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ABSTRACT

We describe a method for parameterizing two-integral distribution functions, based

on triangular tesselations of the integral plane. We apply the method to the axisym-

metric isotropic rotator model for the Galactic bulge of Kent (1992), and compare

the results with observations of proper motions in Baade's Window, and with radial

velocity surveys. In spite of mounting evidence from surface photometry and from

study of the gas kinematics that the Galactic bulge is not axisymmetric, the stellar

kinematics in Baade's Window are very similar to those of an isotropic oblate rotator.

Another �eld at large radius does not �t this model, though. In any case, the edge-on

kinematics of a hot stellar population are a poor handle on the existence or otherwise

of a bar.

Subject headings: Galaxy: Kinematics and Dynamics { Galaxy: Structure { Galaxy:

Halo { Stars: Kinematics { Methods: Numerical

1 Introduction

In the light of mounting evidence that the Galactic bulge is rather barred, (Blitz and

Spergel 1991, Binney et al. 1991, Whitelock, Feast & Catchpole 1991, Weinberg 1992), it

seems opportune to check to what extent the stellar kinematics of the bulge stars reect this

distortion. De Zeeuw (1993) recently addressed this question, and concluded that, at least as

far as the �rst two moments of the velocity distribution are concerned, simple axisymmetric

analytic models such as the one by Kent (1992) can reproduce the observed kinematics of

stars seen in Baade's Window and other central �elds reasonably well. This would suggest

that either the indications for bulge non-axisymmetry are misleading, or that triaxial and
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2 KUIJKEN

axisymmetric models for the bulge predict quite similar stellar kinematics in these �elds.

In the absence of triaxial models for the bulge, we explore the axisymmetric models a little

further in this paper. In particular, we will construct in as much detail as possible the full

phase space distribution function (df) for the bulge stars, assuming that the bulge can be

well-modelled as an oblate isotropic rotator (see x2).

Oblate isotropic rotator models are often used in astronomy (e.g., Binney, Davies &

Illingworth 1990), because they o�er a convenient way of closing the in�nite hierarchy of

Jeans equations that relate the various velocity moments throughout a galaxy (Binney and

Tremaine 1987). Such models have the nice feature that the �rst few moments of the veloc-

ity distribution everywhere follow straightforwardly from the Jeans equations, and can be

calculated without knowledge of the df. It is therefore relatively simple to compare observed

velocity moments with the predictions of the oblate isotropic rotator. But in fact the full df

is determined in these models. In principle, therefore, knowledge of the df would allow the

comparison with observed kinematics to be extended beyond low-order velocity moments.

It would also make it possible to test for non-negativity of the df, a physical requirement

that is by no means guaranteed to be satis�ed. Furthermore, the fact that the shape of the

Doppler broadening functions in galaxies can now be measured with a variety of techniques

(e.g., Kuijken & Merri�eld 1993 and references therein) motivates the calculation of similar

quantities from models.

The analytic calculation of the df for oblate isotropic rotators is not generally possible: a

complicated integral equation relating the density in the meridional plane to the distribution

function, written in terms of stars' speci�c energy and angular momentum, needs to be

inverted. Analytic work is progressing, though: after the original formulation of the inversion

in terms of double inverse Lapace transforms by Lynden-Bell (1962), Hunter (1975) recast the

problem in terms of an, in some circumstances more manageable, inverse Stieltjes transform,

and recently Hunter and Qian (1993) have rewritten the inversion as a direct contour integral

in the complex plane. Unfortunately, in spite of these results, none of the analytic methods

are applicable to general cases, since all require analytic continuation of the density into the

complex plane.

The limitations of the analytic methods prompted us to explore numerical techniques

for construction of the df. In spite of the greater computational cost, this strategy has

the advantage that there are no restrictions on the shapes of the density pro�les, so that

a model approximating observations as closely as possible can be constructed. We will use

a numerical method to study the df that corresponds to a model very similar to the one

Kent (1992) constructed for the Milky Way bulge based on a 2:4�m Spacelab map of the

Galactic plane (Kent et al. 1992)

We summarize the oblate isotropic rotator model, and the integral equation that needs

to be solved in order to recover the df, in x2. The numerical inversion technique is set out

in x3, and then applied to construct a kinematic model for the central few kpc of the Milky

Way in x4. Comparisons of the model kinematics with radial velocity and proper motion

data are also made there. Finally, the implications of the result for the structure of the bulge

are discussed in x5.
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A special case of the integral inversion, which applies on the minor axis of any axisym-

metric system (whether the df is two-integral or not) is discussed in the Appendix.

