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Boundary tension: From wetting transition to prewetting critical point

S. Perkovic, E. M. Blokhuis, E. Tessler, and B. Widom
Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301

(Received 2 December 1994; accepted 13 February)1995

We develop a mean-field model free energy which we use in a van der Waals-like theory to study
the prewetting transition in a system of two fluid phases when an incipient third phase may wet the
interface between them. The line of prewetting transitions in the phase diagram is determined from
the bulk wetting transition to the prewetting critical point. As the prewetting critical point is
approached, the two coexisting surface phases become more and more alike, and they become
identical at the prewetting critical point. The values of the boundary tension of the one-dimensional
boundary formed by the edge-on meeting of two coexisting surface phases are calculated exactly
(numerically in a range between the wetting transition and the prewetting critical point. The data
points obtained are extrapolated to a finite and positive boundary tension at the wetting transition
and to a zero boundary tension at the prewetting critical point. These results are consistent with
related earlier work. After scaling the dimensionless boundary tensions with appropriate force units,
we determine that their values range from 0 at the prewetting critical poifi{10 ' N close to

the wetting transition. These orders of magnitude compare well with recent experimental
results. ©1995 American Institute of Physics.

I. INTRODUCTION in the @y two-phase region as well, on the left side of the
coexistence curve. There, only theand y phases coexist as

The prewetting transition is a coexistence of two surfacebulks. Under certain conditions, they interface consists of
phases of equal tensions but different structures. It is a 2 microscopic layer of 8-like phase. That layer is not stable
phenomenon analogous to a bulk phase equilibrium, whergs a bulk, in coexistence with and y. The ay interface is
two bulk phases of different densities coexist. One of thesaid to be prewet by8 (shaded region in Fig.)2In other
surface phases consists of a microscopic layer of a thirgparts of theay two-phase region, such a structure is not
phase, which may become a bulk phase at three-phase cogxesent at thexy interface. The coexistence of these two
istence, while the other surface phase has no such layer. Hifferent structures of the y interface is a first-order surface
Fig. 1 we show a side view of the coexistence of two surfacephase transition: the prewetting transition. The loci of all the
phases at the interface between two bulk fluid phasem)d  prewetting transitions create the prewetting line; the dashed
v. On the right side, the interface consists of a microscopicurve in Fig. 2. That line is tangential to the three-phase
layer of a thirdg-like phase, while on the left side, the in- coexistence line at the wetting transitidand ends at the
terface has no such layer. The two surface phases meptewetting critical point PCP, analogously to bulk phase
edge-on to create a one-dimensional boundary line. criticality.

The phenomenon of prewetting, along with its bulk- While theoretical calculations of the prewetting transi-
phase counterpart, the wetting transition, are surface phas®n have been numerous since its prediction in 1977, its
transitions, first predicted theoretically by Catand Ebner detection in simulations and experiments has been more re-
and Saani. The relation between these two phenomena isent. The first evidence for the existence of the prewetting
best described with the use of a generic phase diagram. Adine was obtained by Nicolaides and Evairsa Monte Carlo
cording to the phase rule of Gibbs, for a three phase systersjmulation of a confined lattice gas. In an extension of that
the wetting and prewetting transitions can only be describedvork, they determined the 2D Ising-like character of the
with a minimum of two components and two thermodynamicprewetting critical poinf. The first Monte Carlo simulation
fields. In Fig. 2, the two thermodynamic fieldg; and w, of an unconfined system was performed by Finn and
may represent the temperature and the chemical potentidonsorf who determined a prewetting transition in a model
difference between the system’s two components. The solidf fluid Ar and solid CQ. Velasco and Tarazoh@erformed
curve represents thermodynamic states where the three budkdensity-functional calculation of the prewetting line for the
phasesg, B8 and vy, are at coexistence. Below tiW point  solid-fluid model studied by Finn and Monson, and they
on the coexistence curve, the system is partially wet:@he found agreement for the surface critical point but not for the
phase forms a non-zer@nd non-180°) contact angle be- wetting temperature. Experimental evidence for the prewet-
tween thea andy phases. Above th@/ point, the system is ting transition at a solid-fluid interface has been observed by
wet: theB phase spreads at they interface, so that there is Rutledge and Taborékwho have studied the prewetting
no direct contact between theand y phases. Th&V point  phase transition dfHe on Cs by using a quartz microbalance
represents the wetting transition where the structure of theechnique, and Ketola, Wang and Hallotkyho used the
avy interface changes from the partially wet to the wet stateechnique of third sound to determine the prewetting transi-
(or vice versa If the wetting transition is a first-order sur- tion in the same system. A prewetting transition has also
face phase transition, its first-order character manifests itselfeen reported from adsorption and ellipticity measurements
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isting surface phasd$ig. 1). The boundary tension, is the
excess free energy associated with the density inhomogene-
ity in the boundary line, per unit length of that line. In the
van der Waals-like theory that we emplbythe boundary
tensionr, is defined as:

f dx f dz ¥
P1:P2 - -

whereV is the model excess free-energy density that will be

FIG. 1. Aside view of two fluid surface phases coexisting at the prewettingdefmed in Sec. Il and is the surface tension of the two-

transition. On the right, a microscopic layer ofga-like phase spreads at dimensional interface and is given by:
the ay interface, while no such layer exists at the interface on the left. -
The two interfaces meet gdge-on to create the boundary line. Thg domain ;= min f dz ¥, (x—*x). (1.2
represents the area in which the system of Euler-Lagrange equédi@hs —o
and (4.3) are solved for the densitigs (x,z) and p,(x,z). p1:P2

In Eq. (1.1), ¥ is a function ofx andz, the directions

at the interface of the silica/water-2,6-lutidine mixtdfend parallel an_d perpendlcular .to the interface, respectiviey
1). In the limits of x— =0, i.e. very far from the boundary

from adsorption measurements, in the silica-water

2,5-lutidine systent! Only recently has there been unam- Itl:st ;ﬁ%g?or:gﬂ;l;??g%l?; ibnegarlng)s Jrnhdee?uennct:ieor: of grl{z
biguous evidence for the prewetting transition in fluid-fluid e 1

interfaces. Kellay, Bonn and I\/Ieun’rérpresented evidence P2 are the density profiles of the system’s two components.

