrent que sä resolution ne peut etre menee ä
terme lorsque le corps etudie est defini par les equations dont les coefficients
sont tres gros. Or de tels corps apparaissent dans Palgorithme du crible
algebrique utilise pour factoriser les entiers naturels.

En appliquant une Variante d'un algorithme Standard donnant l'anneau
des entiers, on obtient un sous-anneau du corps de nombres qui peut etre
regarde comme le meilleur candidat possible pour l'anneau des entiers.
Ce meilleur candidat est probablement souvent le bon. Notre propos est
d'exposer ce qui peut etre prouve sur ce sous-anneau. Nous montrons
que sä structure locale est transparente et rappelle celle des extensions
moderement ramifiees de corps locaux. La plus grande partie de cet article
est consacree ä l'etude des anneaux qui sont "moderes" en un sens plus
general que celui habituel. Chemin faisant nous etablissons des resultats
de complexite qui prolongent un theoreme de Chistov. L'article inclut
egalement une section qui discute des algorithmes en temps polynomial
pour les groupes abeliens de type fini.

ABSTRACT. - In this paper we study the algorithmic problem of finding the
ring of integers of a given algebraic mimber field. In practice, this problem
is often considered to be well-solved, but theoretical results indicate that it
is intractable for number fields that are defined by equations with very large
coefficients. Such fields occur in the number field sieve algorithm for facto-
ring integers. Applying a variar.t of a Standard algorithm for finding rings
of integers, one finds a subring of the number field that one may view äs the
"best guess" one has for the ring of integers. This best guess is probably
often correct. Our main cor.cern is what can be proved about this subring.
We show that it has a particularly transparent local structure, which is
reminiscent of the structure of tamely ramified extensions of local fields. A
major portion of the paper is devoted to the study of rings that are "tarne"
in our more general sense. As a byproduct, we prove complexity results that
elaborate upon a result of Chistov. The paper also includes a section that
discusses polynomial time algorithms related to finitely generated abelian
groups.
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1. Introduction

In this paper we are concerned with the following problem from algorith-
mic algebraic number theory: given an algebraic number field K, determine
its ring of integers O. Paradoxically, this problem is in practice considered
well-solved (cf. [7, Chapter 6] and 7.2 below), whereas a result of Chistov [6]
(Theorem 1.3 below) suggests that from a theoretical perspective the prob-
lem is intractable. The apparent contradiction is easy to resolve. Namely,
all computational experience so far is limited to "small" number fields K,
such äs number fields that are given äs K — Q[X]/fQ[X], where Q is the
field of rational numbers and / is an irreducible polynomial of small de-
gree with small integer coefficients. The algorithms that are used for small
fields will not always work when they are applied to "large" number fields.
Large number fields are already making their appearance in applications of
algebraic number theory (see [14]), and the determination of their rings of
integers is generally avoided (see [5; 16, 9.4; 9]). The results of the present
paper are mainly theoretically inspired, but they may become practically
relevant if one wishes to do computations in large number fields.

In accordance with Chistov's result, we shall see that there is currently
not much hope to find a good algorithm for the problem of constructing
rings of integers. This is true if "good" is taken to mean "running in
polynomial time", and it is equally true if, less formally, it is taken to mean
"practically usable, also in hard cases". The same applies to the problem of
recognizing rings of integers, i. e., the problem of deciding whether a given
subring of a given algebraic number field K is equal to O.

To appreciate the central difficulty it suffices to look at quadratic fields.
If m is an integer that is not a square, then determining the ring of integers
of Q(-v/m) is equivalent to finding the largest square divisor of m. The
latter problem is currently considered infeasible. Likewise, the problem
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of recognizing the ring of integers of a quadratic field is equivalent to the
problem of recognizing squarefree integers, which is considered infeasible äs
well.

In the present paper we obtain some positive results. We shall prove
that, even though O may be hard to determine, one can at least construct
a subring B of K that comes "close" to O, that is perhaps even likely to
be equal to O, that in any case has some of the good properties of O, and
that in computational applications of algebraic number theory can probably
play the role of O. Before we state our main result we give an informal
outline of our approach.

Chistov [6] showed that the problem of determining the ring of inte-
gers of a given number field is polynomially equivalent to the problem of
determining the largest squarefree divisor of a given positive integer (see
Theorem 1.3 below). For the latter problem no good algorithm is known
(see Section 7). However, there is a naive approach that often works. It is
based on the observation that positive integers with a large repeated prime
factor are scarce: for most numbers it is true that all repeated prime fac-
tors are small and therefore easy to find. Thus, dividing a given positive
integer d by all of its repeated prime factors that are less than a certain
upper bound b one finds a number that may have a good chance of being
the largest squarefree divisor of d, and that is often the best guess one has.
The success probability of this method depends on b and on the way in
which d was obtained in the first place. It is, of course, easy to construct
numbers d that defeat the algorithm.

One can attempt to determine the ring of integers O of a given number
field K in a similarly naive manner. One Starts from an order in K, i.e., a
subring A of O for which the index (O : A) of additive groups is finite; for
example, one may take A = Z [a], where α 6 K is an algebraic integer with
•K" = Q(a). As we shall see, one can determine O if the largest squarefree
divisor m of the discriminant Δ Λ of A is known. This result suggests that
one can determine a "best guess" for O by working with the best guess q
that one has for m instead of m itself. If, in the course of the computations,
the hypothesis that q is squarefree is contradicted because an integer a> l
is found for which a 2 divides q, then one simply replaces q by q/α and one
continues äs if nothing has happened.

This vague idea can be made perfectly precise. It gives rise to a polyno-
naial time algorithm that, given an order A C K, produces an order B C K
containing A äs well äs a positive integer q. One knows that B - O if q is
squarefree. It will often be considered very likely that q is indeed square-
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that is not divisible by p, and a unit u of T such that the p-adic completion
Bp of B is, äs a Zp-algebra, isomorphic to T[X}/(Xe— uq)T[X] (see Section
4) . If q is squarefree then p divides q only once; in that case uq = vp for
some unit v of T, and we are back at the ring T[(vp)l/e] considered above.
However, if p2 divides q then T[X}/(Xe — uq)T[X] occurs äs a ring 0 P äs
above only in the trivial case that e = l (cf. 3.5).

One of our main results now reads äs follows.

THEOREM 1.1. There zs a determmistic polynormal time algonthm that,
gwen a number field K and an order A in K, determmes an order B m K
containmg A and a positive integer q, such that B is tarne at q and such
that the pnme numbers dividing (O : B) are the same äs the repeated prime
divisors of q; here O denotes the ring of mtegers of K.

This theorem is proved in Section 6, along with the other theorems stated
in this introduction. The algorithms referred to in our theorems will be
explicitly exhibited. Clearly, the ring B in Theorem 1.1 equals O if and
only if q is squarefree. Generally we shall see that exhibiting a square a2 > l
dividing q is, under polynomial transformations, equivalent to fmding an
order in K that strictly contains B (see Theorem 6.9).

Finding rings of integers is customarily viewed äs a local problem, in the
sense that it suffices to do it prime-by-prime. Algorithmically, however, the
bottleneck is of a global nature: how to find the prime numbers that one
needs to look at? Once these are known, the problem admits a solution.
This is expressed in our next result. If m is an integer, then an order A in
K is said to be maximal at m if gcd(m, (O : A)) = l.

THEOREM 1.2. There is α polynormal time algonthm that, gwen an alge-
braic number field K, an order A m K, and a squarefree positive integer
rn, determmes an order B m K containmg A that is maximal at m.

1.2 we see in particulai that if m is prime one can find, in polynomial
time, an order in K that is maximal at m. If m is taken to be the product
of the primes p for which p2 divides the discriminant of A, then the order
B in Theorem 1.2 equals O.

We next formulate a few complexity results of purely theoretical interest.

THEOREM 1.3. Under polynomial transformations, the following two prob-
lems are equivalent:

(a) given an algebraic number field K, find the ring of algebraic integers
ofK;
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free, so that one is inclined to believe that I? = 0 . Our main concern is
what one can prove about .B without relying on any unproved assumptions
regarding q. In particular, we shall prove that B equals O if and only if q
is squarefree, and that finding an order in K that properly contains B is
equivalent to finding a square a2 > l dividing q.

Our results are derived from a local property of B that we refer to äs
tameness at q. Loosely speaking, B is tarne at q if B is trying to resenible
a füll ring of integers äs closely äs is possible in view of the fact that q is
not known to be squarefree. Tameness is a strong property, which provides
us with substantial control over the ring. Before we give the definition we
remind the reader of the local structure of füll rings of integers.

Let O be the ring of integers of an algebraic number field, let p be a
maximal ideal of O, and let Op be the p-adic completion of O (see [l,
Chapter 10]). Denote by p the unique prime number that belongs to p .
If the ramification index e(p/p) of p over p equals l, then p is said to be
unramified over p, and in that case Op is a local unramified algebra over
the ring Zp of p-adic integers (see Section 3). Local unramified Zp-algebras
are easy to understand and to classify, and they have a very transparent
structure [25, Section 3-2]; for example, they are, just like Zp itself, principal
ideal domains that have, up to units, only one prime element, namely p. If,
more generally, p does not divide e(p/p), then p is said to be tarne over p.
In this case there is a local unramified Zp-algebra T and a unit v of T such
that Op = T(X}/(Xe^ri - vp)T[X] = T[(vp]l^^M\ (see [25, Section
3-4]). Conversely, let p be a prime number, let T be a local unramified
Zp-algebra, let t> be a unit of T, and let e be a positive integer that is
not divisible by p. Then there is an algebraic number field whose ring of
integers O has a maximal ideal p containing p for which the ring T[(vp)l/e]
is isomorphic to Op, and then e(p/p) — e. In summary, the rings T[(vp}l/e],
which are relatively simple to understand, provide a füll description of the
completions of the rings of integers of all algebraic number fields at all tarne
maximal ideals.

In the wild case, in which p does divide e(p/p), the structure of Op

is somewhat more complicated, but there is fortunately no need for us to
consider it: it occurs only if p is small, and small primes can be taken care
of directly.

Imitating the description above of Op we make the following definition.
Let B be an order in a number field, and let q be a positive integer. We call
B tarne at q if for every prime number p dividing q and every maximal ideal
p of B containing p there exist a local unramified Zp-algebra T, an integer e
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that is not divisible by p, and a unit u of T such that the p-adic completion
Bp of B is, äs a Zp-algebra, isomorphic to T[X}/(Xe —uq)T[X] (see Section
4). If q is squarefree then p divides q only once; in that case uq = vp for
some unit υ of Γ, and we are back at the ring T[(vp}l/e] considered above.
However, if p2 divides q then T[X]/(Xe — uq)T[X] occurs äs a ring Op äs
above only in the trivial case that e = l (cf. 3.5).

One of our main results now reads äs follows.

THEOREM 1.1. There is a deterministic polynomial Urne algorithm that,
given a number field K and an order A in K, determines an order B in K
containing A and a positive integer q, such that B is tarne at q and such
that the pnme numbers dividing (O : B) are the same äs the repeated prime
divisors of q; here O denotes the ring of integers of K.

This theorem is proved in Section 6, along with the other theorems stated
in this introduction. The algorithms referred to in our theorems will be
explicitly exhibited. Clearly, the ring B in Theorem 1.1 equals Ό if and
only if q is squarefree. Generally we shall see that exhibiting a square o2 > l
dividing q is, under polynomial transformations, equivalent to finding an
order in K that strictly contains B (see Theorem 6.9).

Finding rings of integers is customarily viewed äs a local problem, in the
sense that it suffices to do it prime-by-prime. Algorithmically, however, the
bottleneck is of a global nature: how to find the prime numbers that one
ueeds to look at? Once these are known, the problem admits a solution.
This is expressed in our next result. if m is an integer, then an order A in
K is said to be maximal at m if gcd(m, (O : A}) = 1.

THEOREM 1.2. There is α polynomial time algorithm that, given an alge-
braic number field K, an order A in K, and a squarefree positive integer
rn, determines an order B in K containing A that is maximal at m.

from 1.2 we see in particulai that if m is prime one can find, in polynomial
time, an order in K that is maximal at m. If m is taken to be the product
of the primes p for which p2 divides the discriminant of A, then the order
B in Theorem 1.2 equals O.