2 The Two-Integral Distribution Function for Oblate Isotropic Rotators

There are generally many dfs which have the same mass density in a given gravitational

potential (Schwartzschild 1979), and unless the potential is of a special form most of these

cannot be written down analytically. The reason for the many di�erent possible dfs is that

most realistic three-dimensional potentials support three independent isolating integrals of

motion I

i

(i.e., single-valued functions of the phase space variables which are conserved along

stellar orbits), and therefore the df f(R; z; v

R

; v

�

; v

z

) (in cylindrical polar coordinates aligned

with the symmetry axis of the system) can be written as a function of the isolating integrals

only, f(I

1

; I

2

; I

3

). In an axisymmetric system all three isolating integrals are axisymmetric,

and therefore the requirement that the density corresponding to the df be the given density

�(R; z) is a two-dimensional constraint on a three-dimensional function f(I

1

; I

2

; I

3

). The

inverse problem of �nding a df for a given density �gure can only be made well-determined

by reducing the dimensionality of the allowed dfs.

In axisymmetric systems, two of the integrals of motion are direct consequences of the

symmetries of the Hamiltonian: they are the speci�c energy, E = 	(R; z)+

1

2

v

2

R

+

1

2

v

2

�

+

1

2

v

2

z

,

and the z-component of the speci�c angular momentum, L = Rv

�

. Because the third integral

is usually not an easily accessible function (it may not even exist through all of phase space),

most analytic studies of axisymmetric systems concentrate on dfs depending only on the

two classical integrals, f(E;L). This choice also accomplishes the dimensionality reduction

required if the inversion problem outlined above is to be well-posed. In this paper we will

restrict ourselves to the two-integral models.

Many investigations center on the Jeans equations, which relate the �rst and second

velocity moments and their gradients to the potential and density in the system (see e.g.,

Binney & Tremaine 1987). Two-integral models have the special properties that the R- and

z-velocity dispersions everywhere are the same, and the value of this dispersion is uniquely

determined by the density and gravitational potential of the model. Moreover, the dispersion

is simply calculated using the Jeans equations. If the system is attened, a suitable amount

of rotation about the symmetry axis can be introduced, such that the �-velocity dispersion is

everywhere equal to the dispersion in the other two components. This leads to the so-called

isotropic oblate rotator models. Such models are often used in analyses of observed stellar

systems (e.g., Binney, Davies & Illingworth 1990, van der Marel 1991). They provide a useful

foil for the interpretation of observed kinematics, and often �t the data surprisingly well, in

spite of their simplicity and gross non-uniqueness. Nevertheless, detailed analysis of well-

observed edge-on elliptical galaxies by Merri�eld (1991) reveals that the central assumption

of a two-integral df is not always justi�ed.

In fact, the two-integral assumption has much stronger consequences then the speci�ca-

tion of the mean azimuthal velocity and radial velocity dispersion everywhere: as shown by

Lynden-Bell (1962), in such models the entire even part of the df, f

+

� f(E;L)+f(E;�L),
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is determined by the density and potential. The further assumption of isotropicity, equiva-

lent to specifying a particular mean azimuthal velocity everywhere, �xes the odd part of the

df, f

�

� f(E;L) � f(E;�L). Therefore isotropic oblate rotators have a uniquely de�ned

df. The goal of this paper is to present a numerical method for calculating the df for this

class of models for general densities and potentials, and to apply it to the oblate isotropic

rotator model that was constructed for the Milky Way bulge by Kent (1992).

2.1 The basic integral equations

In the (E;L) plane, the physically accessible orbits lie in the wedge-shaped area above the

curve E = E

circ

(L), where E

circ

(L) is the energy of a circular orbit in the equatorial plane of

angular momentum L (see �gure 2 below).

1

The density �(R; z) corresponding to the distribution function f(E;L) is

�(R; z) =

Z

dv

R

dv

�

dv

z

f(E;L) = 2�R

�1

Z

1

�1

dL

Z

	(R;z)+

1

2

L

2

R

2

dE f(E;L) (1)

when R 6= 0. At R = 0,

�(0; z) = 2

5

2

�

Z

	(0;z)

dE [E �	(0; z)]

1

2

f(E; 0): (2)

In typical applications the density is related directly to the potential 	 by Poisson's equation,

but other sources of gravity (such as a dark halo) could also be included. In any case, if the

potential is known, a given df f(E;L) determines the density completely.

The inversion of eqs. (2), starting from the observed density and resulting in the distribu-

tion function f , can be written formally as a double inverse Laplace transform (Lynden-Bell

1962), in terms of an inverse Stieltjes transform (Hunter 1975), or as a contour integral in the

complex plane (Hunter and Qian 1993). Unfortunately, none of these methods are applicable

to general cases.

2.2 The isotropic rotator

Adding any term which is odd in L to the df f(E;L) does not change the density in

Eq. (1). The inversion problem therefore does not have a unique solution, (the physical

reason is that reversing the motion along any of the orbits changes L but does not a�ect the

density). By also specifying the mean azimuthal velocity, which is related to the df by

�v

�

(R; z) = 2�R

�2

Z

1

�1

LdL

Z

	(R;z)+

1

2

L

2

R

2

dE f(E;L) (3)

for R 6= 0 (v

�

= 0 at R = 0), the odd part of the df is also �xed. There are various

choices that can be made: v

�

can be set to zero, for instance, or to the `maximum streaming'

1

at least if the potential increases as a function of R and jzj, as is almost always true in a galactic context.