; . L . .~ In Eqg. (1.1), they are two-dimensional, while in E¢l.2),
for the existence of a prewetting transition in a binary liquid :
. ) hey depend only on the coordinate.
mixture of methanol and cyclohexane. They have confirme L : .
the tangential approach of the prewetting line to the three Related to the boundary tensiag is the line tensionr
9 PP P 9 which is defined analogously te, in Eg. (1.1). The line

phase coexistence line at the wetting transition, as well as thte . . .
S . ” . ensionr is the excess free energy due to the inhomogene-
2D Ising-like character of the prewetting critical point.

. - ities in the three-phase contact line in the partially wet state
In this paper, we develop a model mean-field exces P P y

! . . ) ?states below thaV point on the three-phase coexistence
free-energy density, that is a functional of the system’s den- L . . .

e . e curve in fig. 3, per unit length of that line. The line and
sities, in order to study the prewetting transition and calcus

. . . ndar nsion m | h wettin
late the boundary tension of the one-dimensional boundarggﬁsg%gmlge sions  become equal at the etting

line that is created by the edge-on meeting of the two coex- H . .
ere we present numerical calculatioficat are exact

for the model studied in the mean-field approximatiofithe
boundary tension for a system of two fluid phases. The case
of a fluid on a solid substrate has been investigated
recently!® We determiner, over the whole length of the
prewetting line, from the wetting transition to the prewetting
critical point. The boundary tension data points are extrapo-
lated with a form that is analogous to the one obtained by
Indeked’ (see also Ref. J6and by Varea and Robletfoto
give a finite and positiver, at the wetting transition. The
vanishing of the boundary tension at the prewetting critical
point is described with a mean-field exponent. Furthermore,
the surface phases are studied as the prewetting critical point
is approached. For completeness, we perform this analysis
on a system of a fluid phase on a solid substrate as well,
studied in detail by Blokhui§ and Perkovic Blokhuis and
Han2® within the van der Waals theory. Finally, we deter-
mine orders of magnitude for the boundary tensions, for the
B, system of two fluid phases and the system of a fluid phase on

a substrate, and compare them to experimental results for the

FIG. 2. Generic phase diagram of a system of three phaseandu, are  boundary tension of the boundary between two lipid mono-

any two thermodynamic fields such as the temperature and chemical pote‘éyer domains at the air-water interfa®e
tial difference of the two components. The solid curve is the three-phase '

coexistence curve. The poilif represents the wetting transition. Below the
point W, on the solid curve, in the stable states, stheinterface is partially
wet, and above it, it is wet. The dashed curve, called the prewetting Iine!l' MODEL FREE ENERGY

represents the loci of prewetting transitions, where two different structures In this section. we define the model excess free-energy
of the ay interface coexist. The prewetting line meets the three-phase co- !

existence line tangentially at the wetting transitiéh and terminates at the denSit¥ used to StUdy the prewetting tranSi.tion in a system of
other end in a prewetting critical point, PCP. two fluid phases, with a van der Waals-like thebhyhat

Tp= Min -0, (1.1

L3}
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7586 Perkovic et al.: Boundary tension

theory postulates the existence of a free-energy denisity
which depends on the local densities of the system’s compo-
nents and on the spatial derivatives of these densities at the
same point.

Consider a system consisting of three fluid phases,
B andy, whereg is either a bulk phase at coexistence with 03 1
a and vy, or an incipient layer at they interface. For such
a system¥ is a functional of the two densitigs; andp, of

0.5

the system's two components: P2

W (p1,p2)=F(p1.p2) +2((Vp1)?+(Vp2)?), 2.1 o1
with

F=16p5(po—b)*+ e(pi—1)*+[po—clp1+ 1)1 p> y //A

+b(py—1)12+ [ py+clpy— 1)1 po—blpy + 1)1 72\
-1.0 —-0.6 —0.2 0.2 0.6 1.0
2.2
(@) P

¥ is the free-energy density associated with the presence of
inhomogeneous regions, in excess of the free-energy density
in the bulk phases. It vanishes in the bulk phases, and has a
positive value within inhomogeneous regions, such as the
two-dimensional interface and the boundary line. The free-
energy densityF is the local free-energy that is in excess
from the free-energy in the bulk phases when the density is
constant in the neighbourhood of the local point. The gradi-
ent terms account for the free-energy excess associated with
the variation in density in the inhomogeneous regions. The
V gradient operator in Eq2.1) is one-dimensional in the
z-direction (fig. 1), if one is far from the boundary line re-
gion (x— * ) so thatp; andp, are functions ot only. It is
two-dimensional in thex and thez directions(fig. 1), when
one is close to the boundary line region.

