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Effect of the Coupling to a Superconductor on the Level Statistics of a Metal Grain
in a Magnetic Field
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A theory is piesented for the Statistics of the excttation spectrum of a disordered metal gram in
contact with a superconductor A magnetic field is apphed to fully bieak time leversal symmetry m
the gram Still an excitation gap of the ordei of δ opens up provided /VF 9 ä l Heie δ is the mean
level spacing m the gram Γ the tunnel piobabihty through the contact with the superconductor, and N
the number of transverse modes m the contact region This provides a microscopic justification for the
new landom-matnx ensemble of Altland and Zimbauer

PACS numbeis 74 50 +1 05 45 +b 74 80 Fp

The proximity to a supeiconductor is known to induce
a gap m the excitation spectrum of a normal metal
Sermclassical theones of this "proximity effect" show
that the gap closes if time-reversal symmetry CT) is
broken (by a magnetic field or by magnetic impunties)
Recently, Altland and Zirnbauer [1] argued that a gap
remams in the spectrum of a metal gram surrounded by a
superconductor — even if T" is broken completely (The
classical mechanics of such a System had previously been
studied [2] ) The gap is small (of the order of the mean
level spacmg m the gram), but it has the fundamental
imphcation that the level Statistics is no longer descnbed
by the Gaussian unitary ensemble (GUE) of random-
matnx theory [3]

The GUE has a probability distribution of energy levels
of the form

P({En}) « Π tö - Ej)2 Π exp(-
K] k

(D

with some constant c > 0 dependmg on the mean level
spacmg at the Fermi level (chosen at E = 0) This
ensemble was first apphed to a granulär metal by Goikov
and Ehashberg [4], and derived from microscopic theory
by Efetov many years later [5] A smgle-particle energy
level E n corresponds to an excitation energy \En\, that
is to say, the excitation spectrum is obtamed by folding
the smgle-particle spectium along the Fermi level The
folded GUE has been studied in Ref [6] Altland and
Zirnbauer introduce a different probability distribution,

(2)

for the (positive) excitation energies of a metal gram in
contact with a superconductor (The excitation spectrum
is discrete foi E < Δ, with Δ the excitation gap in
the bulk of the superconductor) The distribution (2)
is related to the Laguerre unitary ensemble (LUE) of
iandom-matnx theory [7] by a change of variables
The density of states p (E) m this ensemble vamshes

quadratically near zero energy [1,7],

Ί π/κ2ττΕ/δ l
(3)

The gap m the excitation spectrum is of the order of the
mean level spacing δ The folded GUE, on the contrary,
has no gap but a constant p (E) = 1/8 near E = 0

In this paper we present the first microscopic theory
for the effect on the level Statistics of the couphng to a
superconductor We consider the case that the conven-
tional proximity effect is fully destroyed by a 7^-breakmg
magnetic field [8] Assummg nonmteractmg quasiparticle
excitations, and starting from the well-established GUE
for the level Statistics of an isolated metal gram, we ob-
tam a crossover to Altland and Zirnbauer's distribution
(2) äs the couphng to a superconductor is increased This
provides a microscopic justification for the "maximum
entropy" hypothesis on which Ref [1] was based Such
a justification is needed because, m contrast to ensembles
in statistical mechanics, there is no physical prmciple that
would require a random-matnx ensemble to maxirmze en-
tropy Furthermore, because the argument of Ref [1] is
based on the presence or absence of a certam discrete
symmetry in the Hamiltoman, it cannot provide a cntenon
for how strong the couphng to the superconductor should
be for the new ensemble to apply Our microscopic ap-
proach permits us to identify this cntenon, and to compute
explicitly how the gap m p(E) opens up äs the couphng
strength is increased

We consider the geometry shown m Fig l of a
disordered metal gram (ΛΟ, which is connected to a
superconductor (5) by a point contact or microbndge
contaming a tunnel barner Breaking "T requires a
magnetic field of at most a flux quantum through the
gram This field is less than the cntical field of the
superconductor if the size of the gram is greater than
the superconducting coherence length For simplicity of
presentation we consider a real order parameter Δ in
S (We have found that a spatial dependence of the
superconducting phase, considered m Ref [1], has no
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FIG. 1. A disordered normal-metal grain (N) coupled to a
superconductor (S). The black area indicates a tunnel barrier.

effect on the level statistics in the absence of "T.) We
assume zero temperature, so that motion in the grain
is totally phase coherent. We seek the distribution of
the excitation energies E„ «3C Δ. We first consider the
density of states p (E).