THE GALACTIC BULGE 5

value that obtains if all orbits have positive angular momentum. An intermediate case is

the so-called `isotropic rotator' model. This model is the one in which the r.m.s. dispersion

of the azimuthal velocity about the mean streaming matches the dispersion in the R- and

z-directions

2

. The mean streaming of an isotropic rotator model is simple to evaluate using

the Jeans equations (Binney and Tremaine 1987), with the result

v

2

�

=

R

�

@(��

2

)

@R

+R

@	

@R

; (4)

where

�

2

=

1

�

Z

1

z

�(R; z

0

)

@	

@z

�

�

�

�

�

(R;z

0

)

dz

0

: (5)

is the (isotropic) velocity dispersion of each velocity component.

Because the velocity dispersion and mean streaming velocity are so simple to calculate

once the potential and density are given, isotropic rotator models have been used a great

deal in astronomy. However, it has not often been emphasized that in fact the assumptions

that lead to this model fully determine the entire distribution function (and therefore the

distribution of the three velocity components at every point in space), and not just the �rst

two velocity moments. Kinematic data can therefore be compared with such a model in

great detail.

An illustration of the possible pitfalls that can be encountered when the Jeans equations

are used without consideration of the df is provided by prolate Binney potentials, of the

form

	 =

1

2

v

2

c

ln(R

2

c

+R

2

+ (z=q)

2

) (6)

with q > 1. Evans (1993a) constructed the analytic two-integral df for these models, and

showed that prolate models only exist (i.e., have non-negative df) in the narrow interval

q < 1:08. Nevertheless, the density in prolate models corresponding to the potential (6)

is everywhere positive, and so is the velocity dispersion derived from the Jeans equations

(eq. 5). Thus a `blind' use of the dispersions returned by the Jeans equation (for example,

comparing them to gaussian velocity dispersions derived from �tting absorption-line spectra)

could return essentially meaningless results.

A di�erent caution applies to the practice of modelling real stellar systems as isotropic

oblate rotators: such models are, in fact, very restrictive. Both ignoring the third integral,

which is almost invariably present in realistic potentials for stellar systems, and dividing the

prograde and retrograde orbits' populations just so that the azimuthal dispersion matches

the radial and vertical ones represents a very special choice of df. For instance, the two-

integral assumption means that the number of stars on planar, excentric orbits is coupled

with the number of stars on radially thin but vertically extended `shell' orbits, and in very

attened models isotropicity of the velocity dispersion requires that the stars are divided

2

This statement about the second velocity moments does not imply that the velocity distribution is isotropic

about the mean streaming.
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into two distinct counter-rotating components (a fact that would not be evident from the

Jeans equations alone). There is nothing wrong per se with these choices, but they are very

restrictive.

From the point of view of combining Galactic `components', such as bulge, disk, halo,

etc., the isotropic rotator models are also rather arti�cial, since the linear superposition

of two isotropic rotators with di�erent mean streaming does not result in a new isotropic

rotator. Thus, building an isotropic rotator model for a bulge+disk system, for example,

amounts to assuming that each of the components is anisotropic in just such a way that the

combination has an isotropic velocity distribution.

In spite of the caveats, it is advantageous to study the properties of two-integral dfs

in detail. The assumption of an isotropic rotator model does, after all, specify a unique df

(up to the sign of its spin), and comparison of this model with, for example, projected radial

velocities or proper motions can be made in more detail than what can be learned from

low-order velocity moments. Numerical techniques for contructing two-integral dfs should

also eventually be extended to the more realistic three-integral models. In any event, it is

always worthwhile to calculate the df itself, since this is the only way to verify that it is non-

negative: an analysis through moment equations alone in no way guarantees non-negativity.

3 Recovering the Distribution Function Numerically

Unfortunately, at the moment there is no generally applicable analytic method for the

construction of two-integral models, though progress is being made in that area (Lynden-Bell

1962, Hunter 1975, Hunter and Qian 1993). These authors list several analytic models, and

Evans (1993a, 1994) has recently used Lynden-Bell's method to construct the df for Binney's

logarithmic potential with a core as well as more general potentials strati�ed on ellipsoids.

We could approximately invert the bulge data by �tting one of these models to the density

�gure of the bulge | but unfortunately none of them are particularly good descriptions of

the density and potential in the central few kiloparsecs of the Galaxy. The best analytic

model that has been �tted to the bulge so far is due to Evans (1993b), but it is not a perfect

match. We therefore use instead a more numerical inversion of eqs. (1) and (3). Though

quite computationally intensive, this inversion can be applied with equal ease to complex

density-potential pairs, including those which cannot be written down analytically.