The contour lines of the excess free-energy derisitg
Eqg. (2.2), i.e. lines of constant free-energy density, are plot-
ted in Fig. 3a as a function of the densitigsand p, (solid (b) £1
curves. The values of the three phenomenological param-
etersb, € and ¢ are fixed atbh=0.50, e=0.1553 and FG. 3. (a Plot of the contours oF from Eq.(2.2) (solid curves with two
c=—0.7. These parameters represent three thermodynami@jectoriesdashed curvgsepresenting coexistence of the two fluid surface
fields, such as the chemical potentials of the system’s tw@hases at the prewetting transition tor0.50, €=0.1553 ancc=—0.7 (b)
components and the temperature. The two trajectories in ﬁgf.ame as in@, but with equalp, and p, scales and foip,>0 only

L. } p1<0 is its mirror imagé The trajectories are tangential to the long axes

3a (dashed curvesrepresent the variation o1 with P2, of the elliptical contours centered at the valuespgfand p, for the a and
along thez coordinatefig. 1), for the two different structures y phases. Note that the contour interval has been changed between Figs. 3a
of the ay interface, coexisting at the prewetting transition. and 3b.
This will be discussed further in Sec. lll. In Fig. 3b, we plot
the same figure as in Fig. 3a, but with eqgpalandp, scales,
and showing onlyp,;>0. The model is symmetric, so for
p1<0, one has the mirror image of fig. 3b. The trajectoriesin Eq. (2.2). Here, we only consider the case whbere0 and
are tangent to the long axes of the elliptical contours around<0 (analogous results would be obtained twx<0 and
(p1,p2)=(1,0) (shown in fig. 3p and (p1,p,)=(—1,0) (by ¢>0). The fielde in Eq. (2.2) is a measure of the distance
symmetry. The slight tilt from horizontal of the long axes of from the three-phase coexistence curve. &0, the system
these ellipsedalthough hardly visible on the scale of this consists of three bulk phases at coexistence, while for
plot) is due to the parameter=—0.7. For larger absolute €>0, only thea andy phases are at bulk equilibrium. This
values ofc the tilt is greater. The field has to be different point is discussed in more detail below. The densities, dis-
from 0, since only then are the elliptical contours aroundtances and free energies in E¢®.1) and(2.2) are scaled so
(p1,p2)=(1,0) and pq,p,)=(—1,0) tilted. This tilt in the that they are all dimensionless. Furthermore, the densities
contour lines enables the structures of the twp surface  p; andp, are relative densities, and therefore can be nega-
phases to become identical, thus producing a prewettingve.
critical point. If c=0, the tilt in the elliptical contours disap- When e=0, the excess free-energy dendhyis positive
pears, and there is no prewetting critical point in the médel for all values of the densitiep; and p, except for those

J. Chem. Phys., Vol. 102, No. 19, 15 May 1995
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values that describe the bulk 8 andy phases. These den- 0.4 . ‘ . . .
sities are given by:

(p1,p3)=(1,0), (2.3 .

(pf.p5)=(0b), @4

(p1.p3)=(-1,0, (2.9 02 | ]
where (7,p3) are the densities of components 1 and 2 in
the bulka phase, p?,p5) are the densities of components 1
and 2 in the bulkd phase andd],p}) are the densities of 0.1 .
components 1 and 2 in the bulk phase. At these values of
p1 andp,, F=0 and its partial derivatives with respect to
p1 andp, vanish as well. 0.0 - - : ' -

The form of the free energy in Eq2.2) is chosen for 039 043 047 051 055 059 063

reasons of mathematical simplicity and convenience. It is not b
necessary to have a model of the free energy in which theG 4 Plot of th ing line in the. b th s _ .

H H H H . 4. rewetting line Iin rm nami r
densiy of ane component i equal in both phases while (- 7% 1 reteting ne 1 e » temoayanic sace 1
density of the other component is different in both phasescircle). The prewetting line terminates at the prewetting critical point
The same results would be produced with different definib=b,,,=0.3993 ande= e.,;,= 0.3745(illed circle).
tions of the densities in the bulk phases.

When €>0, the excess free-energy denshyis still 0
and has vanishing partial derivatives with respecp{cand
p» in the @ and y phases, but now has a local minimum
that is positive E=¢) for the values of p%,p5)=(0b).
These values op, andp, describe the buli3 phase when wherez is the direction perpendicular to the interface. The
€=0. Whene>0, the 8 phase is unstable as a bulk and it obtainedo is a function of the three thermodynamic fields,
does not coexist with thex and y phases, since its free b, ¢ ande. At the prewetting transition, the surface tension
energy is slightly higher than the free energies of édhand  of the «y anday* surface phases are equal for the same set
v phases. The system is off the three-phase coexistence lingf thermodynamic field®, ¢ ande,
and is in the two-phasey region in fig. 2. N N

As was mentigned in Segc. l, twogthermodynamic fields ¢ (b.c.)=0"(b.ce). 33
are sufficient to describe a system of three bulk phases umBoth ¢*?(b,c,€) ando®”* (b,c,€) are obtained numerically,
dergoing wetting and prewetting transitions. For that reasonysing a conjugate gradient optimization algorithimThe
we keep one of the thermodynamic fields in our model freeconjugate gradient method is an iterative method that mini-
energy Eq.(2.2) constant.c=—0.7, and we only vary the mizes a functiorp of N variables by starting at a poip{N)
values ofb ande in order to determine the prewetting line in in the function’s space and performifgline minimizations
the phase diagram. The value ©fhas to be different from along the directions of mutually conjugate vectors. These
0, for the reason discussed above. directions are “non-interfering” directions, i.e minimization
along one of the directions is not invalidated by subsequent
minimization along another direction. Furthermore, a sepa-
rate evaluation of the gradients allows for a decrease in the
number of minimizations required, frol? to N.2! In order