We next formulate a few complexity results of purely theoretical interest.

THEOREM 1.3. Under polynomial transformations, the following two prob-
lems are equivalent:

(a) given an algebraic number field K, find the ring of algebraic integers
ofK;
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(b) given a positive integer d, find the largest squarefree divisor of d.

Theorem 1.3 represents a slight improvement over a theorem of Chistov
[6], äs explained in 6.11. We shall prove that the corresponding recognition
Problems are also equivalent (Theorem 6.12).

Suppose that an order A in an algebraic number field is given. In the
proof of Theorem 1.3 we shall see that, given the largest squarefree divisor
of the discriminant Δ Λ of A, one can find the ring of integers Ό of K in
polynomial time. In 6.13 we argue that it is hard to go in the opposite
direction: if given O one can easily find the largest squarefree divisor of
Δ Λ , then problem 1.3(b) is easy äs well. It is possible, however, to compute
the largest square divisor of Δ Λ quickly from /; again it is hard to go in the
opposite direction (see 6.14).

If the ring of integers of a number field K is known, then the discriminant
of K is easy to compute. One may wonder whether, conversely, it is easy
to compute the ring of integers of K from the discriminant of K. In 6.10
we shall see that this is currently not the case. However, we do have the
following result.

THEOREM 1.4. There are polynormal time algonthms that given an alge-
braic number field K and one of (a), (b), determme the other:

(a) the ring of algebraic integers of K;
(b) the largest squarefree divisor of the discriminant of K.

In the body of the paper we work with Orders in products of number fields
rather than orders in number fields. This presents no additional difficulty.
One may remark, though, that the case of products of number fields can
in polynomial time be reduced to the case of a single number field, by the
main result of [15]. Also, several of our results are local in the sense that
they are directed not at constructing O, but at constructing an order that
is maximal at a given integer m, äs in Theorem 1.2.

We have refrained from considering more general base rings than the
ring Z of rational integers. Over some base rings, the problem of finding
maximal Orders is, in substance, equivalent to the problem of resolving sin-
gularities of curves (see [24]); but in that context there is a quick algorithm
for problem 1.3(b), so that the issues considered in this paper do not arise.
It may be interesting to consider base rings that are rings of integers of
number fields or, more generally, orders in number fields äs produced by
our algorithms.

The contents of this paper are äs follows. Sections 2, 3 and 4 contain the
commutative algebra that we need. No algorithms occur in these sections.
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In Section 2 we assemble some well-known results concerning orders. Sec-
tions 3 and 4 are devoted to the notion of tameness, locally in Section 3 and
globally in Section 4. Sections 5 and 6 deal with algorithms. In Section 5
we recall a few basic algorithms for which a convenient reference is lacking;
they mostly concern linear algebra over the rings Z and Ζ/ςΖ, where q is
a positive integer. In Section 6 we present the algorithm that underlies the
proof of Theorem 1.1. It is a variant of an algorithm for determining ma-
ximal orders that is due to Zassenhaus [26; 27]. Section 6 also contains the
proofs of the theorems stated above. In Section 7 we discuss the practical
repercussions of our results.

For our conventions and notations on commutative algebra we refer to
Section 2. For conventions concerning algorithms we refer to Section 5 and
to [18].

2. Orders

In this section we establish the notation and terminology concerning
rings and orders that we shall use, and we recall a few well-known facts.
For background on commutative algebra, see [1].

2.1. Rings and algebras. All rings in this paper are assumed to be
commutative with a unit element. Ring homomorphisms are assumed to
preserve the unit element, and subrings contain the same unit element. By
^> Q> F p we denote the ring of integers, the field of rational numbers, and
the field of p elements, respectively, where p is a prime number. The group
of units of a ring R is denoted by R*. Lei R be a ring. An Ä-module M
is called free if it is isomorphic to the direct sum of a collection of copies
of R; if R ^ 0 then the number of copies needed is uniquely determined by
M, and it is called the rank of M; if R = 0, then the rank of M is defined
to be 0. If an Ä-module M is free of finite rank n, then there is a basis of
M over Ä, i.e., a collection of n elements ωχ, ω2: ... , ωη € M such that
tor each χ ς M there is a uaique sequence of n elements ΓΙ, r%, ... ,rn £ R
such that χ = ΣΓ=ι Γ*ω*· &y a n -R-a/gebra we mean a ring A together with
a ring homomorphism Fi —>· A. An Ä-algebra A is said to admit a ßnite
basis if A is free of finite rank when considered äs an .R-module. If this is
the case, then the rank of A äs an Ä-module is called the degree of A over
R, notation: [A : R].

2.2. Trace and discriminant. Let R be a ring and let A be an Ä-algebra
admitting a finite basis ωι, . . . , ωη. For each α S A, the trace Tr α of α
is defined to be the trace of the Ä-linear map A —» A sending χ to αχ; so
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if αωι = Y^=1rtju>3

 w i t h rv E R, then Tr α = Σ " = 1 ^ ^ · The trace Tr
is an Ä-linear map A —+ R. In case of possible ambiguity, we may write
Tr χ or Tr A/R instead of Tr . The discriminant Δ Α or ΔΑ/R of A over R
is the determinant of the matrix (Tr (ωιω])]1<ϊ <η· The discriminant is
well-defmed only up to squares of units of R. The .R-ideal generated by Δ Α
is well-defined, and we shall also denote it by Δ ,4. If R' is an Ä-algebra,
then A' = AOtimesRK is an Ä'-algebra that also admits a finite basis.
The trace function A' — * R' is obtained from the trace function A — > R by
base extension, and the notation Tr , Tr A , Tr A/ R used for the latter will
also be used for the former. We have ΔΑ'/R' = &A/RR' a s ideals.

2.3. Orders. Let R be a principal ideal domain, and denote by F the field
of fractions of R. An order over R is an Ä-algebra A that admits a finite
basis and that satisfies Δ Α φ 0. An order over Z is simply called an order;
equivalently, an order can be defined as a ring without non-zero nilpotent
elements of which the additive group is free of finite rank as an abelian
group. Let A be an order over R, and write Ap — A® R F. Then Ap is, as
an F-algebra, the product of finitely many finite separable field extensions
of F. By a fractional Α-ideal we mean a finitely generated .A-submodule
of Ap that spans Ap as a vector space over F. If a and b are fractional
yl-ideals, then the index (a : b) of b in a is defined to be the determinant
of any F-linear map Ap — » Ap that maps a onto b; the index is an element
of F* that is well-defined only up to units of R. If b C a then the index
belongs to R— {0}, and if in addition R = Z then it is, up to sign, equal to
the usual index. If a, b are fractional A-ideals, then we write a : b = {x 6
Ap : xb C a}; this is also a fractional Α-ideal. A fractional A- ideal a is
called invertible if ab = A for some fractional Α-ideal b; if this is true, then
b = A : a, and a = A : b = A : (A : a) . An example of a fractional ideal
is the complementary module A*1 = {χ ζ Ap : Tr (xA) C R}. If (ω ι)"_1 is
a basis for A over R, then a basis for A^ over R is given by the dua] basis
(wj)"_i, which is characterized by Tr (ωΐω ) = 0 or l according as ι φ j or
ι = j . One has A C A^ and (A^ : A) = Δ ^ . By an overorder of A we mean
a fractional .Α-ideal that is a subring of Ap. If a is a fractional ./4-ideal,
then a : a is an overorder of A. Each overorder B of A is an order, and it
satisfies A C B C B"1 C A^ and Δ.Α = ΔΒ(Β : A)2. Among all overorders
of A there is a unique one that is maximal under inclusion; we shall denote
it "by O. The ring O is equal to the integral closure of R in Ap, and it is
the product of finitely many Dedekind domains. The discriminant of O is
also called the discriminant of Ap. We call A maximal if A = O; this is the
case if and only if all fractional A-ideals are invertible. If m € Ä, then the
order A is said to be maximal at m if gcd(m, (O : A}) = 1; this happens,
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for example, if gcd(m, AA) = l, because (O : A}2 divides Δχ· For the same
reason, A itself is maximal if and only if it is maximal at Δ^.

PROPOSITION 2.4. Suppose that R is a principal ideal domain, that m € R
is a non-zero element, and that A is an order over R. Then there are only
finitely many pnme ideals p of A contaming m, and they are all maximal.
Moreover, ifb denotes the intersection of these pnme ideals, then we have:

(a) b/mA is the nilradical of the ring A/mA, and there exists a positive
integer t such that b D m A D b* ;

(b) for each pnme ideal p of A contaimng m one has A:p(£A;
(c) A is maximal at m if and only if b : b = A.

Proof. Since A admits a finite basis over the principal ideal domain R, the
A-module A/mA is of finite length. Therefore the ring A/mA is an Artin
ring. From [l, Chapter 8] it follows that each prime ideal of A/mA is max-
imal, that there are only finitely many of them, and that their intersection
is nilpotent. This proves the first two assertions of 2.4, äs well äs (a). To
prove (b), we note that the annihilator of the prime ideal p/mA in the
Artin ring A/mA is non-zero, so mA : p properly contains mA. Therefore
A : p properly contains A. To prove (c), first assume that A is maximal
at m. From (O : A)O C A and gcd(m, (O : A)) = l it follows that for each
maximal ideal pR of R dividing m the localizations APR and OPR are equal.
Hence the order APR over RpR is a product of finitely many Dedekind do-
mains, and bpR is a product of non-zero ideals in those Dedekind domains.
Therefore bpR : bpR = APR. The same equality also holds for maximal
ideals pR of R that do not contain m, since in that case bpR = APR. It fol-
lows that b : b = A, äs required. For the converse, assume that b : b = A.
The maximal ideals p of A containing m are pairwise coprime, so their
intersection b is equal to their product. Hence b : b — A implies that all
those p satisfy p : p = A. We claim that (A : p)p = A for each p, so that
each p is invertible. If not, then from p C (A : p)p C A and the maximality
of p one derives that p = (A : p)p, so A : p C p : p = A, contradicting (b).
From the invertibility of all maximal ideals containing m one deduces by
induction that all A-ideals that contain a power mk of m, with k > 0,
are invertible, and the same is then true for all fractional ideals H with
A C H c. m~kA for some k > 0. Apply this to H = {x € / : mlx € A for
some z > 0}. This is a ring, so H H = H, and the invertibility of H implies
H — A. Therefore (O : A) is coprime to m. This proves 2.4.

Remark. Every maximal ideal p of an order A over a principal ideal domain
R that is not a field contains a non-zero element of R, by [l, Corollary 5.8].
So 2.4(b) shows that A : p <£ A for each such p.
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PROPOSITION 2.5. Let A be an order over a principal ideal domain, and let
a be a fracüonal Α-ideal. Then a is invertible if and only if the overorder
(A : a) : (A : a) of A equals A, and if and only if both A : (A : a) = a and
a : a = A.

Proof. If a is invertible, then äs we saw in 2.3 we have A : (A : a) = a, and
a : a = (a : a) A = (a : a)a(A : a) = a(A : a) = A; also, b = A : a is then
invertible äs well, so for the same reason we have (A : a) : (A : a) = A.
Next suppose that a is not invertible. Then the Α-ideal (A : a)a is different
from A, so there is a maximal ideal p of A containing (A : a) a. We
have A : p C A : ((A : a)a) = (A : a) : (A : a), so from 2.4(b) we see that
(A : a) : (A : a) φ A. This proves that a is invertible if (A : a) : (A : a) = A.
Applying this to b = A : a, we find that b is invertible if A : b = a and
a : a = A, and then its inverse a is invertible äs well. This proves 2.5.

2.6. Gorenstein rings, Let A be an order over a principal ideal domain.
We call A a Gorenstein ring if A : (A : a) = a for every ideal a of A
that contains a non-zero-divisor of A or, equivalently, for every fractional
Α-ideal a. It is an easy consequence of [3, Theorem (6.3)] that this is, for
Orders over principal ideal domains, equivalent to the traditional notion.
Note that A is a Gorenstein ring if it is a maximal order. The converse is
not true (cf. 2.8).