Since the inversion is somewhat unstable, numerical methods which impose some regu-

larity or smoothness condition on the inverted df are essential if they are to be of practical

use. In this attempt, we employ a parameterization of the df in continuous bilinear seg-

ments. This is the lowest-order continuous parameterization, and can be considered as the

next re�nement beyond a `histogram' parameterization, in which the df is taken constant

within di�erent cells of the integral plane. Essentially the same method was used by Mer-

ri�eld and Kuijken (1994) for the description of a thin disk df. Di�erent approaches to

describing smooth dfs are described by Merritt (1993), and by Dejonghe (1993).
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Fig. 1.{An example of a bilinear-tesselation grid. In addition, linearly spaced contours of three

elementary components are shown.

3.1 Bilinear Tesselation with Quadratic Programming

A bilinear tesselation is simply described as follows (Merri�eld & Kuijken 1994). First, a

grid of triangles is laid down on the integral plane (e.g., Fig. 1). The df will be approximated

by bilinear functions f = a+ bx+ cy inside each triangular cell, chosen so that they match

continuously at cell boundaries. Since a bilinear function requires three coe�cients, f(x; y)

is de�ned uniquely by bilinear interpolation between the three vertices of whatever grid

triangle (x; y) happens to lie in (this explains the need for a triangular, rather than a square,

grid). Thus, the grid and the values of f on the grid point determine the bilinear-tesselation

df completely. f can be viewed as the sum of elementary basis functions, each of which is

non-zero at all grid points but one, and linearly interpolated in between; our task is then

to �nd the amplitudes for each basis function. Clearly the `resolution' (i.e., the size of the

smallest features that can be described with this description of the df) is set by the density

of the grid.

The physical boundary of the (E;L)-plane is inconveniently curved (see �gure 2 below).

Because it is most convenient to impose a grid with a rectangular boundary, it is pro�table

to transform to coordinates in which this curve is straightened out. This is accomplished by

the transformation

E ! E

norm

�

E � E

circ

(L)

E

cut

� E

circ

: (7)

At every angular momentum, this has the e�ect of rescaling the energy to a variable, E

norm

,

which runs from zero at the circular energy to unity at a cuto� energy E

cut

. In order to

increase the resolution near the circular orbits, a transformation E ! E

n

norm

with 0 < n < 1
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could be used instead; however, the correspondingly lower resolution that results at higher

energies can be problematic, and generally such a transformation is no substitute for using

a su�ciently �ne grid.

A `solution' to the inverse problem for the df is then an optimization of the values

f

�

of the df at the grid points � (since the f

�

determine the df everywhere). A physical

solution must involve non-negative f

�

only | clearly the interpolated values of the df

between the grid points will also be non-negative then. The function to be optimized can

take many forms: typically it is a sum of square deviations between some measured data

and the corresponding model prediction. Measurements could be observed brightnesses,

distributions of radial velocities, or even galactic absorption-line spectra. In our case, we

�t the model df to the density and to the mean streaming velocity corresponding to an

isotropic rotator model, given by eqs. (1) and (3,4). For stability, these `data' values are

calculated on a grid (R

i

; z

i

) containing many more points i than the (E

�

; L

�

)-grid used to

describe the df.

A least-squares �t to the desired �

i

and �v

�i

on the grid involves minimizing the expres-

sion

�

2

=

X

i

w

i

[�

i

� �(R

i

; z

i

; f

1

. . . f

N

)]

2

+

X

i

w

i

[�v

�i

� �v

�

(R

i

; z

i

; f

1

. . . f

N

)]

2

: (8)

Since both �(R

i

; z

i

) and �v

�

(R

i

; z

i

) depend linearly on the df, and hence are also linear

functions of the f

�

, �

2

is a quadratic function of the f

�

. Since we wish to minimize�

2

subject

to the conditions that the f

�

are non-negative (since they represent phase space densities),

the optimal f

�

can be found as the solution of a Quadratic Programming (qp) problem,

i.e., the minimization of a quadratic function subject to a number of linear constraints (e.g.,

Dejonghe 1989). E�cient algorithms for obtaining this solution (which is generally unique)

are implemented in the NAG and IMSL libraries.

The use of these basis functions o�ers some advantages over other possible choices, such

as Fricke components (e.g., Dejonghe 1993). Non-negativity is much easier to ensure (with

more extended, overlapping components such as polynomials in E and L, positivity of the

df has to be checked on a �ne grid since some of the components may well have negative

coe�cients), and the situation in which very good data in one part of phase space dictates

the �t in other regions is avoided by having compact phase space basis functions. Thus only

the physical correlations between the properties of the system in di�erent parts of phase

space enter into the �t.