The prewetting transition in a system of fluid phases isto use the conjugate gradient method, the integral inf&@)
the coexistence of two fluid surface phases of equal tensiols approximated by a sum over 2&his number is important
but of different density profiles. One of the surface phasedor the calculation of the boundary tension in Sec) évenly
(the ay* surface phageconsists of a microscopically thick spaced points in the intervat 10<z<10, wherez is scaled

o= minfldz V(p1,p2), (X— =), (3.2

P1.P2

IIl. PREWETTING TRANSITION AND SURFACE
PHASES

layer of an incipient phase, the-like layer in fig. 1, at the

interface between the bulk and y phases, while the other
surface phaséthe ay surface phagehas no such layer. If
o®” is the surface tension of they surface phase, while
o“" is the surface tension of they* surface phase, the
condition for the prewetting transition is given by

o¥=g7* (3.2

so that it is dimensionless. We have used other intervals as
well: —5=<z=<5 with 129 points so that the spacing is the
same as in the above case, an8=<z=<6 with 257 points,

so that the spacing is smaller, with no significant differences
in the results. The values of the densitigsandp, at the end
points of the interval are chosen to be those of the lauéind

v phases: §7,p5)=(1,0) and p],p3)=(—1,0). The sumis
then minimized with respect to 255 values @f and 255

The equilibrium surface tension and equilibrium densityvalues ofp,. During the minimization process, we have kept
profiles of theay interface are obtained by minimizing the ¢ constant att=—0.7 and we have fixed the value bf

integral of the excess free-energy densit{p,,p,) given in
Eqg. (2.1), with respect to the densitigs andp,, far away
from the boundary line regiorx(~ =« in fig. 1),

Then, we determine@“” and o*?* for a set ofe values.
The prewetting transition is then determined graphically by
locating the value ot for which Eq.(3.3) is valid. In fig. 4,

J. Chem. Phys., Vol. 102, No. 19, 15 May 1995
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we show a plot of the prewetting line determined by the 4,
above method. The axes are the thermodynamic fielasd Ecritforemrerennne
b, while c=—0.7. The data points, connected by a smooth
curve, represent states where two different structures of the 5 | 1
a7y interface coexist. Below the prewetting line, and for
>0, the thermodynamically stable states are the ones where®
the avy interface is prewet by thg-like layer. Above the 02 | i
prewetting line, the non-prewet state is thermodynamically
stable. The three bulk phases 8 andy coexist ate=0. For

b<b,,, the B8 phase wets they interface, and it does not o1
wet it for b>b,,, whereb,,=0.6175 is the value ob at

which the first-order wetting transition occurs.

The value ofb at the wetting transitionb,,, is deter- 0.0 . . ) ) )
mined with the same conjugate gradient algorithm that was 1.2 15 18 2.1 2.4 2.7 3.0
used for the determination of the prewetting line. Going back 0 o’/a s
to the phase diagram in fig. 2, the partially wet stdtelow

the W point on the three-phase coexistence cumgeme-  FIG. 5. Plot of the coexistence curve of two surface phases at the prewetting
chanically stable whéef transition. The dotted line represents the value af the prewetting critical
point, €.y =0.3745.

o< g P+ B, (3.9

whereo®” is the surface tension of they interface,o®# is
the surface tension of theg interface ana-?” is the surface (p57* = p57)| 10~ (€crit— €)%, (3.7
tension of theBy interface. The wet stat@bove théwV point nd

on the three-phase coexistence curve in fiy.i stable
wherf? (P2 = p3M)z=0~ (b—Dberit)? (3.9

o= Bt oBY (3.5 at the prewetting line near the critical point. The exponent
B is the critical exponent, whose mean-field value is 1/2.
The wetting transition occurs exactly when the equality sets  Using the above two expressions to graphically deter-
in (if the transition is from the partially wet to the wet state mine the values ob ande (for c=—0.7) at the prewetting
Using the expression for the surface tension in Ey2),  critical point, we obtain

where the coordinate is perpendicular to each of the indi- _

. . . o beit=0.3993, 3.9
vidual interfacegfar from the contact line regionn turn,
and with the appropriate boundary conditions given by the  €,;;=0.3745. (3.10

v;lgeszof th;ahdensqy Sitsbi’pé.) "1 thetr?u(;kl phangtEqst.)t . The expressions in Eq43.7) and (3.8) are suitable

t(h' )_(f's))'t N ponju%athe %La 1en tm:? od s lste i 00 ?Lﬂforms to accurately determire,,;; ande,i; - However, they

fieel dsgr (E:(f Oearlsgrc:?eseophaie égg;ggﬂize;;‘c’ lén;:)'o_lr_ﬁeo Kre not the physical representation of the coexistence curves,
- - . . . B afy* _ a)/ — . .

method determines values forat which the partially wet or since the difference; ™ —p;* atz=0, which is a measure

. of the distance to the prewetting critical point, is chosen
tr_".a wet sta_tes are stable. The valuebadt the wetting tran- arbitrarily and for convenience. The “physical” coexistence
sition, b,,, is obtained when

curve is a plot of a thermodynamic density versus a thermo-

o?"(b,,) = (b)) + oP?(b,) . (3.6) dynamiq field. In a two—d_imensional p.hase equilibr.ium, the
density is a surface density or adsorptisee Appendix 1 of
This procedure giveb,,=0.6175. Ref. 22 for a review of these termdJsing the prewetting