PROPOSITION 2.7. Let A be an order over a principal ideal domain R, with
complementary module A^. Then the following properties are equivalent:

(a) A is a Gorenstein ring;
(b) for any fractional Α-ideal a, we have Ά : a = A if and only if a is

invertible;
(c) A* is invertible.

Proof. From 2.5 and the definition of a Gorenstein ring it is clear that (a)
implies (b). To prove that (b) implies (c), it suffices to prove that A? : A* =
A. Generally, put a1' = {x € Ap '· Tr (xa) C R] for any fractional A-ideal
a, where Ap is äs in 2.3. Using dual bases one easily proves that a^ = a,
and from the definitions one sees that â  = A* : a. Applying this to a = Ä*
one obtains Ä* : A^ — A, äs required. Finally, we prove that (c) implies (a).
Suppose that A* is invertible, and let a be a fractional ideal. Applying the
equality at = A* : a twice we find that a = a^ = A^ : (A^ : a). We need
to prove that this equals A : (A : a). If b = A : A* denotes the inverse of
Af, then we have Af : a = (A : b) : a = A : (ab) = (A : a) : b = (A : a)Af

and A1" : (A* : a) = A* : ((A : a)Af) = (tf : A^) : (A : a) = A : (A : a).
This proves 2.7.
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2.8. Example. Let R be a principal ideal domain and let / 6 R[X] be a
monic polynomial with non-vanishing discriminant. Then A = R[X]/fR[X]
is an order over R, and if we write a — (X mod / ) 6 A then Ä* = f'(a}~~lA
(cf. [25, Proposition 3-7-12]). This shows that A^ is invertible, so 2.7 im-
plies that A is a Gorenstein ring. It is well-known that .A is not necessarily
maximal.

PROPOSITION 2.9. Let R be an Artin ring, let L be a free R-module of
fimte rank, and let N C L be a submodule. Then N is free over R if and
only if L/N zs free over R.

Proof. Since each Artin ring is a product of fmitely many local Artin rings,
the proof immediately reduces to the case that R is local. It is convenient
to use a few properties of projective modules, which can be found in [12,
Chapter l, Section 1]. First suppose that L/N is free. Then the exact
sequence 0 —» 7V —> L —*· L/N —»· 0 splits, so ΛΓ is projective, and therefore
free. For the converse, assume that N is free. Let m be the maximal
ideal of R, and let α G R a non-zero element annihilated by m. Then
raN = {xeN:ax = 0} = Nn{xEL:ax = 0} = Nn (mL), so N/mN
is a subspace of the Ä/m-vector space L/mL. Supplementing an R/m-
basis of N/mN to one for L/mL and applying Nakayama's lemma one
finds a surjection N Θ Rn —> L, where n = rank L - rank N. Comparing
the lengths of the two modules we see that it is an isomorphism. Hence
L IN & Rn. This proves 2.9.

3. Tarne algebras over the p-adic integers

This section and the next one are devoted to a study of tameness, which
is one of the central notions of this paper.

We let in this section p be a prime number, and we denote by Z p the
r ing of p-adic integers. We oall a Zp-algebra T local if T is local äs a ring
with a residue class field of characteristic p. A local Zp-algebra T is said to
be unramified if T S* Zp[Y}/gZp[Y] for some monic polynomial g € ZP[Y]
for which (g mod p) e Fp[yj is irreducible. Equivalently, a local unramified
Zp-algebra is the integral closure of Zp in a finite unramified extension of
the field Qp of p-adic numbers (see [25, Section 3-2]).

Throughout this section, q denotes a non-zero element of pZp. Let S
be a Zp-algebra. If S is local, then we call S tarne at q if there exist a
local unramified Zp-algebra Γ, a positive integer e that is not divisible by
P, and a unit u € T*, such that S S* T[X}/(Xe - uq)T(X] äs Zp-algebras.
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In general, we call 5 tarne at q if S is the product of finitely many local
Zp-algebras that are tarne at q.

If q is a pnme element of Zp then tameness at q is equivalent to the
traditional notion, äs expressed by the foüowing result.

PROPOSITION 3.1. Suppose that q € pZp, q ^ P2ZP, and let S be a Zp-
algebra. Then S is local and tarne at q if and only if S is isomorphic to the
integral closure of Zp m a finite tamely rarmfied field extension of Qp .

Proof. This follows from the description of tamely ramified extensions given
in [25, Sections 3-2, 3-3, 3-4].

We now prove various properties of Zp-algebras that are tarne at q.

PROPOSITION 3.2. Let T be a local unramified Zp-algebra, let e be a positive
integer that is not dimsible by p, and let u E T* be a umt. Let further
S = T[X}/(Xe - uq)T[X] = Τ[π], where π = (X mod Xe - uq). Then
S is local and tarne at q, and its maximal ideal is generated by p and π.
Further, the residue class field k of S is the same äs that of T, and it
satisfies [k : Fp] - [T : Zp] = [S : Zp]/e.

Proof. It is easy to see that the S-ideal pS + π8 is maximal and that
its residue class field k is the same äs the residue class field TjpT of T.
Conversely, let p C S be a maximal ideal. Since S is integral over Zp, we
have ρΠΖρ = pZ p (see [l, Corollary 5.8]), so p € p. Also, from π β = uq 6 p
it follows that ττ 6 p. This implies that p = pS + irS, and that S is local.
The fact that S is tarne at q follows from the definition of tameness. The
relations between the degrees follow from [T/pT : Zp/pZp} — [Γ : Zp] and
[5 : Γ] = e. This proves 3.2.

PROPOSITION 3.3. Let T, e, u, S and π be äs in 3.2, and let Tr be the

trace function of S over Zp. Then we have:

(a) the complementary module S^ of S over Zp is given by S^ — nq'^-S,
and S^/S ts äs a Zp-module isomorphic to the dir&ct sum of [k :
Fp](e — 1) copies ofZp/qZp.

(b) AS/Zp=9tfcFp](e-l)Zp .

(c) the S-ideal a = {χ ζ S : Tr (xS) C <?ZP} satisfies a = π3, a e = qS,
and S/a is äs α Zp/qZp-module free of rank [k : F p ) ;

(d) for each positive integer ι the ZP/qZp-module (a 1 " 1 + gS)(a i + 1 +
qS}/(a.1 + qS)2 is free, and its rank equals 0 for ι φ e and [k : Fp]
for ι = e.
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Proof. Since T is unramified over Z p , we have T* = Γ. Combining this
with Tr = Tr r ° Tr s/τ ° n e finds that Sfi is also the complementary
module of 5 over T. A Γ-basis of 5 is given by l, ττ, ττ2, . . . , π 6 " 1 . Α
straightforward computation shows that the dual basis is given by e~l,
(euq)~17re~1, (euq)'1^"2, ... , (euq)~l-K, and this is a basis for irq~1S.
Hence S^ = irq~1S, which is the first assertion of (a). Another T-basis for
£ΐ is given by l, q~ln, q~1^2, . . . , q~1ire~1, from which it follows that
S* /S is, äs a T- module, isomorphic to the direct sum of e — l copies of
TJqT. Since T/qT is free of rank [k : Fp] over Zp/qZp this implies the last
assertion of (a).

To prove (b) it suffices, by 2.3, to compute the determinant of a Zp-linear
map that maps S^ onto 5 (for example, multiplication by π 6 " 1 ) . This is left
to the reader. For (c) we note that a = (gS1") n 5 = π S Π S = π3, so ae =
7re5 = qS and S/a = S/ -π S S* T/qT; the last isomorphism follows from 5 =
T[X}/(X£-Uq}T[X}. Finally, from (c) we obtain that a1 + qS = 7 r m m i e ' I >5
for any positive integer i, so (a1"1 + qS)(al+1 + qS)/(a* + qS)2 = 0iii^e
and (a 6- 1 + gS)(ae+1 + qS)/(ae + qS)2 = π2*-1 S '/ 'ττ2ε S & S/vS = S/a,
which implies (d). This proves 3.3.

3.4.Remark. Let S be a local Zp-algebra that is tarne at g, and let k be
its residue class field. We shall call [k : Fp] the residue class Geld degree
of S over Z p . From 3.2 it follows that T and e are uniquely determined
by 5. Namely, T is, äs a local unraraified Zp-algebra, determined by its
residue class field, which is k. Using Hensel's lemma one can show that T
is even uniquely determined äs a subring of S (cf. the construction of Γ
in the proof of 3.7). Next, e is determined by e = [S : Zp]/[k : Fp}. We
shall call e the ramifi cation Index of S over Z p . If e > l, then from 3.3(a)
it follows that the ideal <?ZP is also uniquely determined by S. Hence a
local Zp-algebra that is not unramified cannot be tarne at two values of q
that are not divisible by the same power of p. From 3.3(c) one can deduce
that, for e > l, not only the ideal <?ZP but also the set uqT*e is uniquely
determined by 5. Conversely, 5 is clearly determined by T, e and uqT*e.

PROPOSITION 3.5. Let the notation be äs in 3.2, and let the positive integer
9 be such that qZp = p9Zp. Denote by S the integral closure of S in
? ®zp Qp. Then we have S = J ^ Τπτρ-Μ4, and qp~lS C S Further,
S is equal to S if and only if e = l or q £ p2Zp. We have AS/ZP

 =

^ g ^ d m s M e b y e .

Proof. We first prove the expression for S under the added assumption
that T contains a primitive eth root of unity ζ. In that case, there is a
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T-algebra automorphism σ of S with σττ = ζττ, and σ generates a group Γ
of order e. The action of Γ on S extends to an action of Γ on 5 <S>zp Qp
and on S. We consider the structure of S äs a module over the group
ring Γ[Γ]. Prom e ^ 0 modp it follows that there is an isomorphism of
T-algebras Γ[Γ] - + T e = T x T x . . . x T that sends σ to (Cl)f=o · Therefore
5 is, äs a T[r]-module, the direct sum of modules 5j, 0 < i < e, where
Sz = {x E S : σχ = ζιχ}. We have πτ € St) so σ acts äs the identity on
Tr~lS%, and therefore π~ι3ϊ is contained in the field T<g>zp Qp. Because T
is unramified over Z p , any T-submodule of that field is determined by the
integral powers of p that it contains; so it remains to see which powers of p
belong to π~Ζ3ι. For j € Z, we have p7 € π~ί§ι if and only if ττ'ρ? is integral
over 5, if and only if its eth power (uq)lpej is integral over 5, if and only
if ej > —gi·, if and only if j > —\gi/e]. This shows that ττ~'ί3ϊ = p~^l^e^T,
äs required.

Next we prove the expression for 5 in the general case. From e φ 0 mod p
it follows that there exists a local unramified Zp-algebra T' containing Γ
that contains a primitive eth root of unity. Apply the above to 5" = 3<8>τΤ',
and use that S equals the intersection of S<S>zp Qp with the integral closure
of 5 ' in 5 ' ®zp Qp· This leads to the desired result.

From [gi/e] < g we see that qp~1S = p9"1 S C S. We have 5 = 5 if and
only if [gi/e] = 0 for 0 < i < e — l, if and only if g(e — 1) < e, if and only
if g = l or e — 0. This proves the second Statement of 3.5.

The formula for the discriminant follows by an easy computation from
3.3(b) and the formula Δ$/Ζρ = As/Zp/(S : S)2 from 2.3. The last asser-
tion is obvious. This proves 3.5.

Let now S be a Zp-algebra that is tarne at q but that is not necessarjly
local. Then S is the product of the localizations Sp of S at its maximal
ideals p, of which there are only finitely many, and each 5 P is a local Zp-
algebra that is tarne at q. We shall denote the residue class field degree
and the ramification index of Sp over Z p by /(p) and e(p), respectively.

PROPOSITION 3.6. Let S be a Zp-algebra that is tarne at q, and put a =
{x € S : Tr (xS) C qZp}, where Tr is the trace of S over Zp. Denote by S
the integral closure of S m S<S>zpQP- Then S/a is free äs α Zp/qZp-module,
and we have

/ \ Λ _ _ 2_

(b) for each positive integer i the Zp/qZp-module (a 2 " 1 + qS)(al+1 +

»^ " - ' + qS)2 is free of rank E P > e ( P ) = l /(?)/
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(c) if a = qS, then &s/zp — (1) and S = S;

(d) if a φ qS, then q divides &s/zp,
 w e have qp~lS C S, and S equals

S if and only ifq$ P2ZP;
(e) if e denotes the least common multiple of the numbers e(p), with p

ranging over the maximal ideals of S, then we have Δ§/ζ — (1) if
and only if qZp is the eth power of an ideal ofZp.