In summary, the combination of a parameterization in bilinear segments and the qp

algorithm provides a general approach for constructing the unique two-integral distribution

function corresponding to a choice of mean streaming model. The inherent instabilities in

the inversion of the fundamental integral equations (1) and (3) are suppressed in this method

by the �nite resolution of the grid on which the df is de�ned, and the requirement that the

phase space density not be negative anywhere on the grid.
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3.2 The minor axis

We saw earlier (eq. 2) that the density on the minor axis �(0; z) is related to the phase

space density at zero angular momentum, f(E; 0). This equation is of Abel form, and can

be inverted to yield

f(E; 0) = �

1

2�

2

d

dE

Z

1

E

d	

d�(0; z)

d	

[2(	� E)]

�

1

2

: (9)

(This is also Eddington's formula, which relates the density and the df in spherical isotropic

systems). Thus, in any two-integral model (it need not be the isotropic rotator) the phase

space density of plunging orbits is everywhere determined by the minor axis density (and the

potential).

3

Because it relies critically on the lack of a third isolating integral, this relation

is of limited practical importance in an observational context; nevertheless it is a very quick

�rst check whether a particular density-potential pair can be described by a non-negative

two-integral model. A su�cient, but not quite necessary, condition is clearly d

2

�=d	

2

� 0.

4

4 Kent's Isotropic Rotator Model for the Galactic Bulge

Using a map of the infrared luminosity of the galactic bulge region made with the

Spacelab Infrared Telescope (Kent et al. 1992), Kent, Dame and Fazio (1991) constructed a

model for the stellar emission of the central few kiloparsecs of the Galaxy. They found that

the data could be modelled well with a two-component model, consisting of a `bulge' and a

`disk.' The disk's 2:4�m emissivity, �

D

, was modelled as a double exponential,

�

D

(R; z) = 3:0 exp[�R=(3:001kpc)] exp[�jzj=(0:165kpc)]L

�

pc

�3

(10)

and the bulge was described as a attened object with boxy isophotes whose emissivity �

B

is constant on surfaces of constant s

4

= R

4

+ (z=0:61)

4

:

�

B

(R; z) =

8

>

<

>

:

3:53K

0

[s=(0:667kpc)]L

�

pc

�3

if s > 0:938kpc,

1:04 � 10

6

[s=(0:482kpc)]

�1:85

L

�

pc

�3

if s < 0:938kpc.

(11)

Kent (1992) then calculated the velocity dispersions and mean streaming for the isotropic

rotator model corresponding to di�erent choices of disk and bulge mass-to-light ratios, using

eqs. (4) and (5). He found that an infrared bulge mass-to-light ratio of about 1 produced a

model which was in excellent agreement with stellar velocity dispersions measured towards

the central few kiloparsecs of the Galaxy.

3

This is no longer so in three-integral models, which can be anisotropic even on the z-axis.

4

It is simple to show that on the z-axis the integrated z-velocity distribution

R

fdv

R

dv

�

satis�es the one-

dimensional CBE, and therefore depends only on the function �(	). Eq. (9) then follows as the (Abel)

deprojection of the isotropic velocity distribution into the joint distribution of the three components. See

also the Appendix.
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Table 1.-Grid parameters

L-grid limits �210 to 210km s

�1

kpc

Number of L-points 60

E

norm

-grid limits 0 to 1

Number of E

norm

-points 15

Cuto� energy �3:7 � 10

4

(km s

�1

)

2

Table 1.{Grid parameters for the bilinear-segment reconstruction of the distribution function of

Kent's (1992) bulge model. The angular momentum limit corresponds to a circular orbit of radius

1.2 kpc.

We now construct the stellar distribution function that corresponds to Kent's model. As

explained in x2, this df is fully speci�ed by the assumptions that are made in the calculation

of the isotropic rotator velocity dispersions.

We make three small changes to Kent's model. The �rst is to ignore his central black

hole of 3 � 10

6

M

�

, since we will not be able to resolve the central kinematics very well

in any case. As Kent shows, the kinematics are not a�ected by this central mass outside

R = 10pc. Instead, we soften the bulge component by replacing s by (s

2

+ 0:001kpc

2

)

1=2

in eq. (11). The second change is that we calculate the potential due to the actual mass

distribution of the bulge (eq. 11), rather than using an ellipsoidal approximation to it, as

Kent does. The third change avoids the logarithmic singularity that arises in the distribution

function for one-dimensional self-gravitating exponential disks. To achieve this, we replace

the exponential z-dependence of the disk density in eq. (10) by a factor of

1

2

sech z. This

function has been found by van der Kruit (1988) to be a good description of many edge-on

galactic disks. The di�erence between the exponential and sech functions is most signi�cant

in the lowest one or two scale heights, where the e�ects of extinction are at any rate still

uncertain. For the same infrared ux emissivity at large altitude, the sech model has a disk

surface density which is a factor

�

4

' 0:79 lower than that of the exponential model.