To determine p (E) we adopt the scattering approach of
Ref. [9]. We model the point contact by a normal-metal
lead supporting N transverse modes at the Fermi level.
Andreev reflection at the interface scatters electrons into
holes. This corresponds to the off-diagonal blocks in the
scattering matrix SA for Andreev reflection,

SA =
0 -i
-i 0 (4)

where each of the four blocks is an N X N matrix.
The scattering matrix SN for the normal-metal grain plus
tunnel barrier does not couple electrons and holes, and
thus has the block diagonal form

c _(S0(E) 0
*N ( 0 S*Q(-E) (5)

Here So (So) is tne scattering matrix for electrons (holes)
at an energy E from the Fermi level. The N X N
scattering matrix So can be expressed in terms of the
M X M Hamiltonian HO of the isolated grain and an
M X N coupling matrix W [10,11],

S0(E) = l - - H0 + (6)

The finite dimension M of HO is artificial and will be
taken to infinity later on.

As demonstrated by Efetov [5], an ensemble of disor-
dered metal grains in a magnetic field can be described by
the GUE [12],

(7)

[Equation (1) follows upon Integration over the eigen-
vectors of HO.] The coefficient c is related to δ by
c = ττ2/8Μδ2. We recall that δ is the mean level spac-
ing in the folded GUE, which is one-half the mean level
spacing of HO- The coupling matrix W has the form

[11,13]

w = δr' mn °mn\
\ TT2 J

m = 1,2,...,M,

2/ ι _ i / _ \1 / 2
\'Ll n 1 ^l n V * l n ?

n = l , 2 , . . . , 7 V . (8)

Here Γ,, is the tunnel probability of mode n through the
normal lead [14]. For later use we introduce a parameter
λ = 2Μδ/π and an M X M matrix X = (π/λ)ΨΨτ.
In view of Eq. (8), the matrix X is diagonal with 7V
nonzero diagonal elements xn, related to Γπ by

Γ,, = 4xn (l + *„)-2
(9)

The excitation energies En are the positive roots of the
equation Det[l — SA S N (E)] = 0, which can be rewritten
äs an eigenvalue equation [15],

HO ~λΧ'
-λχ -HODet(£ - 3-C) = 0, (10)

The effective Hamiltonian 3-C is the key theoretical
Innovation of this work. It should not be confused with
the Bogoliubov-de Gennes Hamiltonian 3-CEG, which
contains the superconducting order parameter in the off-
diagonal blocks [16]. The Hamiltonian 3~C^G determines
the entire excitation spectrum (both the discrete part
below Δ and the continuous part above Δ), while the
effective Hamiltonian 3~C determines only the low-lying
excitations En <K Δ. As we will see, the spectrum of
3~C can be obtained from a mapping onto a generalization
of the well-known nonlinear σ model. The Hermitian
matrix 3-C is antisymmetric under the combined Operation
of Charge conjugation (C) and time Inversion ("T),

The CT" antisymmetry ensures that the eigenvalues of
3-C lie symmetrically around E = 0. This discrete sym-
metry (for .^/BG) was the main point in the maximum-
entropy argument of Altland and Zirnbauer [1].