Proof. The ideal a is the product of the similarly defined ideals a p of the
rings 5 P . By 3.3(c), each of the Zp/gZp-modules S p /a p is free, so the same
is true for S/a. To prove (a), we may likewise assume that S is local, in
which case it suffices to apply 3.3(b), 3.2, and 3.3(c). In the same way (b)
follows from 3.3(d). If a = qS, then we have [S : Zp] - [S/a : Zp/qZp] = 0,
which implies the first Statement of (c); the second follows by 2.3. Next
suppose that a ^ qS. Then we have [S : Zp] - [S/a : Zp/qZp] > 0,
which implies the first Statement of (d). Also, for at least one p we have
[Sp : Zp] — [S p /a p : Zp/qZp] > 0, which means that e p > 1. Since S is
integrally closed in S ®zp Qp if a n d only if each S p is integrally closed in
• P̂ ®zp Qp, it now follows from 3.5 that this is also equivalent to q $ p2Zp.
This proves (d). Finally, (e) follows from the last statement of 3.5. This
proves 3.6.

The main result of this section enables us to recognize whether a given Zp-
algebra is tarne at q, provided that it has sufficiently small degree over Z p .

THEOREM 3.7. Let p be a prime number, and let q € pZp, q φ 0, where
Zp denotes the ring of p-adic iniegers. Let further S be a Zp-algebra that
admits a finite basis, with [S : Zp] < p. Put a = {x e S : Tr (xS) CqZp},
where Tr is the trace of S over Zp. Then S is tarne at q if and only if
a : a = S and both a/qS and (S : a)/S are free äs Zp/qZp-modules.

Proof. We first remark that by 2.9, applied to R = Zp/qZp, L = S/qS, and
N = a/gS, the Zp/gZp-rnodule a/qS is free if and only if S/a is. Hence we
may replace a/qS by S/a in the statement of Theorem 3.7.

For the proof of the "only if" part we may assume that S is not only
tarne at q but also local, äs in the proof of 3.6. Then by 3.3(c) we have
a = TrS, so a : a = S. Also, S/a is free over Zp/gZp, by 3.3(c), and the
same applies to (S : a ) /S = ir^S/S = S/nS = S/a. This proves the "only
if" part.

Next we prove the "if" part. Assume that a : a = S and that both S/a
and (S : a ) /S are free äs Zp/gZp-modules. We first reduce to the case that
S is local. Since S is free of finite rank äs a ZP-module, we may identify S
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with the projective limits of the rings S/pnS, n > 0. Prom 2.4(a) we know
that there is a positive integer t such that Π Ρ Ρ ^ pS D Π Ρ Ρ*ι where p
ranges over the prime ideals of S" containing p. It follows that the System of
ideals (p™.?)^! is cofinal with the system of ideals ( J | p Pn)£Li> s o that S is
also the projective limit of the rings 57 ( Π ρ Ρ η ) · F° r e a c n ni the ideals p r a

are pairwise coprime, so 5/( Π ρ P n ) — Π Ρ ^/Ρ η · Hence if we let Sp denote
the projective limit of the rings S/pn, n > 0, then we have an isomorphism
S = Π ρ 5p of Zp-algebras, the product extending over the prime ideals
p of S containing p. In addition, each Sp is local, and it is actually the
localization of S at p. As a Zp-module, each 5 P is a direct summand of 5,
so it is free, with [Sp : Zp] < [S : Zp] < p. Also, the assumptions on a carry
over to each Sp. Since S is tarne if each of the Sp is, we conclude that we
may assume that 5 is local, which we do for the remainder of the proof .

Denote by p the maximal ideal of 5. As above, we have p D pS D p*
for some positive integer t, and S is p-adically complete.

We first prove that p = pS + a. Prom [5 : Zp] < p it follows that
Tr l = [S : Zp] · l £ qZp, so l ^ a. This implies that a C p, so pS + a C p.
To prove the other inclusion, we first note that the definition of a gives rise
to an exact sequence

0 -> a/qS -> S/qS -> Hom(S/a, Zp/qZp) -> 0

of Zp/(j>Zp-modules, the third arrow mapping χ mod qS to the map send-
ing y mod a to Tr (xy) mod <?ZP; this arrow is surjective because 5/a and
Hom(<S'/a, Zp/qZp) are free of the same rank over Zp/qZp and hence have
the same cardinality. Since S /a. is Zp/gZp-free, we have a natural isomor-
phism

Hom(S/a, Zp/c?Zp) ®Zp/qZp Fp ^ Hom((5/a) ® Z p / ( ? Z p F p , F p )

Hence if we tensor the exact sequence above with F p we obtain an exact
sequence

a/(qS + pa) -* S/pS -+ Eom(S/(pS + a), Fp) -^ 0

of Fp-vector spaces. From this sequence we deduce that p C pS + a, äs
follows. Let χ € p. We have p* C pS, so for any y € 5 the multiplication-
by-xy map S/pS — > S/pS is nilpotent and has therefore trace 0 when
considered äs an Fp- linear map. This implies that χ mod pS belongs to the
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kernel of the map S/pS —> Hom(S/(pS + a) ,F p ) . This kernel equals the
image of a/(qS + pa), so that χ € pS + a. This completes the proof of the
equality p = pS + a.

The next step in the proof is the construction of an unramified subring
T of S that has the same residue class field äs 5. Let k = S/p be the
residue class field of S, and let Γ be the unique unramified local Zp-algebra
with residue class field T/pT S* k. If Γ & Zp[Y]/gZp[Y], then by Hensel's
lemma g has a zero in S (see [l, Exercise 10.9]); at this point we use that
S is p-adically complete. This gives a Zp-algebra homomorphism T —> S,
which makes S into a T-algebra. Let e be the dimension of S/pS äs a vector
space over T/pT = k. By Nakayama's lemma there is a surjective T-linear
map Te ->. S. We have e · [T : Zp] = e · [k : Fp] = [S/pS : Fp] = [S : Zp], so
comparing Zp-ranks we see that the map Te —> S must be injective. This
implies in particular that the map T —> S is injective. Hence we may view
Γ äs a subring of S, and S is free of rank e äs a T-module.

In the definition of a we may now replace Zp by T, i. e., we have a = {x G
S : Tr S/T(XS] C qT}, where Tr s/τ is the trace map for the extension T C
S. This is an immediate consequence of the formula Tr = Tr T/z ° Tr 5/7-
and the fact that qT = {x € T : Tr T/zp(xT] c qZp}; the last* equality
holds because T is unramified over Zp.

Any T/gT-module N that is finitely generated and free äs a Zp/qZp-
module is also free äs a T/gT-module, the rank being [T : Zp] times äs
small; one proves this by lifting a k-basis of N/pN to a T/qT-basis of N,
m the same way äs we proved above that S is free äs a T-module. Hence
the hypotheses on a now imply that S/a and (S : a) /S are free äs T/qT-
modules. The rank of S/a over T/qT can be computed over the residue
class field; using that pS + a = p we find that [S/a : T/qT] = [S/(pS + a) :
T/pT] = [k : k] = l, so the natural map T/qT —> S/a is an isomorphism.

Next we prove that a is invertible. From a C p and 2.4(b) we see that
S '· a ji S, so the moduie (S : a)/S is non-zero. Also, it is free over
T/qT = g/a, so the annihilator of (S : a)/S in S/a is zero. This means
that S : (S : a) = a. From our hypothesis a : a = S and 2.5 it now follows
that a is invertible, so a(S : a) = S.

We deduce that a is principal. Namely, choose p € a with p(S : a) £ p.
Then l e p(S ; a), and multiplying by a we find a C pS. Since we also
have pS c a this proves that a = pS.

We claim that S = T[p]. To see this, we first note that T [p] is local
with maximal ideal p ' = p n T[p\. This follows from the fact that S is
integral over T\p] and local. Next, from T/qT ^ S/a = S/pS we see that
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S = T + pS and therefore S = T[p] + p'S. Applying Nakayama's lemma to
the T[p]-module 5 we now see that S = T(p\.

Let / € T[X] be the characteristic polynomial of p over T. Then / is
a monic polynomial of degree e, and f(p) — 0. Hence there is a surjective
T-algebra homomorphism T[X]/fT[X] -*· T\p] = S sending X mod / to p,
and comparing ranks over Γ we see that this is an isomorphism.

We show that / is an "Eisenstein polynomial at q", i.e., if we write
/ = Σβ

ι==0 aiX
e~'i then a3 <= qT for 0 < j < e and ae 6 qT*. We have

T/qT = S/a = T[p}/pT[p] = T(X]/(fT[X]+XT[X]) ^ T//(0)T = T/aeT,

and therefore a e € qT*. For each positive integer i, the element Pi =
Tr S/T(PI) of Γ belongs to Tr S/T& and therefore to qT. Hence Newton's
formulas, which assert that ja3 + Σζ=ιΡ*α.7-ϊ = 0 for l < j < e, imply
that ja3 €. qT for l < j < e. From p > [5 : Zp] > e it now follows that
o? e gT.

The next step is to modify p so that its eth power becomes a unit times q.
From /(p) = 0 and the fact that / is Eisenstein at q we see that pe =
~'Y^i=\a"iPe~% ^ —ae(l.+pS). Hensel's lemma and the fact the gcd(e, p) = l
imply that each element of l + pS is an eth power in S*. Hence there exists
v € 5* such that π = pv satisfies π 6 = — ae, which equals uq for some
ueT*.

Since ττ is, just äs p, Ά generator of the ideal a, anything that we proved
for p applies to π äs well. In particular, there is a monic polynomial h 6
T[X] of degree e such that there is an isomorphism T[X]/hT[X] = S of
T-algebras that maps X mod h to π. Then Xe — uq is divisible by h,
and comparing degrees and leading coefficients we see that Xe — uq = h.
Therefore S = T[X]/(Xe - uq)T[X], and S is tarne at q. This proves
Theorem 3.7.

Remark. With only minor changes, the results of this section and their
proofs can be carried over to the case that Z p and q are replaced by a
one-dimensional noetherian complete local ring R and an element q of the
maximal ideal of R that is not a zero-divisor; in 3.1, 3.5, and 3.6(c, d, e)
it should in addition be required that R is regulär, so that it is a complete
discrete valuation ring.

4. Tarne Orders

Let A be an order and let q be a positive integer. For a prime number
p, we write Ap = A <8>z Zp. We call A tarne at q if for each prime number
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p dividing q the Zp-algebra Ap is tarne at q in the sense of the previous
section. Note that, äs in the third paragraph of the proof of Theorem 3.7,
one has Ap = JT y4p, where p ranges over the prime ideals of A containing
p and Ap denotes the completion of A at p; this implies that the present
definition of "tarne" coincides with that given in the introduction.

We denote by O the maximal overorder of A, äs in 2.3, and by Tr the
trace of A over Z.

PROPOSITION 4.1. Let A be an order and let q be a positive integer with
the property that each prime dividing q exceeds [A : Z]. Put a = {x €
A : Tr(xA) C qZ}. Suppose that both a/qA and (A : a)/A are free when
considered äs Z/qZ-modules, and that a : a = A. Then A is tarne at q. In
addition, we have:

(a) z/a = qA, then gcd(<?, A A) = l and A is maximal at q;
(b) if a ^ qA, then q divides ΔΑ, and the pnmes dividing gcd(g, (O :

A)} are those that appear at least twice m q.

Proof. Let p be a prime dividing q. One easily verifies that a p = a (S>z Zp

may be identified with the ideal {x € Ap : Τΐ(χΑρ) C qZp} of Ap, and
that Op = O <8>z Zp may be identified with the integral closure of Ap in
AP <£>Zp Qp- Proposition 4.1 now follows immediately from Theorem 3.7
and Proposition 3.6, applied to 5 = Ap.

PROPOSITION 4.2. Let A be an order, let q > l be an integer dividing Δ.Α,
and suppose that A is tarne at q. Put a = {x e A : Tr(xA) C qZ}. Then
there exists an integer h with 2 < h < [A : Z] for which the Z/qZ-module
(ah~1 + qA)(ah+1 + qA)/(ah + qA)2 is non-zero; if for some such h that
module is actually free over Z/qZ, and gcd(g, Δ Ο ) = l, then q is an hth
power.