The �rst step in the calculation of a two-integral model for a given axisymmetric density

�(R; z) is to calculate the gravitational potential. The potentials for the bulge and disk

components were obtained by �rst �tting axisymmetric spherical harmonics to the density

on spherical shells, and then calculating the potential harmonic by harmonic (see Binney

and Tremaine 1987, eq. 2-208). This treatment is more general, but also numerically more

involved, than the fairly common practice of �tting an ellipsoidal �gure to the density (used

by Kent). For the bulge we used terms up to l = 8, while for the disk terms as far as l = 14

needed to be retained in order to resolve the small angular extent of the disk at radii up to

4kpc.

Armed with this potential, we calculated the velocity dispersion and mean streaming

velocity for the isotropic oblate rotator model (eqs. 5 and 4), in the same way as Kent

did. These were evaluated on a dense grid in the meridional plane, after which the best-�t

non-negative bilinear-segment df that generates the disk and bulge density and isotropic-

rotator streaming velocity was calculated. Parameters of the grid in the (L; E

norm

)-plane are
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Fig. 2.{The best-�t isotropic oblate rotator df for the central 1.2 kpc of the bulge. On adjacent

contours, the df di�ers by a factor of 10

0:5

. The thick parabola indicates the region of phase space

accessible to stars with speeds below 300km s

�1

on the meridional plane in Baade's Window.
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Fig. 3.{The deviations between the values of the density (top left), mean azimuthal velocity (top

right) and radial velocity dispersion (bottom left) predicated by the oblate isotropic rotator model,

and the values calculated from the best-�t bilinear-segment model. Circles indicate underestimates

by the model, triangles overestimates. The size of the symbols is proportional to the discrepancy.

The radial dispersion values were not �tted, but instead serve as a con�rmation of the quality of the

�t. The overestimate of the velocity dispersion at higher z arises from the energy cuto� employed

in the model �tting.

given in Table 1. We assumed Kent's values of the bulge mass-to-light ratio, �

B

= 1, and

adopted a disk mass-to-light ratio �

D

= 0:87 (corresponding to the disk surface density at

the solar radius measured by Kuijken and Gilmore 1989b)

5

. The resulting df is shown in

Fig. 2. The rather patchy nature of this df is reproduced with di�erent choices for the grid

parameters, and so the large stretches of phase space with zero density probably indicate

that the mathematically exact inversion would give negative densities in places. The present

df represents (or would represent, in the limit of a very �ne grid) the closest physically

acceptable isotropic rotator model for Kent's potential and density. Large empty regions of

phase space raise concerns about stability of the model; we shall not, however, address those

here.

5

Kent (1992) quotes �

D

= 0:68 as the value corresponding to this value for the local disk surface mass density:

the di�erence arises from our sech z-pro�le replacing Kent's vertically exponential disk.
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Fig. 4.{Comparison between the direct (Abel inversion) calculation of the df at zero angular

momentum, f(E; 0) (solid line), and the result of the bilinear-segment df �t to the inner 1.2 kpc

shown in �gure 2 (dashed line with plotted points).

As can be seen in Fig. 3, which shows the deviation between the bilinear-segment df and

the values expected for the isotropic oblate rotator, a good �t to the density and isotropic

rotator streaming velocity could be achieved in spite of the regions of zero phase density. The

rms fractional error for the �- and �v

�

-values �tted was 10%, with most of that coming from

the central 100pc where the resolution of the grid limited the ability of the model to follow

the steep density gradient. Apart from the central regions, no large systematic residuals

between the model and the �tted density and mean velocity were found. More importantly,

the third panel in this �gure shows that the velocity dispersions calculated from the model

agree well with the isotropic rotator values. This was not directly enforced on the �t, and the

good agreement therefore indicates that no part of the df was missed by the �nite extent of

the grid or as a result of poor resolution. In the central parts of the bulge the �nite resolution

is again noticeble, however, and at large distances from the center the e�ect of the energy

cuto� is evident as a systematically overestimated velocity dispersion.

The df at zero angular momentum is related only to the density on the z-axis (see x3.2),

and can be calculated directly (eq. 9). In Fig. 4 the result of this calculation is compared to

the �t of the entire integral plane. The results agree well, except in the very center of the

model where the (E;L) grid lacks resolution.

Having obtained the df, all kinematic quantities are speci�ed and can be compared to

observations. Thus, in Fig. 5 the radial velocity distribution of those stars with R < 3kpc

in a small patch of sky towards Baade's Window (longitude 1

�

, latitude �4

�

) is shown, and

Fig. 6 presents the distribution in proper motions for the same patch of sky. These model

predictions can be compared with the data of Sharples et al. (1990) and of Spaenhauer

et al. (1992), which Kent (1992) already showed have velocity dispersions similar to those
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Fig. 5.{The observed heliocentric radial velocity distribution of M giants in Baade's Window

(Sharples et al. 1990) and the distribution calculated from the bilinear-segment df of �gure 2. The

agreement is remarkable.