The prewetting line is expected to approach the wettindine equation given in Eq.3.3), and from the Gibbs adsorp-
transition atb,,=0.6175 ande=0 tangentially’ but such an tion equatior?? one representation of the coexistence curve
approach is not discernible since the predicted tangency iwould be a plot ofe versusdo/de, shown here in fig. 5. The
only logarithmic®23 If our data points for the prewetting line dotted line in that figure represents the valueeoft the
are extrapolated linearly te=0, the extrapolated value bf  prewetting critical point. The lack of data points for the co-
at the wetting transition iBS'=0.616, which is shown as a existence curve as—0 ande— e;; is due to the inacurracy
filled circle on the three phase coexistence liee=Q). The  of the calculation and is discussed in Sec. IV.
value of b*' is smaller than the value df,, obtained with Far from the boundary regiorx{ = ), when two sur-
the conjugate gradient method. This suggests that a tangeface  phases coexist, the density profile pair
tial approach of the prewetting line to the three-phase coextpi?(z),p5"(z)) that minimizes the surface tensiorf” and
istence line is plausible for this model, but not discernible forthe profile pair p”*(z),p57*(2)) that minimizes the sur-
the reason given above. The filled circle at the other end oface tensiono*?*, determine the structures of they and
the prewetting line represents the location of the prewettingry* interfaces, respectively. In fig. 6, we show the density
critical point. Its value is obtained graphically from the profiles p{?(z) at x—— (solid curve and p{”*(z) at
mean-field behaviour of the densipy: x—oo (dashed curve for b=0.59, €=0.02324 and

J. Chem. Phys., Vol. 102, No. 19, 15 May 1995
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the middle of the three elliptical contour lines in fig. 3a. The
upper trajectory in that figure describes the~* surface
phase, while the lower trajectory describes the surface
phase. In figs. 8a—8c, we have plotted the trajectories and
contours ofF for b=0.46, e=0.2326 andc=—0.7 in fig.

8a; b=0.42, €=0.3227 andc=-0.7 in fig. 8b; and
b="b,;1=0.3993, €= €,i;=0.3745 andc=—0.7 in fig. 8c.
These plots clearly demonstrate that on approach to the
prewetting critical point, the two surface phasey and
ay* are becoming more and more alike, to become identical
at the prewetting critical poinffig. 8c). This phenomenon
would not have been observed had we taken the parameter
to be 0.

As a comparison, we do the same analysis as the one
above for a model, studied by Blokhtisand Perkovic
Blokhuis and Hart® that describes a fluid on a substrate
FIG. 6. Density profilep,(z) of the ay+ interface ax—o (dashed cunje ~ Whose interface might become wet by another fluid phase.
and of theay interface atx— — (solid curvg, for b=0.59,c=—-0.7and  We study the density profiles of the two surface phases in
€=0.02324. coexistence at the prewetting transition. The substrate is

treated as a boundary condition which makes the system ef-
fectively of one component, of densify. There are three
c=—0.7. The density profilesp3”(z) at x——c and  thermodynamic fieldg,, g andh which are analogous to,
p3”* (z) atx—= are shown as the solid and dashed curveg and e, respectively. The fielch;=0, g=0 (for conve-
respectively in fig. 7, for the same set of fielise andc as  njence and h>0, measures the distance from the three-
in fig. 6. phase coexistence line.

If one eliminates thez variable betweenp;(z) and In fig. 9, we show a plot of the difference between the
p2(2), for a given surface phase, one obtains a trajectory ijensity profiles of the two surface phases far from the bound-
thepy, p, plane that describes how andp, vary witheach  ary line region, as a function of the coordinate
other through the inhomogeneous regitite surface phase A p(z)=p***(z) - p*?(z). As the prewetting critical point is
from one bulk phase to the other. In fig. 3a, we have p|0tteqipproached h—hgi = 43)Y2~0.7698, =0 and
the two trajectorieddashed curvesthat represent the two hy ¢rie=23%?), the two surface phases become more alike, and
different structures of thevy interface, coexisting at the thejr structures become identical at the prewetting critical
prewetting transition, in thep;, p, plane for b=0.50,  point (as seen by the approach &p(z) to the value of 0
€=0.1553 andc=—0.7. These trajectories are plotted on
top of the contour linegsolid curve$ of the model excess
free-energy densit#, for the same values of the thermody- |\, sgoUNDARY TENSION
namic fields. The contour lines represent the lines of constant
free-energy density. The three minimaFknare given by the At the prewetting transition, the two different structures
values ofp; andp, in Egs.(2.3—(2.5). They are located in of the ay interface coexist by creating a one-dimensional
boundary between themselvéig. 1). Associated with that
boundary line is the tension,, cf. Eq.(1.1),

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

o ' ' //"\\ ' ' — f_wdx[ J_wdz ‘I’(pl,pz)}— 0'}, 4.2
05 | / \ 4 P1.P2
/ \ where the density profilep; and p, are now two-
ST / \ ] dimensional functiong,(x,z) andp,(x,z); the coordinate
/02(z> / \\ | is parallel to theny interface and the coordinares perpen-
o3 T / \ dicular to it (fig. 1); W(py,p,) is given as in Eq(2.1) and
02 | J \ | o is the surface tension of the coexisting interfaces at the
/ \ prewetting transition as given by E¢.2). As in the previ-
01 | / \\ . ous section, the distances, densities and free energies are
// \ scaled so that they are all dimensionless.
00 Minimization of Eq. (4.1) with respect top; and p,
o , , , , , yields two Euler-Lagrange equations,
-60 -40 -20 0.0 2.0 4.0 6.0 , JF
2 Vip1 oy’ 4.2
FIG. 7. Density profilep,(z) of the ay* interface atx—« (dashed curje JF
and of theay interface atx— —« (solid curve, for b=0.59,c=—0.7 and V2p2:_ , (4.3
€=0.02324, p2
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whereF is given in Eq.(2.2) and theV gradient operator is
two-dimensional in thex and z directions. The boundary
conditions are given by the values of the densijgsand
po atz— +oo:

[0,
(p1,p2)= (—1,0, z——oo

Z— + 0
(4.9

and the density profile pairsp((z),p,(z)) at x— *+oo. At
x— +o, the density profileg,(z) andp,(z) are the profiles
that describe thexy* interface at the prewetting transition
(dashed curves in fig. 6 and fig. 7 respectiye§yimilarly, at
x— —, the boundary condition is given by the density pro-
files p1(z) and p,(2) of the ay interface at the prewetting
transition(solid curves in fig. 6 and fig. 7 respectivily

The integral in Eq.4.1) converges sufficiently fast as
X,z— *+ o so that we can replace the infinite limits of inte-
gration with large, finite limits. Then, the area of integration
becomes a large, finite domalffig. 1), where the system of
the two Euler-Lagrange equatiof@.2) and(4.3)) needs to
be solved for the densitigs;(x,z) and p,(X,2).