Proof. Let p be a prime number dividing q, and let ap = a <8>z Z p C
AP- Since p divides ΔΑ, it dhides Δ.ΑΡ/ΖΡ· Applying 3.6(a) we see that
there exists a maximal ideal p of Ap with e(p) > 1. By 3.6(b), we have

~ + qAp)(ap-+i + qAp}/(a% + qAp)
2 ^ 0 for h = e(p), so also (ah~l +

/ l + 1 + qA)/(ah + qA)2 φ 0. This implies the irrst assertion, since
< Λ < [ Α : Ζ ] .

Next let h be a positive integer for which M = (&h~l + qA)(ah+1 +
qA)/(ah + gA)2 j s a free non-zero Ζ/ςΖ-module, and suppose that
gcd(q, Δ Ο ) = 1. Let p again be a prime number dividing q. Tensoring M
with Zp we see that the Zp/9Zp-module ( a ^ 1 + qAp)(ah

p

+1 + qAp)/(a% +
QAP) is free of positive rank. Thus e(p) = h for some maximal ideal p of
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Ap, by 3.6(b). Since p does not divide ΔΟ/Ζ? we have ΔΟΡ/ΖΡ — (1); so by
3.6(e) the ideal qZp is the hth power of an ideal of Z p . This means that
the number of factors p in q is divisible by h. Because p is arbitrary, this
implies that q is an Mb. power. This proves 4.2.

The following result describes a natural class of examples of tarne Orders.

PROPOSITION 4.3. Lei f € Z[X] be a momc polynormal of which the dis-
cnmmant Δ is non-ze.ro, and let q be the largest divisor of Δ that is not
divisible by any pnme number p < deg/. Put A ~ Z[X}/ fZ[X] = Z [a],
where a = (X mod / ) . Then A is tarne at q if and only if A/ f'(a)A has
an element of additive order q.

Remark. Note that the order of A/f'(a)A equals |Δ|, which is divisible by q.
The proposition asserts that A is tarne at q if and only if the exponent of
A/ f'(a)A is divisible by q äs well. This condition is satisfied, for example,
if A/f'(a)A = Ζ/ΔΖ.

Proof. Let p be a prime number dividing q, and put Ap — A ®z Z p . As
we saw in 2.8, the complementary module A^ of Ap over Z p is given by
A* = f'(a}~1Ap, and the order of A^/AP equals that of Zp/qZp. Assume
now first that A is tarne at q. Then by 3.3(a) the Zp/<?Zp-module A^/AP is
free, and the rank must be 1. It follows that we have Ap/f'(a}Ap = Zp/qZp.
Since this is true for each prime number p dividing q one concludes that
A/f'(a)A contains an element of order q. This proves the "only if" part.
For the "if" part, assume that A/ f(a)A contains an element of order q
Then we have Ap/Ap = Ap/f'(a)Ap = Zp/qZp. Hence the ideal a p = ( τ 6
Ap : Tr(xAp) C qZp} is given by a p = (qA^) Π Ap = qA\ = qf(a')-1Ap.
Then we have &p/qAp = qA^/qAp ^ A*p/Ap = Zp/gZp, which is free over
Zp/qZip. Also, because a p is principal we have ap : a p = Ap and (Ap :
ap)/Ap = Αρ/3φ, which is free over Zp/qZp because of 2.9. From Theorem
3.7 it now follows that the Zp-algebra Ap is tarne at q. Therefore A is tarne
at q. This proves 4.3.

PROPOSITION 4.4. Let A be an order, and let q and q' be positive integere
dividing Δ ^ such that A is tarne both at q and at q' . Let p be a prime number
dividing gcd(g, q'). Then the number of factors p m q equals the number of
factors p in q' . Also, the number of factors p dividing the exponent of the
finite abehan group O/ A is smaller than the number of factors p in q.

Proof. The order Ap over Z p is tarne at q, and because q divides Δ ^ not
all ramificatkm indices of Ap are equal to 1. Thus by 3.4 the ideal qZp
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is uniquely determined by Ap. Therefore we have qZp = q"Zp. The last
assertion follows from 3.6(d). This proves 4.4.

Suppose that the order A is tarne at q. If q is not squarefree, then A is
not necessarily maximal at q, by 4.1(b), but it does have many agreeable
properties that distinguish it from arbitrary Orders. These can be deduced
from the results of Section 3. For example, each maximal ideal p of A
containing q satisfies dimyi/p p / p 2 < 2, which means that locally (and even
globally) it can be generated by two elements (see 3.2). In geometric terms,
this means that all singularities of A are plane singularities. The following
two propositions mention a few additional properties of Orders that are tarne
at q. Roughly speaking, they express that even though not all fractional
-4-ideals need be invertible, at least many of them are (cf. 2.7). Since these
results do not play a logical role in the rest of the paper we only sketch
their proofs.

PROPOSITION 4.5. L&t A be an order and let q be a positive integer, and
suppose that A is tarne at q. Put a = {x € A : Tr(xA) C qZ}, where
Tr denotes the trace of A over Z. Then all fractional A-ideals that one
can obtain from A, a and qA by applying the operations +, Π, ·, :, (— n
Q) · A a finite number of times are invertible, and these ideals form, under
multiplication, a finitely generated free abelian group.

Proof. In the Situation of Proposition 3.3—with Z and A replaced by Zp

and a local Zp-algebra 5 that is tarne at q—the corresponding set of ideals is
equal to the set {π η 5 : n <5 Z}, and the assertions are clear. The reduction
°f 4.5 to the Situation of 3.3 is straightforward. This proves 4.5.

PROPOSITION 4.6. Let A be an order and let q be a positive integer, and
suppose that A is tarne at q. Then for each prime number p dividing q the
order Ap over Zp is a Gorenstein ring. If in addition A is maximal at all
prime numbers not dividing q, then A is a Gorenstein ring.

Proof. In the local Situation of 3.3 this follows from 2.7 and the fact that
s* is invertible (3.3(a)). The first assertion follows immediately. If A is
maximal at all primes p not dividing q, then Ap is a Gorenstein ring for all p.
From this it follows in a straightforward way that A itself is a Gorenstein
r ing. This proves 4.6.

5· Basic algorithms

All algorithms in this section and the next one are deterministic. For a
general discussion of basic notions related to algorithms in algebraic number
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theory we refer to [18, Section 2]. In particular, one finds in [18, 2.9] the
defmition of the phrase "given an algebraic number field K" that occurs
in the theorems formulated in the introduction. In the present section we
elaborate upon several points that were only briefly mentioned in [18], and
we provide some of the proofs that were left out in [18].

5.1. Linear algebra (cf. [18, 2.4]). Let q € Z, q > 1. If q is a prime
number, then Z/qZ is a field, and the traditional algorithms frorn linear
algebra can be used to do computations with vector spaces over Z/qZ. We
shall see that if q is not necessarily prime, then the same algorithms lead
either to a non-trivial divisor q' of q or to a result that can be interpreted
in terms of free modules over Z/qZ. Here we call a divisor q' of q non-tnvial
ifl<q'<q.

As in [18, 2.4], giving a free Z/qZ-module of fmite rank means giving its
rank n (in unary). The elements of such a module are encoded äs sequences
of n elements of Z/qZ. Homomorphisms between two such modules are
encoded äs matrices in the usual way. A free submodule of a free module is
encoded äs a sequence of elements of the free module that is a basis for the
submodule. When we write, in this paper, that an algonthm determines a
submodule of a free module, we will always mean that it determines a basis
for that submodule. In particular, if an algorithm determines a submodule,
then that submodule is free.

PROPOSITION 5.2. There is α polynormal time algorithm that, given an in-
teger q > l and a homomorphism f from one free Z/qZ-module of fimte
rank to another one, either determines a non-trwial divisor q' of q or de-
termines the kernel of f and the image of f. There is a polynormal time
algorithm that, given an integer q > l and two free submodules of a free
Z/qZ-module of fimte rank, either determines a non-tnvial divisor q' of q
or determines the sum and the intersection of the.se submodules.

Proof. An m χ n matrix H = (hl3) with entries htj € Z/qZ is said to be
row reduced if the following conditions are satisfied: (i) there exists k < m
such that the ^th row of H is zero if and only if ι > k] (ii) for each ι < k,
there exists j t € {1,2, . . . ,n} such that hl3l — l, htj — 0 for j < j z , and
hl'Jl = 0 for all ι' φ ι\ (iii) j% < j ^ whenever l < ι < ι' < k.

Let H = (/ijj) be a row-reduced m x n matrix over Z/gZ, and let j i, .72,
... , jk € {l, 2 , . . . , n} be äs above. Then one verifies easily that several
modules associated to H are free. First of all, the row space of H, which is
the submodule of (Z/gZ)ra generated by the rows of H, is free of rank k, a
basis being formed by the non-zero rows of H. Secondly, the column space



Approximatting rings of integers in number fields 243

of H, which is the submodule of (Z/qZ}m generated by the columns of H,
is likewise free of rank k, a basis being formed by the columns with indices
ji, J2, . . . , jk· Thirdly, the nullspace of H, which equals {x 6 (Z/qZ)n :
Hx = 0}, is free of rank n — k, and one obtains a basis by taking, for each
j € {1,2, . . . , n} — {ji, j 2 , . . . , jk }, the vector whose ji th coordinate equals
—hij, for l < i < k, whose j'th coordinate equals l, and that is 0 at the
remaining n — k — l positions.

It is well-known from elementary textbooks in linear algebra that, if q
is prime, so that Z/qZ is a field, there exists for every m χ η matrix H
over Z/qZ an invertible m x m matrix U over Z/qZ such that UH is row
reduced. In addition, given H one can find the row reduced matrix U H by
performing the following operations O(m2) times: (i) interchange two rows;
(ii) divide a non-zero row by its first non-zero entry; (iii) add a multiple of
one row to another one.

If q is not necessarily prime, the same operations can still be performed,
except that (ii) is impossible if the first non-zero entry α mod q that one
wishes to divide by does not have an inverse. In that case the divisor
q = gcd(a, q) of q is non-trivial. It follows that there is a polynomial time
algorithm that, given q and an mxn matrix H over Z/qZ, either determines
a non-trivial divisor q' of q or a row reduced matrix that is obtained from
H by finitely many applications of the three operations above. Clearly, the
matrix that is obtained in the latter case is of the form UH, where U is an
invertible m-χ m matrix over Z/qZ.

We can now prove 5.2. Let /: (ZfqZ)n -> (Z/qZ)m be a homomorphism,
and let it be given by the mxn matrix H. Then the image of / is the
coiumn space of H, and the kernel of / is the nullspace of H. We can
in polynomial time either determine a non-trivial divisor q' of g or a row-
reduced matrix of the form UH, with U invertible. Assume that we are
m the latter case. As we saw above, we can write down a basis for the
nullspace of UH, and this is the same äs the nullspace of H. Further, if
the columns with indices ji, j 2 , ... , jk form a basis for the coiumn space
of UH, then the columns of H with the same indices form a basis for the
coiumn space of H.

Determining the sum and intersection of two free submodules Vi, V2 of
(Z/qZ)n can be reduced to determining images and kernels, äs follows. Let
/·· Vi φ V2 -» (Z/qZ)n be the map that sends (xi,x2) to xi + x2. Then

+ V2 is equal to the image of /, and V\ Π V2 is the isomorphic image of
kerne! of / under the natural projection Vi®V2~+Vi. This proves 5.2.
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5.3. Hermite normal form. We shall say that an m x n matrix H — (h%3)
with entries hl3 € Z is in Hermite normal form if the following conditions
are satisfied: (i) theie exists k < m such that the zth row of H is zero if and
only ιΐ z > k; (ii) for each ι < k, there exists j z € {l, 2 , . . . , n} such that
ht3t > 0, /ly = 0 for 3 < j j , and 0 < /Vjz < /i l j t for all z' < ?; (iii) j z < .v
whenever l < ι < ι' < k. This definition is a little more general than
the one commonly found in the literature (see [10]), so äs to accommodate
matrices of rank less than n. For each m χ n matrix H over Z there is
a unique matrix of the form U H that is in Hermite normal form, and for
which U is an invertible m χ m-matrix over Z (however, U is not necessarily
unique); the matrix U H is called the Hermite normal form of H.