Fig. 6.{The observed proper-motion distribution in longitude, �

l

, and latitude, �

b

, of K giants in

Baade's Window (Spaenhauer et al. 1992) and the distribution calculated from the bilinear-segment

df of �gure 2. The zero point of the data (which is unknown) has been adjusted to agree with the

model. The asymmetry in the distribution of observed latitudinal proper motion is not terribly

signi�cant, and cannot be reproduced in any steady-state model which does not invoke long-axis

tube orbits in a triaxial bulge.
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Fig. 7.{Left: The observed heliocentric radial velocity distribution (histogram) towards l = 8,

b = 7, from Minnitti et al. (1992), and the prediction of the model df calculated here. Right:

symmetrized distribution of Galactocentric radial velocity (see text for details).

predicted by the isotropic rotator model. It turns out that the model distributions are

remarkably gaussian: in fact, a decent approximation to the part of phase space accessible

to stars with speeds below 300km s

�1

in the meridional plane at Baade's window (indicated

by the parabola in Fig. 2) is f / exp[�E=(114km s

�1

)

2

+ L=(78km s

�1

kpc)], which indeed

produces a gaussian velocity distribution for all three components in the meridional plane.

Since stars near the meridional plane dominate the density along the line of sight, the result

is a rather gaussian projected velocity distribution.

In order to allow comparison with �elds at slightly greater radii, a second model was

calculated with a coarser grid: compared to the values in table 1, the angular momentum

now extended to 0:77km s

�1

kpc, the value for a circular orbit with radius 4kpc, and the cuto�

energy was raised to zero. The spacing of the (R; z) values at which the density and mean

velocity were �tted was also increased, by a factor of four. The number of bins remained

unchanged. The predicted distribution of radial velocities for the resulting model, in the

direction l = 8, b = 7, and the data of Minniti et al. (1992) are shown in �gure 7. The mean

LSR radial velocity and velocity dispersion of the stars are observed to be 16 � 10km s

�1

and 85� 7km s

�1

, (Minniti et al. quote a mean galactocentric velocity of 45km s

�1

) whereas

the model df calls for 43km s

�1

and 90km s

�1

(in excellent agreement with the prediction

of Kent's model, as quoted by de Zeeuw 1993). In addition to having discrepant means, the

radial velocity distributions of the data and model also have di�erent shapes.

Overall, the model calls for faster rotation in the l = 8, b = 7 �eld than the data show.

It is not clear how to interpret the discrepancy, given the number of modelling assumptions

that went into the derivation of the df: in particular, three-integral models will need to be

constructed before it can be clear whether this is stellar-dynamical evidence for triaxiality

or for a di�erent gravitational potential than has been assumed here.

We can more easily assess whether a non-isotropic, but still two-integral, model may
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Fig. 8.{The model and observed proper-motion distributions towards l = 8, b = 7, taken from

Minniti (1993). The proper motion zero points have been adjusted to give the best �t.

be able to explain the observations, by studying only the even part of the df: as noted

above, f

+

is the same for all two-integral dfs with the same density and potential. The

radial velocity distribution of the even part of the df is obtained simply by symmetrizing

the radial velocity distribution in the galactocentric frame (taken to move at 220km s

�1

with

respect to the local standard of rest), and is shown together with the model in the right-hand

panel of �gure 7. It appears that the data in this �eld are not consistent with a two-integral,

axisymmetric df in the potential chosen.

A similar, though smaller, discrepancy is evident in the proper motion distributions in

the same �eld (�gure 8). Note that, without good distance information, the distribution of

�

l

is virtually independent of the odd part of the df.

Minniti et al. also provide data for a �eld at l = 12, b = 3: however their correction for

disk star contamination is serious in this direction, and hard to simulate. The agreement

between the model and the observed velocities (not shown) is even poorer in this case.

5 Discussion and Summary

Bilinear segments can be used to approximate any continuous function of two variables

over a �nite domain. Thus, spherical galaxies or clusters with df f(E;L

2

), axisymmetric

galaxies with f(E;L) (such as the bulge model discussed in this paper), or thin disks with

f(E;L), are candidates for this technique. An example of the last type is the disk df for the

galaxy NGC 7217, extracted from long-slit spectroscopy data by Merri�eld & Kuijken (1994).

Our application to the bulge has shown that this technique makes it possible to calculate

the distributions of observed quantities such as radial velocities or proper motions for the
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isotropic oblate rotator model. Thus, more detailed comparison can be made to observed

data, and stronger conclusions drawn about the model, than is allowed by the use of the

Jeans equations alone.

In principle, it would be possible to use these models to infer an M=L value for the

central part of the galaxy, for example by calculating a grid of models with di�erent disk

and bulge mass-to-light ratios, or by adding in varying amounts of dark matter to the total

mass density. Comparison of the data in �gures 5 and 6 with these models would then allow

a statistical evaluation of the potential parameters. However, since the two-integral models,

well though they �t, are still a small subset of possible models for the bulge kinematics,

such a determination would still be subject to unknown systematic model uncertainties.