Perkovic et al.: Boundary tension

0.5

02

0.1

A\

—-0.2 0.2

£1

-0.6 0.6

FIG. 8. Plots of the contours df from Eg. (2.2) (solid curve$ with two
trajectoriegdashed curvggepresenting coexistence of the two fluid surface
phases at the prewetting transition fa=-0.7 and () b=0.46,
€=0.2326; (b) b=0.42, €=0.3227; (c) b=Db;;=0.3993,

€= €.,i1=0.3745. The two trajectories become identical at the prewetting
critical point.

z

FIG. 9. A plot of the difference between the two surface phase density
profiles for a system of one fluid phase on a substrate, as a functprfaf
various values of the thermodynamic fiddd The prewetting critical point
occurs athg,, = §(3)*2~0.7698 anch ., =32, wheng=0 (Ref. 19.
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FIG. 10. The density profilep;(x,z) at the prewetting transition, for FIG. 11. The density profilep,(x,z) at the prewetting transition, for
b=0.59, c=—0.7 ande=0.02324. b=0.59, c=—0.7 ande=0.02324.

Equationg4.2) and (4.3 represent a system of two non-
linear partial differential equations with four Dirichlet

boundary conditiongeq. (4.4 and the numerical profiles ** )
p1(2) and p,(2) atx— +x). We have used a multigrid al- fig. 12 represent the data for the boundary tensiprersus

gorithm to solve the above system for the densitig,z) €, the thermodynamic field _that is a measure of the di_stance
and p,(x,Z). The multigrid method is based on discretizing from the three-phase coexistence curve. The value &f

the partial differential equations on grids of different levelsfx€d atc=—0.7 and the value ob is obtained from the

of coarseness. The system is iterated on the finest grid usiff@Wetting line(fig. 4). The solid curve is a smooth interpo-

a traditional iteration'smoothing method such as a Gauss- lation between the data points. The error bars will be dis-
Seidel method, until the iterations become very slowly con-Cussed below.

vergent. To speed-up the convergence rate, the density pro- AS the wetting transition is approached—0), the
files are transferred onto the next coarser grid via Joundary tension increases in magnitude. The increase is due

restriction operator, and the smoothing procedure is continl® &n increase of the inhomogeneous region where the two
ued. The restriction to coarser grids is continued until thesUrface phases meet, as the~ surface phase becomes

iterations converge or the coarsest grid is reached where tHBICKer. In order to obtain a value faf, at the weiting tran-
solution to the discretized system of equations can be easif§tion, we fit the four data points for the boundary tension
obtained. Then, the density profiles are brought back to th&losest to the wetting transition with the following form:
finest grid via a prolor_lgation operat(_)r. This method has been 7, = Tow— T+ €2, (4.5
successfully applied in the calculation of the boundary and
line tensions in a system of two fluid phases on a substfate.
There, however, only one non-linear partial differential equa-
tion had to be solved for the densipyof the system, with 0.6 - - - - - - -
one Neumann and three Dirichlet boundary conditions.

As in Ref. 16 we use the Full Approximation Storage 0.5 [ 1
Algorithm (FAS).?* The smoothing at each grid level is !
achieved with a red-black Gauss-Seidel relaxation method. 0.4
The restriction operator uses a half-weighting restriction, 7b
while the prolongation operator is a bilinear interpolation. 0.3
The domain over which the two density profilegx,z) and
po(X,z) are determined is a square with 257 x 257 grid 0.2
points. Since the prolongation operator is a bilinear interpo-
lation, the number of points in one dimension ¥ 1, 0.1
whereNG is the number of discretization grids; in our case
NG=8. Due to that constraint, the domain size and the grid 0.0
spacingh, are not independent of each other. The largest grid 0.00 0.05 0.0 015 020 025 030 035 040
spacing used ibg=0.075. €

In fig. 10 and fig. 11, we show examples of the two-
dimensional density profilesp;(x,z) and p,(x,z) respec- FIG. 12. Plot of the boundary tensian versuse. The prewetting critical

; _ - _ _ : point is ate,j;=0.3745(filled circle), wherer,=0. The value ofr, at the
tively, for b=0.59, ¢ 0.7 ande=0.02324, obtained as wetting transition €=0) is 7,=0.477 (filled circle). The error bars are the

the solutions of the two EuIer-ngrangg equations_ in EQSstandard deviation from the mean, calculated as described in the text. The
(4.2) and (4.3). Using such density profiles, and with the dash-dot-dash fits are described in the text as well.