PROPOSITION 5.4. There is α polynormal time algonthm that given anmx
n matrix H = (htj) over Z finds an invertible m χ m matrix U over Z for
which U H is in Hermite normal form.

Proof. First suppose that H has rank n. In this case the Hermite normal
form UH can be found in polynomial time by [10, Theorem 2.1] (applied
to the transpose of H], and U can be found in polynomial time äs well (see
[10, Section 5, end]). To reduce the general case to the case of rank n, we
let J be the set of those j , l < 3 < n, for which the j th column of H is not
a Q-linear combination of the earlier columns. If J = {31,32, · · · ,3k} with
Ji < 32 < · · · < 3k, then k = rank H, and ji is, for each l e {l, 2 , . . . , fc},
equal to the smallest value of j for which the matrix formed by columns
31, .. , 3i-i, 3 of H has rank l. Smce ranks of matrices over Z can be
computed in polynomial time (see [10, Proposition 2.3]), this shows that
J can be determined in polynomial time. The m χ k matrix Hj that is
formed by columns ji, . ·. , jkofH now has rank k, so by the above we can
find, in polynomial time, the Hermite normal form UHj of Hj, äs well äs
the matrix U. It is easy to verify that U H is then also in Hermite normal
form. This proves 5.4.

5.5. Free abelian groups of finite rank (cf. [18, 2.5]). Giving a
free abelian group of finite rank means giving its rank n (in unary). The
elements of such a group are encoded äs sequences of n integers, and homo-
morphisms between two such groups are encoded äs matrices, in the usual
way. A subgroup of a free abelian group of finite rank is itself free, and
it is encoded by means of a sequence of elements that is a basis for the
subgroup.

PROPOSITION 5.6. There is a polynomial time algonthm for each of the
following problems: gwen a homomorphism f from one free abelian group
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of fimte rank to another one, find the kernel of f and the image of f; given
two subgroups of a free abehan group of fimte rank, find the sum and the
mtersection of these subgroups; given a homomorphism f from one free
abehan group of fimte rank to another one, and a subgroup L of the latter,
find f~lL.

Proof. Let /: Zm — > Z n be a homomorphism, and let it be given by the
transpose of the m χ n matrix H. By 5.4, we can find an invertible m χ m
matrix U such that U H is in Hermite normal form. Then the non-zero rows
of U H form a basis for the image of /, and if k is equal to the number of
non-zero rows of UH, so that k = rank H, then the last m — k rows of U'1

form a basis for the kernel of /. This implies the assertion on finding the
kernel and image of /. Finding sums and intersections of subgroups can be
reduced to finding kernels and images, äs in the proof of 5.2. Finally, let
/ · ' FI — » FZ be a homomorphism, and let L C FS be a subgroup. Denote
by 9- FI φ L -H- F2 the map sending (z, y) to f(x) - y. Then f~lL is the
isomorphic image of the kernel of g under the projection F I ®L — > FI. This
impljes the assertion concerning f~lL. This proves 5.6.

5.7. Orders and fractional ideals. As in [18, 2.7 and 2.10], an order A
will be given by its degree n over Z and the multiplication map A ® A — >·
A. This comes down to specifying a System of n3 integers a^^ such that
ωι·ω3 — Σ/ο=ι QijkUk for some basis ω\, uiz, . . . , ωη οί Α over Z. Note
that one can verify in polynomial time whether or not a given System of
n mtegers aljk encodes an order, by checking the ring axioms and the
non-vanishing of the discriminant Δ Α in a straightforward way; here Δ Α is
computed directly from its definition (see 2.2). An ideal of an order A will
be specified by means of a basis of the ideal over Z, expressed in terms of
the given basis of A over Z, äs was done for subgroups in 5.5; this may for
practical purposes not always be the most efficient representation, but for
theoretical purposes it will suffice. To make the representation of an ideal a
unique, we may require that the given basis consists of the rows of a matrix
m Hermite normal form. In that case all entries of the matrix are bounded
oy the index of a in A. This is often useful if an algorithm deals with many
Ideals and one wishes to control the growth of the numbers occurring in

üe algorithm. A fractional ideal a is given by means of a pair d, b, where
α is a positive integer and b is an ideal of A of finite index; then a = d - 1 b .

m s is unique if we require that d is coprime to the largest integer e for
which b c eA.

"ROPOSITION 5.8. There are polynormal time algonthms that gzven
order A and fractional A-zdeals a 1 ; a 2, determme ai + a®, &i · a 2, ai Π

an
Π a 2,
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and ΑΙ : Ά% .

Proof. For sum and intersection this follows directly from Proposition 5.6.
The computation of ai · a% is easily reduced to the case that ai, ΆΖ are
contained in A. In that case, ai · a 2 is the image of the multiplication map
ai <8>a2 —>· A, which can be calculated by Proposition 5.6. The computation
of ΆΙ : a.% can be reduced to the case that a2 D A D ai- In that case, we
have ai : ΆΖ C A : A = A, which implies that ai : a.^ is equal to the inverse
image of Hom(a2, ai) under the map A —> Hom(a2, &%) that sends χ € A to
the multiplication-by-x map. This inverse image can, again, be calculated
by Proposition 5.6. This proves 5.8.

5.9. Overorders. Let A be an order, given by integers aI-7jt äs above.
Overorders of A and their fractional ideals will be represented äs fractional
ideals of A itself. Several algorithms in Section 6 compute many overorders
of A, and for the complexity analysis of these algorithms it is important to
note that the length of the data encoding any overorder B of A is uniformly
bounded by a polynomial function of ^ k log(|a„fc|+2), i. e., of the length
of the data encoding A itself. This follows from what was said above about
fractional ideals and the fact that the index of A in B divides ΔΑ-

6. Approximating maximal orders

In this section we prove the results stated in the introduction. We begin
with an auxiliary algorithm that corresponds to the case that the mimber
m in Theorem 1.2 is a prime number.

Algorithm 6.1. We describe an algorithm that, given an order A and a
prime number p, determines an overorder B of A that is maximal at p. The
algorithm begins by putting B = A. Let t be the least positive integer for
which p* > [A:Z].

Calculate the kernel b of the Fp-linear map B/pB —> B/pB that sends
every χ € B/pB to xp , äs well äs the inverse image a of b under the natural
map B -> B/pB\ this can be done by the algorithms of Section 5. Calculate
the overorder B' = a : a of B (see 5.8). If B' = B, then the algorithm
stops. If B' ^ B, then replace B by B' and iterate. This completes the
description of the algorithm.

PROPOSITION 6.2. Given an order A and a prime number p, Algorithm 6.1
determmes in polynormal time the umque overorder B of A that is maximal
at p and for which {B : A) is a power of p.
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Proof. Let B be any overorder of A that is encountered in the algorithm.
Then B/pB is a finite ring containing F p , and we have [B/pB : Fp] — [B :
Z] = [A : Z]. Let y 6 B/pB. Then two of the subspaces

B/pB D y(B/PB) D / ( B / p B ) D . . . D y& Z](B/PB) D y^A z l + 1 (B/pB)

of B/pB must have the same dimension over Fp and are therefore equal.
Hence there exists ί, Ο < ι < [A : Z], such that yl(B/pB] - yl+1(B/pB),
and this space is then equal to yJ(B/pB) for all j > i. In particular, y is
nilpotent if and only if y^A ZJ = 0, and if and only if yp = 0. This proves
that an element χ of B belongs to a if and only if (x mod pB) belongs
to the nilradical of B/pB. Therefore a is an ideal of B containing pB.
This implies that B C B' C p"1 B, so that (B' : B) is a power of p. It
follows that either B' = B or Δ Β ' = A.s/p2 s for some positive integer s.
Hence the algorithm goes through at most (log |AA|)/log(p2) iterations
before it stops. From Section 5 one sees that each Iteration can be done
in polynomial time. Hence the entire algorithm runs in polynomial time.
We also find that (B : A) is a power of p for each B that occurs in the
algorithm.

Let now B be the final overorder that is obtained. Then we have B =
B' — a : a, so by 2.4(c) the order B is maximal at p. From gcd(p, (O :
B}) = l and the fact that (B : A) is a power of p it follows that B/A
is the p-primary subgroup of the quotient O/A of additive groups. This
determines B uniquely. This completes the proof of 6.2.

The second auxiliary algorithm corresponds to the case that the number m
in Theorem 1.2 is built up from prime numbers that exceed the degree of
A over Z, but without the squarefree-ness assumption.

Algorithm 6.3. In this algorithm, an order A and an integer q > l are
given with the property that each prime divisor p of q satisfies p > [A: Z].
The algorithm determines an overorder B of A and a divisor q' of q, such
that either q' is non-trivial or B is well-behaved, äs expressed in 6.4. The
algorithm begins by putting B = A.

Let a be the B-ideal {x 6 B : Tr(>B) c <?Z}, and b = a/gB. Note that
b is the kernel of the map B/qB -* Hom(B/gB, Z/?Z) that sends each

mod q) e B/qB to the map sending (y mod q) to Tr(xy) mod q. Use
algorithm of Proposition 5.2 to find a basis of b over Z/gZ; this fails

°nly if a non-trivial divisor q' of q is found, in which case the algorithm
stops. If it is found that b = 0, then a = <?B, and the algorithm stops,

q' = i. Now suppose that b ^ 0, so that a ^ qB. Determine
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the overorder B' - a : a of B (Proposition 5.8). If B' Φ Β, replace
B by B' and iterate. Next suppose that B' - B. Determine B : a,
and attempt to find a basis of (B : a)/B äs a Z/<?Z-module, using the
algorithm of Proposition 5.2. If this attempt is not successful, then one
has found a non-trivial divisor q' of q, and the algorithm stops. If the
attempt is successful, one searches for the smallest integer h > l for which
(a^·"1 + qB}(ah+l + qB)/(ah + qB)2 is non-zero (we shall see below that
h exists and is at most [A : Z]). Using the algorithm of Proposition 5.2,
one attempts to find a basis for (a^-1 + qB)(ah+1 + qB)/(ah + qB)2 äs a
Z/<?Z-module. If this attempt is not successful, then one has found a non-
trivial divisor q' of ςτ, and the algorithm stops. If the attempt is successful,
one tests whether q is the hth power of an integer; this can be done with
Newton's method, or simply by means of a bisection. If this is not the case,
then one stops at this point, with q' = q. If q is an hih power, then one
puts q' = ql/h, and again the algorithm stops.

PROPOSITION 6.4. Given A and q äs m Algorithm 6.3, the method above
determmes m polynomtal time a pair B, q1 such that (B : A) dimd&s a
power of q and such that exactly one of (a), (b), (c) is true:

(a) q' divides q, and l < q' < q;
(b) q' = l, the order B is maximal at q, and gcd(<?, Δ Β ) = 1;
(c) q' = q; the order B is tarne at q and has discnmmant dwisible by

q; if O denotes the maximal overorder of A then gcd(g, Δ Ο ) > l,
and the pnme numbers dividing gcd(<?, (O : B)) are exactly those
that appear at least twice in q; and the order B is maximal at q if
and only if q is squarefree.

Proof. In each iteration of the algorithm, the order B is replaced by a
strictly larger one. This implies, äs in the proof of 6.2, that the algorithm
runs in polynomial time. At each step, a is a B-ideal containing q, so
B C B' C q~lB. Hence each index (B1 : B) divides a power of q, and the
same is then true for the final index (B : A).

It is clear that the number q' obtained from the algorithm divides q and
satisfies l < q' < q. Hence if (a) is not satisfied then we have q' — l or
β7 = 9-

First suppose that q' = 1. This means that, when the algorithm ter-
minates, we have a = qB. Then B : a = q~lB, so a/qB and (B : &)/B
are both free äs modules over Z/qZ. Also, we have a : a = qB : qB = B.
Hence by 4.1(a) the order B is maximal at q and satisfies gcd(g, Δ Β ) = l,
so we are in case (b).
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Next suppose that q' = q. Then we have a φ qB and a : a = 5 , and the
Z/gZ-modules a/qB = b and (B : a)/B are free. Hence by 4.1 the order
B is tarne at q, and by 4.1(b) all assertions of (c) except the one about
gcd(g, Δ Ο ) are true. By 4.2 the integer h that the algorithm is looking
for exists, and it satisfies h < [A : Z]. Also, from q' = q it follows that
( a ^ 1 + qB)(ah+1 + qB)/(ah + qB)2 is free äs a Z/gZ-module, and that q
is not an hth power. By 4.2 this implies that gcd(g, Δ Ο ) > 1. This proves
Proposition 6.4.