Nevertheless, it appears that the adopted 2:4� mass-to-light ratios for the bulge and the

disk (respectively, 1.0 and 0.87) are probably close to the truth.

Throughout this analysis, we have assumed that the bulge is axisymmetric. This is,

in fact, unlikely to be the case: there is mounting evidence, from a variety of sources, that

the bulge exhibits signi�cant asymmetries between the positive- and negative-longitude sides

(Blitz and Spergel 1991, Binney et al. 1991, Whitelock, Feast & Catchpole 1991, Weinberg

1992). The most natural way to understand the asymmetries is to posit that the bulge

is a triaxial body, with long axis pointing to a Galactic azimuth of about 30

�

; projection

e�ects then cause the nearer side of the bulge to have a higher scale height, and a lower

surface brightness, than the far side. Kinematic studies of anomalies in the gas kinematics

in the central few kpc independently point to quite similar (though not identical) triaxiality

parameters for the bulge.

In the context of claims for triaxiality of the bulge, it is interesting that the data appear

to show too little azimuthal motion, compared to the axisymmetric models: the favoured

bar models place the sun nearest the bar's long axis, in which case, from our vantage point,

the naive expectation would be of higher radial velocities in the bar model than in the non-

barred one. This e�ect is o�set to some extent by the errors made in �tting an axisymmetric

potential: a bar seen edge-on and analysed assuming axisymmetry suggests a more centrally

condensed potential than is really the case, and consequently axisymmetric models �tted to

it predict circular velocities which are too high. A more detailed calculation is required in

order to see which e�ect is the greater.

If the bulge is really triaxial, it is certainly remarkable that the radial velocity and the

proper motion data are �t excellently with an oblate isotropic rotator, arguably the simplest

axisymmetric kinematic bulge model possible. Nevertheless, this may be no more than a

coincidence, given that in at least one other �eld (l = 8, b = 7) the �t is not nearly so

good|but the sample is relatively small. More data in a number of �elds will be required

to settle this issue de�nitely. But even if the oblate isotropic rotator model is ruled out, this

leaves many more axisymmetric models as possibilities. It will be interesting to see how �rm

stellar-dynamical evidence for non-axisymmetry can be. It will be especially worthwhile to

�nd signatures for non-axisymmetry which do not rely on perspective, so that they can be

applied to external galaxies.
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Appendix: Kinematics On the Minor Axis

In this appendix, we show that on the minor axis of an axisymmetric stellar system, as well as in

two-integral axisymmetric models in general, the vertical kinematics are closely analogous to those
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of a plane-parallel system.

The collisionless Boltzman equation in cylindrical polar coordinates in a gravitational �eld

with forces K

R

and K

z

reads (e.g., Binney and Tremaine 1987)
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We set F

z
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z

) =

R

fdv
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�

. Integrating eq. (12) over v

R

and v

�

, and assuming that the phase

space density tends to zero at in�nite velocity, we obtain
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The cartesian version of this equation is
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The quantity

R

fv

R

dv

R

dv

�

depends on v

z

, and is proportional to the mean R-velocity for a given v

z

.

It is not generally zero (since the third integral usually introduces a non-zero correlation between

the R- and z-velocity components, known as the `velocity ellipsoid tilt'), but in two important cases

it is: on the minor axis of any non-singular axisymmetric system (this is best illustrated with eq. 14

upon setting the partial x- and y-derivatives of f to zero), and in the case of a two-integral df

f(E;L) such as has been considered in this paper. In these special circumstances F

z

satis�es the

one-dimensional collisionless Boltzman equation

K

z

@F

z

@v

z

+ v

z

@F

z

@z

= 0; (15)

just as is the case for a plane-parallel stellar slab. This equation can be integrated easily: the

general solution is

F
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z

) where E

z
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1

2

v

2

z

: (16)

Another way to prove this result in the case of the two-integral models follows from the fact that
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Z

1

�1

dv

�

Z

1

0

dv

R

f(

1

2

v

2

R

+

1

2

v

2

�

+ E

z

; Rv

�

) � F

z

(R;E

z

): (17)

At every radius, F

z

(R; z; v

z

) can therefore be obtained by �nding the E

z

dependence that

generates the correct vertical density pro�le,

�(R; z) = 2

Z
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dE

z

p

2[E

z
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F

z
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z

): (18)

This solution can be found with a single Abel inversion (Kuijken and Gilmore 1989a). In the case of

two-integral models, the v

R

-distribution follows immediately, since it is identical to the distribution

of v

z

.

The minor axis of an axisymmetric system is particularly interesting, since there the result

(16) holds independent of the two-integral assumption. A measurement of the proper motion

distribution of stars on the minor axis of the bulge would help greatly to de�ne the gravitational

potential on that axis.