corresponding values for the fields ¢ ande, the boundary
tensionr, is calculated from Eq(4.1). The open circles in
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wherer, ,, and 7. are fitting parameters. This form is analo- ting critical point. The reason for not having more data
gous to the expression fag, close to the wetting transition, points close to the two limiting regimes of wetting and criti-
determined by Indekél in the interface displacement cality will be discussed later.
model, and by Varea and Robledo in numerical stutflést We now determine orders of magnitude for our dimen-
a system of one fluid phase on a substfate also Ref. )6  sionless boundary tensions by scaling them with a typical
The expression in Eq4.5) is valid only for very small  force kT/d, wherek is Boltzmann's constant is the tem-
values ofe. The data points over which the fit is done are perature andl is a typical length. We choose= 300 K, and
assumed to meet that requirement, even though that is prob-unit of length comparable to the order of molecular dimen-
ably not accurate. The fitting parameters are obtained as: sions,d=10 A. We obtain values for the boundary tension
going from O at the prewetting critical point to values of
To.w=0.477, (4.6 £(10719 N, close to the wetting transition. This is the range
_ of values that Benvegnu and McConR&lbbtained from
7,=1.15. 4.7 ; ) - )
their experimental determination of the boundary tension of
Therefore, at the wetting transition, the boundary tensiorthe boundary between two lipid monolayer domains at the
mp is finite and is equal ta, ,,=0.477. The expression in air-water interface. In their work, they measured the bound-
Eq. (4.5), with the values for, , and 7. given by Eqs(4.6)  ary tension as a function of a surface presdiredefined as
and (4.7) respectively, is plotted as the dash-dot-dash curvéhe difference between the surface tension of the air-water
close to the wetting transitione(~0), in fig. 12. The filled interface and the surface tension of the air-water interface
circle is atr,,,. If we choose to fit five data points, rather containing a lipid monolayer. When the surface pressure
than four, with the same form as in E@.5), the value of the 11=0, the air-water interface has no lipid monolayer on it.
boundary tension at the wetting transitionsig,,= 0.470. Such a state is analogous to bulk phase coexistence in our
Moving along the prewetting line from the wetting tran- model, whene=0, when there is no surface phase coexist-
sition (e=0) towards the prewetting critical poirffilled  ence. Benvegnu and McConrfélalso determined the value
circle ate=0.3745), where the two surface phases becomef II at the prewetting critical pointlI.;=10.5 dyne/cm,
indistinguishablgsee Sec. 1), the boundary tensiom, de-  which corresponds to the same state as described by
creases in magnitude from ,,=0.477 tor,=0. The bound-  €;=0.3745. Therefore, the reduced phenomenological pa-
ary tension vanishes at the prewetting critical point for therameter €.;—e€)/e can be viewed as a reduced surface
same reason that the surface tension of an interface vanishpeessure I — /1., since the two limiting cases of wet-
at bulk criticality, since the boundary line is the two- ting (e—0) and criticality can be mapped onto the two lim-
dimensional analogue of an interface in a three-dimensionating physical cases of an interface with no monolayer on it
system. For that same reason, the boundary tensjois (IT—0) and 2D criticality, respectively. However, this type
always positive. Due to this analogy, the boundary tensio®f comparison is only qualitatively correct since the experi-

7, close to the prewetting critical point scales as mental system studied by Benvegnu and McCorhéti-
cludes the presence of long-ranged dipole interactions and
To=Al(€crit— €)/ €cril * , (4.8 the boundary tension shows 2D Ising-like behaviour, close to

the prewetting critical point. Our model, on the other hand, is
mean-field and is restricted to short-ranged forces.

Using the same units of force and length as in the above
case, we obtain orders of magnitude for the boundary tension
7, in the system of a fluid phase on a substrate as fd@lhe

where (e.ii—€)/ et IS a reduced field that measures the dis-
tance from the prewetting critical poir is a proportional-
ity constant andu is the critical point exponent. Nakanishi
and Fishe?* conjectured from a theoretical analysis that the

prewetting critical point exhibits 2D Ising-like criticality. T !
This conjecture was verified by Nicolaides and Evaims b_o_undary tension is of (10 %) N CIO.Se o _the wetting tran-
sition, and goes to 0 at the prewetting critical point.

Monte Carlo simulations. Experimental study of the prewet- | der to determine th f the boundarv

ting critical region of the binary liquid mixture methanol- . n olr Tr to de ‘?’m”;]e ela}ccltéracyr? q € orl]m ary len—

cyclohexane by Kellay, Bonn and Meurligfurther verified sion calculation using t_e mu F'g” method, we have calcu-
lated the boundary tension, using two other formulagAp-

the 2D Ising-like character of the prewetting critical point. . . o :
Therefore,u=1. This exponent was verified experimentally pen'd|x A)’. in addition to Eq'(A."l)' Ong of them is the
Kerins-Boiteux formula for the line tensidh:

by Benvegnu and McConnéff,when they measured the ten-

sion between lipid monolayers at the air-water interface. Our KeB o o L _— 5

model, however, is mean-field and we expect that the boundt — medxﬁxdz [2(Vp1)+2(Vp2)“=F(p1.p2)],

ary tensionr, close to the prewetting critical point has a 4.9

mean-field critical point exponent= 3. We conjecture such i

a behaviour and determine the proportionality constant @nd the other formula is:

from the value of a single data point, the one closest to the o % api\2 [dp,)\?
Tb:f def och (W) +(r7_X) .

prewetting critical pointe,;=0.3745. We obtairA=0.098.

As in the fit close to the wetting transition, the assumption is

that the data point used is close enough to the prewettinghe integrals in Eqs4.9) and(4.10 are not variational in-
critical point to be in the asymptotic regime, even thoughtegrals, i.e., the values of the boundary tensions obtained
that is probably not accurate. The expression in @) is  from these two integrals are not extrema whgiix,z) and
plotted in fig. 12 as the dash-dot-dash curve near the prewep-(x,z) are the equilibrium profiles.