An application of Algorithm 6.3 is considered successfal if one is in case (b)
or (c). If the algorithm is unsuccessful (case (a)), one is inclined to repeat
the algorithm first with q' and next with q/q' in the role of q. However,
in order to keep the logical structure of the resulting algorithm äs clear
äs possible, it is desirable that once an order B has been made maximal
or tarne at q, one does not change it "at q" any more. This leads to the
Problem of refining the factorization q = q' · q/q' to a factorization into
pairwise coprime factors. For an extensive discussion of this problem we
refer to [2]. In our case the following simple result suffices. We say that an
integer α can be buüt up from integers c\, . . . , Q if there exist non-negative
integers ni, . . . , nt such that a = Π!=ι 0Γ*·

PROPOSITION 6.5. There is a polynormal time algorithm that, given two
integers a and b with a > l, b > l, computes a collectwn of pairwise
coprime dimsors c\, ... , et of ab, such that cz > l for each ι and such that
each of a and b can be built up from c\, . . . , et.

Proof. We first describe the algorithm. It works with finite sequences ci,
• · - , cr of positive integers from which α and b can be built up, with the
property that gcd(ct,Cj) = l whenever \i — j \ > l, and such that there
does not exist an index i < r with cz — cl+i = 1. At the beginning of
the algorithm the sequence has only the two members α and b. The al-
gorithm proceeds with a given sequence äs follows. First it searches for
two successive members d, e of the sequence that are both greater than 1.
If these cannot be found, then the members of the sequence are pairwise
coprime, and the algorithm terminates after deletion of the l's in the se-
quence. Next suppose that d, e can be found. Then one uses the Euclidean
algorithm to calculate / = gcd(d, e), and one replaces the terms d, e of the
sequence by d/f, / , e/f (in that order). If this creates two successive l's
in the sequence, delete one of them, and do this until no two successive l's
remain. Next one iterates the algorithm on the new sequence; it is easy to
see that it satisfies the same conditions äs the original one. This completes

description of the algorithm.
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The correctness proof of this algorithm is straightforward. To estimate
the running time we remark that gcd(d, e) can be computed m O ((log d}
(löge)) steps, for integers d > l, e > l (cf. [11, Exercise 4.5.2.30]). Prom
this it follows by induction that the running time of the algorithm, when
starting with a sequence ci, . . . , cr, is 0(ΣΓ=ι (l°g(cicz-t-i))2)· For the
sequence a, 6 this is O((log(a6))2). This proves 6.5.

We now combine the algorithms above into a single algorithm, which
will prove Theorem 1.1.

Algorithm 6.6. In this algorithm, an Order A and a positive integer m are
given. The algorithm determines an overorder B of A and a collection Q of
pairwise coprime divisors > l of m such that B and Q have the properties
listed in Theorem 6.7. At each stage of the algorithm, one has an overorder
B of A. The algorithm begins by putting B = A. Also, we put m 0 = m.

Step 1. For each prime number p < [A : Z] do the following. Test
whether p divides mo; if it does, apply Algorithm 6.1 to B and p, replace B
by the order that one obtains from 6.1, and divide mo by the largest power
ofp that divides it. When all primes p < [A : Z] have been processed, m 0 is
equal to the largest divisor of m that is not divisible by any prime number
p with p < [A : Z]. If now m 0 = l then the algorithm stops at this point,
with Q = 0.

In each stage of the remaining part of the algorithm one keeps track of
two collections M, Q οι pairwise coprime divisors > l of mo; the elements
of M are the numbers that need to be processed, and Q consists of the
numbers that have been processed. One begins with M — {m0}, Q = 0.

Step 2. If the set M is empty, the algorithm stops. Next suppose that
M is non-empty. Choose an element q E M, and apply Algorithm 6.3 to
B and q. Replace B by the order that one obtains from 6.3. Next there
are three cases, depending on the value of the number q' that is obtained
from 6.3. First suppose that q' = 1. In this case, remove q from the set M
and iterate Step 2. Next, suppose that q' = q. Then transfer q from M to
Q, and iterate Step 2. Finally, let it be supposed that l < q' < q In this
case, apply the algorithm of Proposition 6.5 to q' and g/g'. This gives rise
to a collection of pairwise coprime divisors C l , . . . , c, of g. Now remove g
from M, add each of d , . . . , ct to M, and iterate Step 2.

This completes the description of the algorithm.

THEOREM 6.7. Given an order A and a positive integer m, Algorithm 6.6
determmes m polynormal time an overorder BofA and a set Q of pairwise
coprime divisors q > l of m that have the following properties: dl primes
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dividing {B : A) divide m; each q € Q divides Δ Β ; the order B is tarne
at each q ξ. Q and maximal at all prime numbers that divide m but not
YlqGQ q; if O denotes the maximal overorder of A then the prime numbers
dividing gcd(m, (O : ß}) are exactly those that appear at least twice in some
q € Q, and one has gcd(g, Δρ) > l for each q 6 Q; and B is maximal at
m if and only if üoeQ ^ ^s S1uarefree·

Proof. We first show that Algorithm 6.6 runs in polynomial time. By 5.9,
all orders B that occur in the algorithm are specified by data of length
polynomial in the length of the data specifying A itself, and all numbers
p, g, q' are bounded by m. Prom this and 6.2, 6.4, 6.5 it follows that each
time that Algorithm 6.1 or 6.3 or the algorithm of 6.5 is invoked, it runs
in time polynomial in the length of the original data. This implies, first of
all, that Step l runs in polynomial time, since there are at most [A : Z]
values of p to consider. To show that Step 2 runs in polynomial time it
suffices to show that the number of iterations is polynomially bounded.
Each iteration calls Algorithm 6.3 once, and this call is either successful
(q' E {!,<?}) or not (l < q' < q}. If the call is successful, then M is
replaced by M — {q}, which implies that q is coprime to any later value of q
for which Algorithm 6.3 is called. This implies that the number of successful
calls of Algorithm 6.3 is bounded by the number of distinct prime divisors
of mo- To bound the number of unsuccessful calls of Algorithm 6.3, we
consider the quantity n(M] = fI9eM pföT' w n e r e P ("l] denotes the largest
prime divisor of q. Each time that M is changed in the algorithm, n(M)
is replaced by a divisor, and this is a proper divisor when the change is
made after an unsuccessful call of Algorithm 6.3. Therefore the number of
unsuccessful calls of 6.3 is bounded by the total number of prime divisors
of m0, counting multiplicities. Since this is O(logm), this concludes the
proof that the algorithm runs in polynomial time.

Next we prove that the final B and Q have the properties listed in the
theorem. The assertion about (B : A) is clear from 6.2 and 6.4. Note
that Q consists ofthose numbers q for which Algorithm 6.3 has been called
successfully in Step 2 with q' = q. As we have just seen, these numbers q
are pairwise coprime, and they divide m. Fix q £ Q, and let B^ be the
Order that was obtained from the corresponding successful call of Algorithm
6-3. Since later calls of 6.3 concern only numbers that are coprime to q, the
first assertion of 6.4 implies that (B : -B(9)} is coprime to q. Also, B^ has
the properties listed in Proposition 6.4(c), and from gcd((B : J3(9)},?) = l
it then follows easily that B itself has these properties äs well. This implies
the assertions made in the theorem, except those relating to prime numbers
dividing m that do not divide Y[qeQ q- Let p be such a prime number. If
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p < [A : Z], then in the course of Step l an order is obtained that is maximal
at p, by 6.2, and the overorder B of this order is then also maximal at p.
Next let p > [A : Z]. Then p divides m0, so at the beginning of Step 2
the number p divides a member of M, but at the end it doesn't, since then
M = 0. Since the set of primes dividing the elements of M does not change
after an unsuccessful call of 6.3, it must have happened that p divides a
number q for which 6.3 was called successfully; and since p does not divide
Y[qeQq, this successful call must have led to q' = 1. Thus Proposition
6.4(b) implies that it also led to an order that is maximal at p, and the
final B, which is an overorder of this order, is then likewise maximal at p.
This completes the proof of Theorem 6.7.

COROLLARY 6.8. There is a polynormal iime algonthm that, gwen an order
A and a positwe integer m, decides whether or not gcd(m, Δ0) = l, where
O denotes the maximal overorder of A; m addition, z/gcd(m, Δ Ο ) = l,
then the algonthm determmes an overorder of A that is maximal at m.

Proof. Run Algorithm 6.6 on A and m to obtain B and Q. If Q ^ 0, then
gcd(m, Δ Ο ) > l, by 6.7. If Q = 0, then B is maximal at m, by 6.7, so
gcd(m, Δ 0 ) = l if and only if gcd(m, AB] = l· T n i s proves 6.8.

THEOREM 6.9. There are polynomial time algonthms that, given an order
A, a positwe integer m dividing Δ/ι such that A is tarne at m, and one of
the following, construct the other:

(a) an integer a > l for which a2 divides m;
(b) an overorder B ^ A of A for which (B : A) divides a power of m.

Proof. First suppose that we know an integer o äs in (a). Applying Algo-
rithm 6.6 to A and a we find an overorder B of A and a set Q of divisors
of gcd(a, Δ Β ) with the properties listed in Theorem 6.7 (with a in the role
of m). Then B is an overorder of A for which {B : A) divides a power
of m. We need to prove that B ^ A. To this end, let p be a prime number
dividing a. We distinguish two cases. First suppose that p does not divide
any q e Q. In that case, B is maximal at p, by 6.7, but A is not, by
4.1(b), so B φ A. Next, suppose that p does divide some q 6 Q. Then
p divides q and m to different positive powers, so 4.4 shows that A is not
tarne at g; but B is tarne at q, by 6.7, so B Φ A. This shows that (a) can
be used to construct (b). For the converse, suppose that a ring B äs in
(b) is given. Denote by d the exponent of the finite abelian group B/A.
From dZ = Z Π (A : B} and Section 5 it follows that d can be computed in
polynomial time. From B φ A we see that d > 1. Proposition 4.4 implies
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that d divides m, and that every prime factor of m divides m/d. Therefore
a = gcd(d, m/d} has the properties in (a). This proves 6.9.

Proof of Theorem 1.1. Consider the following algorithm: given an order A
in a number field K, calculate the discriminant m of A, and apply Algorithm
6.6 to A and m to find an order B in K and a finite set Q of integers; let
q be the product of the elements of Q.

It is obvious that this algorithm runs in polynomial time. Prom Theorem
6.7 it follows that B, q have the properties stated in 1.1. This proves
Theorem 1.1.

Proof of Theorem 1.2. This is a consequence of Theorem 6.7, since if m is
squarefree then so are all its divisors q E. Q.

Proof of Theorem 1.4. Let it first be supposed that the ring of integers O of
K is given, and let d be the exponent of the abelian group ö\/O; note that
dZ = Z n (O : 0 t ) , so d can be computed in polynomial time. Since the
order of O^/O equals the discriminant Δ of Ä", the prime divisors of d are
the same äs those of Δ. Also, if p is a prime dividing Δ, and p > [K : Q],
then 3.1 and 3.3(a) (applied to q = p) imply that p occurs only once in d.
Hence if one removes the repeated prime factors < [K : Q] from d one
obtains the largest squarefree divisor of Δ.

Next suppose that the largest squarefree divisor m of the discriminant
Δ of K is given. As in [18, 2.10], one can construct an order A in K.
Using Euclid's algorithm one readily calculates the largest divisor m\ of Δ Α
that is coprime to m. Then gcd(mi,A) = l, so by Corollary 6.8 one can
calculate, in polynomial time, an overorder B of A that is maximal at mi.
By Theorem 1.2 one can determine, in polynomial time, an overorder of B
that is maximal at m. The latter order is maximal at Δ^, so it is equal to
the ring of integers of K. This proves 1.4.