(4.10
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The boundary tensions are calculated by substitutingACKNOWLEDGMENTS
p1(X,2) andp,(x,z), obtained from the multigrid method, in
Eqg. (4.9 and(4.10. The difference in the values af, ob-
tained from Egs.(4.1), (4.9 and (4.10 describes qualita-
tively how close the density profiles;(x,z) and p,(x,2)
obtained from the multigrid algorithm are to the equilibrium
density profiles: if the boundary tensions obtained from Eqgs

We would like to thank |. Szleifer for his generous offer
to use his computing equipment as well as for useful discus-
sions, and D.J. Bukman for useful discussions and a careful
reading of this manuscript. The research of E.M.B. has been
made possible by a fellowship of the Royal Netherlands
Academy of Arts and Sciences. This work was supported by

E.‘Il'l)’ (4.9t)hand (4:I}tt))).are eql;_?l, thfth|t'gr'dbden§'t3;.prol'zthe National Science Foundation and the Cornell University
iles are the equilibrium profiles. The error bars in fig. 12, ,.. .\ Science Center.

represent the standard deviation from the average of the val-
ues ofr, from Eqgs.(4.1), (4.9 anq (4.10. These error bars APPENDIX. KERINS-BOITEUX EORMULA FOR THE
are center_ed a_t the valueSQfobFamed f_rom Eq(4.1), since BOUNDARY TENSION
that equation is the one associated with the Euler-Lagrange
equations(4.2) and (4.3) whose solutions give the exact In this appendix, we derive two different, but equivalent,
(within the numerical accuragylensity profilesp;(x,z) and ~ formulas for the boundary tensior, along the prewetting
p»(x,2), and hence give the best estimate for the boundarjine, for the general case of anrcomponent two-phase sys-
tensionr, . If no error bars are shown in fig. 12, the standardtem. For a 2-component system, one of the formulas is the
deviation is within the size of the data point. Kerins-Boiteux formul&® for the line tension of three fluid

As the wetting transition is approachee¢0), the ac- Phases. It turns out that the same expression is valid for the
curacy in the calculation of the boundary tension decreasefoundary tension as well.
as suggested by the large error béig. 12). This is due to The boundary tension is given by, cf. E¢.1),
the increase in the inhomogeneous boundary area as the
ay* interface becomes thicker. Therefore, the domain over _ f” dx J
which the Euler-Lagrange equatiof%.2) and (4.3) have to SE
be solved is increased, leading to a larger grid spabing
since the number of grid points cannot be increased propor-
tionally due to computation time constraints. Consequently, — 4 |, (A1)
the accuracy in the calculated values of the boundary tension
decreases. Close to the prewetting critical point, the accurac
decreases as well, but is not reflected by large error bar%
This is due to the very small values for the boundary tension:
Therefore, errors inr, of the same order of magnitude as ) dF i
7, will not be larger than the size of the data points in fig. 12. Y °Pi ~ i=12,...n (A2)
In this case, however, the inaccuracy in the boundary tension N _
values occurs due to the increase in the domain size alongfith the boundary conditions given by the values of the den-
the x-axis only. This is in contrast to the domain increase inS'ti€s pi in the bulk phases and the density profilg$z)

both thex- andz-directions close to the wetting transition. across the interface, at— oo o
Multiplying both sides of the Euler-Lagrange equation in

(A2) by dp;/(dx), adding all the equations far=1,2,...n
V. CONCLUSION together and integrating overfrom —« to « gives

n

o 1
dz | 2 5 (Vp)*+F(p1.pz...pn)
o i=1

here the density profilep;=p;(X,z) are solutions of the
uler-Lagrange equations, cf. Ed..2),

In this paper, we have presented numerically exact cal- %
culations of the boundary tensiaf of the one-dimensional f dz
boundary that is created when two surface phases meet ~ ~ i=1
edge-on at the prewetting transition, in a system of two bulk (A3)
fluid phases, where a third phase might become bulk. The _ ) )
prewetting line was determined from the wetting transition toN€Xt, we partially integrate the second term and write the
the prewetting critical point. Close to the wetting transition, Other terms as derivatives,

> |2

n
&pi dpi . #*p; dp;  IF dp;
~ | 9x* ax  dz° x  dp; IX

the boundary tension increases in magnitude and extrapolates n 2 )
to a finite value at the wetting transition, ,,= 0.477, if one dz | S 1 [ dpi) _9pi Ipi
assumes the asymptotic form of IndekéuClose to the —o T2 ox| o dz dxdz

1
prewetting critical point, the boundary tension vanishes in a

conjectured mean-field manner, with the critical point expo- 9 n Ip; Ip;
nentu=3/2. Scaling of the boundary tensions with a typical ~ — — F(py,pa,....00) | =—| 2 — — =0,

unit of force yields an order of magnitude fag of 1072 N, X iy 97 X .

close to the wetting transition, and decreasing tensions to 0 at

the prewetting critical point. As the prewetting critical point (A4)

is approached, the two surface phases become more amdhere we have used the boundary conditions that the densi-
more alike, and become indentical at the prewetting criticaties p; are constant in the bulk phaseg z— * «), to derive
point. the last identity.

7=
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We now write the second term in the sum on the left

hand side of Eq(A4) as a derivative, integrate ov&rfrom

x' to o and subsequently drop the prime. We are then finally

left with
2 2
1( dp;

1( dp;
2\ o0z

n
f_wdz E 2\ ox

i=1

- F(plip21"'!pn)

(A5)
po)+ =01 Xdp; 1d2)?].

=— o0,

whereo=[Z_dz [F(p1.p2,---

A similar formula can be derived by performing an

Perkovic et al.: Boundary tension

2
7

X ’ (A8)

n
= f dx f dz | >
*°° m i=1
which is the formula in Eq(4.10, for n=2.

Although the formula in Eq(A8) is even simpler than
the Kerins-Boiteux formula in EqA7), it is only valid as an
expression for the boundary tension, whereas the formula in
Eq. (A7) is also valid for the line tension along partial
wetting?®

analysis analogous to the one above, but now one multiplies

both sides of the Euler-Lagrange equation in E42) by
dp;i1(9z) and integrates over from —« to . The analysis
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