6-10. Remark. One may wonder whether there is a polynomial time
algorithm that, given K and the discriminant Δ of K, determines the ring
of integers O of K. We argue that such an algorithm is currently beyond
reach by showing that it would enable us to factor integers n that are
known to be of the form p2g3, where p, q are distinct prime nurnbers; no
good algorithm, practically or otherwise, is known for the latter problem.

To prove this, let n be such an integer. To factor n, we may clearly
assume that p and q are odd. Let K = Q ( n 1 / 4 ) . This is a fourth degree
number field, and it is a straightforward exercise to show that its discrimi-
nant Δ is of the form Δ = — 4hn (cf. 3.5), where h is a positive integer that
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by Theorem 1.2 (with m = 2) can be computed in polynomial time. Thus,
we can compute Δ. By hypothesis, we can compute O from Δ in polyno-
mial time, so by Theorem 1.4 we can now determine the largest squarefree
divisor 2pq of Δ äs well. This obviously enables us to factor n completely,
which finishes the proof.

Proof of Theorem 1.3. We first reduce (a) to (b). Given an algebraic
number field K, one can in polynomial time construct an order A in K (see
[18, 2.10]). If the algorithm of Theorem 1.2 is applied with m equal to the
largest squarefree divisor of Δ Λ , then the overorder B of A determined by
the algorithm is maximal at Δ Α and therefore equal to O. Hence O can be
determined in polynomial time if m is known. This shows that (a) can be
reduced to (b).

For the opposite reduction, let d be the positive integer of which the
largest squarefree divisor is to be found. Determine the least positive integer
n for which (n+ l}n > d, and the least prime number l not dividing d. Note
that both n and l are O (l + logd), and that they can be found by a direct
search. Let cfo be the largest divisor of d that is free of prime factors < n.
Since we can deal with the small prime factors directly, it will suffice to
determine the largest squarefree divisor of do· By Eisenstein's criterion,
Xn — dol is irreducible, so K = Q((<io01^n) ig a n algebraic number field of
degree n. We claim that from the ring of algebraic integers Ο οι Κ one can
compute, in polynomial time, the largest squarefree divisor of da. Namely,
there is no prime number p dividing οίο with the property that the number
of factors p in dg is divisible by n; this follows from (n + l ) n > do and the
fact that all primes dividing do are at least n + 1. By 3.5, this implies that
each prime factor p of do divides Δ Ο - Hence if we use 1.4 to compute the
largest squarefree divisor d\ of Δ0, then the largest squarefree divisor of
dg is given by gcd(di,do). This proves 1.3.

G.ll.Remark. Chistov's reduction of 1.3(b) to 1.3(a) makes use of a se-
quence of number fields of the form K = Q(-\A), where b divides d (see [6]).
His reduction is, in the language of [8], a "Turing reduction". Our proof
shows that, for a given d, a single algebraic number field K suffices. For
this reason we used the term "polynomial transformation" in 1.3 (cf. [8]).

THEOREM 6.12. Under polynomial transformations, the following two pro-
blems are equivalent:

(a) given an algebraic number field K and a subring A of the ring of
integers O of K, decide whether A is equal to O;

(b) given a positive integer d, decide whether d is squarefree.
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Proof. We first reduce (a) to (b). Applying the algorithm of Theorem 1.1 to
the order A, we find in polynomial time an overorder B of A and a positive
integer q. If B φ A, then clearly A is not maximal. If B = A, then A is
maximal if and only if q is squarefree, by Theorem 1.1. This shows that
(a) can be reduced to (b). For the opposite reduction, let d be a positive
integer. If d = 0 mod 4, then d is not squarefree. If d = l or 2 mod 4, then d
is squarefree if and only if the order A — Ζ[Λ/—rf] equals the ring of algebraic
integers of the algebraic number field K = Q(V—~d). If d = 3 mod 4, then
d is squarefree if and only if the order A = Z[(l + ·</—d}/2] equals the ring
of algebraic integers of K = Q(v/—~d)· This shows that (b) can be reduced
to (a) and concludes the proof of Theorem 6.12.

6-13. Remark. Suppose that an order A in an algebraic number field K
is given. As we saw in the proof of 1.3, we can compute the ring of integers
O of K in polynomial time if the largest squarefree divisor m of Δ ^ is
known. However, Computing m from Ό is currently intractable. Namely,
suppose we had a good algorithm to do this; applying it to A = 2,[d\f—l\,

has Δ A = -4d 2 and O = Z[V

/ ZT], we would then easily find the
t squarefree divisor of an arbitrary positive integer d, for which no

good algorithm is known.

"•14. Remark. Suppose, again, that an order A in an algebraic number
field K is given. Then from O one can compute, in polynomial time, the
kargest square dividing Δ A- This is a fairly straightforward consequence of
1-4 and the fact that Δ Λ / Δ Ο is a square. However, Computing O from the
^rgest square dividing Δ Α is currently intractable. Namely, suppose we
had a good algorithm to do this. Let d be an integer that is not divisible
V 3 and that is not a cube. The order A = Ζ[άι/Ά} has Δ Α = -27d2, and
the largest square dividing Δ Α is (3d)2. Thus the algorithm could be used
t o find O. Since A is tarne at d we have gcd(d, (O : A)) = l if and only if d
ls squarefree. This would provide an easy squarefreeness test for d, which
1 8 not known to exist.

7 · Practical considerations

l· Finding largest squarefree divisors. Theorem 1.3 expresses
_ n n ding the ring of integers of a given algebraic number field is es-

ntially equally hard äs finding the largest squarefree divisor of a given
positive integer. In [13] one finds a discussion of complexity results con-

rning the latter question. We make here a few remarks that are inostly
o t a practical nature.
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by Theorem 1.2 (with m = 2) can be computed in polynomial time. Thus,
we can compute Δ. By hypothesis, we can compute O from Δ in polyno-
mial time, so by Theorem 1.4 we can now determine the largest squarefree
divisor 2pq of Δ äs well. This obviously enables us to factor n completely,
which finishes the proof.

Proof of Theorem 1.3. We first reduce (a) to (b). Given an algebraic
number field K, one can in polynomial time construct an order A in K (see
[18, 2.10]). If the algorithm of Theorem 1.2 is applied with m equal to the
largest squarefree divisor of Δ Λ , then the overorder B of Λ determined by
the algorithm is maximal at Δ Α and therefore equal to O. Hence O can be
determined in polynomial time if m is known. This shows that (a) can be
reduced to (b).

For the opposite reduction, let d be the positive integer of which the
largest squarefree divisor is to be found. Determine the least positive integer
n for which (n+ l ) n > d, and the least prime number l not dividing d. Note
that both n and / are 0(1 + logd), and that they can be found by a direct
search. Let do be the largest divisor of d that is free of prime factors < n.
Since we can deal with the small prime factors directly, it will suffice to
determine the largest squarefree divisor of do· By Eisenstein's criterion,
Xn — dol is irreducible, so K = Q((dol)1/n) is an algebraic number field of
degree n. We claim that from the ring of algebraic integers O of K one can
compute, in polynomial time, the largest squarefree divisor of CÜQ. Namely,
there is no prime number p dividing do with the property that the number
of factors p in do is divisible by n; this follows from (n + l ) n > dg and the
fact that all primes dividing do are at least n + l. By 3.5, this implies that
each prime factor p of do divides Δ Ο - Hence if we use 1.4 to compute the
largest squarefree divisor di of Δρ, then the largest squarefree divisor of
do is given by gcd(di, do). This proves 1.3.

ö.ll .Remark. Chistov's reduction of 1.3(b) to 1.3(a) makes use of a se-
quence of number fields of the form K — Q(Vb), where b divides d (see [6]).
His reduction is, in the language of [8], a "Turing reduction". Our proof
shows that, for a given d, a smgle algebraic number field K suffices. For
this reason we used the term "polynomial transformation" in 1.3 (cf. [8]).

THEOREM 6.12. Under polynormal transformations, the followmg two pro-
blems are equivalent:

(a) given an algebraic number field K and a subnng A of the ring of
mtegers O of K, decide whether A is equal to O;

(b) given a positive integer d, decide whether d is squarefree.
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Proof. We first reduce (a) to (b). Applying the algorithm of Theorem 1.1 to
the order A, we find in polynomial time an overorder B of A and a positive
integer q. If B ^ A, then clearly A is not maximal. If B = A, then A is
maximal if and only if q is squarefree, by Theorem 1.1. This shows that
(a) can be reduced to (b). For the opposite reduction, let d be a positive
integer. If d = 0 mod 4, then d is not squarefree. If d = l or 2 mod 4, then d
is squarefree if and only if the order A — Ζ[·\/—rf] equals the ring of algebraic
integers of the algebraic number field K = Q(\/^d). If d = 3 mod 4, then
d is squarefree if and only if the order A = Z[(l + ^/^d)/2} equals the ring
of algebraic integers of K = Q(\/^d). This shows that (b) can be reduced
to (a) and concludes the proof of Theorem 6.12.

6-13. Remark. Suppose that an order A in an algebraic number field K
*s given. As we saw in the proof of 1.3, we can compute the ring of integers
0 of K in polynomial time if the largest squarefree divisor m of Δ ^ is
known. However, Computing m from O is currently intractable. Namely,
suppose we had a good algorithm to do this; applying it to A = Z[d-\/—Ϊ]?
which has ΔΑ = -4d 2 and O = Zfy'17!], we would then easily find the
largest squarefree divisor of an arbitrary positive integer d, for which no
good algorithm is known.

6-14. Remark. Suppose, again, that an order A in an algebraic number
neld K is given. Then from O one can compute, in polynomial time, the
largest square dividing Δχ. This is a fairly straightforward consequence of
J--4 and the fact that Δ ^ / Δ ο is a square. However, Computing O from the
kargest square dividing Δ Α is currently intractable. Namely, suppose we
had a good algorithm to do this. Let d be an integer that is not divisible
V 3 and that is not a cube. The order A = Z[cf/3] has Δ Α = -27d2, and
the largest square dividing Δ Λ is (3d)2. Thus the algorithm could be used
to find O. Since A is tarne at d we have gcd(cü, (O : A)) = l if and only if d
*s squarefree. This would provide an easy squarefreeness test for d, which
18 not known to exist.

• FTactical considerations

·!· Finding largest squarefree divisors. Theorem 1.3 expresses
finding the ring of integers of a given algebraic number field is es-

lally equally hard äs finding the largest squarefree divisor of a given
Positive integer. In [13] one finds a discussion of complexity results con-

ning the latter question. We make here a few remarks that are mostly
0 1 a practical nature.
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A* JA is cyclic of order \ΔΑ\· Then one can show that Δ.Α is odd and that it
is not a square. If in fact Δ Α has no small prime factors and is not a higher
power of an integer either, then none of the methods mentioned above is
likely to improve the sequence given by t = l, qi = |Δ^ | . The order A
is tarne at q\ (cf. 4.3), and it can be argued that in these circumstances
Algorithm 6.6 is unlikely to enlarge A.

The procedure described above may lead to an order that is not guar-
anteed to be the maximal order. Whether it can nevertheless be used for
the purpose one has in mind clearly depends on what that purpose is. Two
things may happen. The first is, that during any subsequent calculations
that one performs with the order, the hypothesis that it is the maximal
order is never contradicted. In this case, one may be able to show that
the same conclusions can be drawn from these calculations that one could
draw if the order were known to be maximal. For this to be feasible, it is
obviously desirable that much of our theoretical and algorithmic knowledge
of maximal Orders be extended to more general Orders. This has been done
for Orders in quadratic fields (cf. [4; 21]). Orders in general number fields
have been less thoroughly studied (cf. [23; 5, Section 7]).

The second thing that may happen is that during later computations
one does obtain evidence that the order is not maximal. In all situations
known to us in which this can occur such evidence readily yields a strictly
larger order. In this case one can start all over again with the procedure
described above, the role of A now being played by the larger order that
has been found. To give an example, one is certain that the order A is not
maximal if one finds a fractional ideal a that is not invertible. The one
can compute the order B = (A : a) : (A : a), which by Proposition 2.5 is
strictly larger than A.
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