To compute the spectral statistics on the scale of
the level spacing, we need a nonperturbative technique.
We employ the supersymmetric method [5,10], suitably
modified [17] to incorporate the special symmetry (11) of
Jf. The density of states

= - lim - ImF(z)

is obtained from the generating function

(12)

F(z) = ie - Λ

Φ
OV

L = V o

(13a)

·>

(13b)

(13c)
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Here φ is a 4M-component supervector containing 2M
commuting and 2M anticommuting variables. Half of
each 2M variables correspond to electron states and
half to hole states. The charge-conjugation operator C
interchanges electron and hole variables. The matrices
3~C 12 and 12M ^3 are tensor products between a 2M X
2M and a 2 X 2 matrix (ip is the p-dimensional unit
matrix and στ, is a Pauli matrix). The appearance
of — Jf in the C 3"-conjugated block of 3-C reflects
the C T^antisymmetry (11) of 3-[. The measure αφ
is normalized such that F(Ö) = 1. The brackets {· · ·)
indicate an average over HO with distribution (7).

To evaluate F(z) we perform a series of Steps which are
by now Standard in the field [5,10,17]. We first average
HO over the GUE, which can be done exactly since it in-
volves only Gaussian Integrals. A term which is quartic in
φ appears, and we decouple it by a Hubbard-Stratonovich
transformation. This transformation introduces an addi-
tional integral over an 8 X 8 supermatrix Q, which we
evaluate by a saddle-point approximation that becomes
exact in the limit M —* °°. We solve the saddle-point
equation in the limit E —> 0 at fixed N and E/δ. As
in Ref. [17], a manifold of saddle points (determined by
Q2 = 1) appears in this limit, while for E » δ only a
single saddle point remains.

The matrices Q on the saddle-point manifold have the
electron-hole block structure

ß =
οι Ο
Ο 02

C =

02 = -crerc,
0 cr3

12 0
(14)

The 4 X 4 supermatrix Q\ belongs to the coset space of
the nonlinear σ model in the unitary symmetry class, and
— Q^ is the C'T conjugate of Q\. The matrix C is the
charge-conjugation operator for the σ model. The density
of states is obtained äs an integral over the saddle-point
manifold,

p (E) = Im dQ, Str [LT(ßi + 02)1

X exp[-£,(öi)- £2(ßi)] L

ITT

*,2β,β2)],

where Str denotes the supertrace and

L =
0

T — o -i2·

(15a)

(15b)

(15c)

(16)

The action £2 can be simplified by expanding it in
powersofßi — 02- This is justified either if F„ <SC l for
all n or if yv » l. (We therefore exclude the case that ^V

and F„ are both close to 1.) The first nonvanishing term
in this expansion is

8·*7

(1 + ή}2

Ν

ν
£ί (

-β2)
2],

2Γ2

2 - Γ,)2 '

(17)

(18)

The parameter gA is the Andreev conductance [18,19] of
the tunnel barrier at the NS Interface, which can be much
smaller than the normal-state conductance g — Σ^=ι Γ/.
(Both conductances are in units of 2e2/h.) For identical
tunnel probabilities Γ; = Γ <$C l one has g = N T while

Finally, we evaluate the integral (15) using the Standard
decomposition of <2i m terms of angular and radial
variables [5,10,17]. The result is

1_ _ 5ΐη(·π·£/δ)

δ ττΕ /'./o
ds e s cos

Equation (19) describes the crossover from p (E) = 1/8
for g A <ί l to Altland and Zirnbauer's result (3) for
g A » 1. In Fig. 2 we have plotted the opening of the
gap äs the coupling to the superconductor is increased.
The C 'ΐ symmetry becomes effective at an energy E for
g A ä E/δ. For small energies E <C δ min(^fgX, 1) the
density of states vanishes quadratically, regardless of how
weak the coupling is.

l -,

0.5
Ό

FIG. 2. Density of states for three different values of gA =
0.4,4,40. The solid curves are the analytical result (19), and
the data points are from a numerical solution of Eq. (10) [with
N = 20, M = 100, and a mode-independent tunnel probability
Τ} = Γ determined by Eq. (18); some l O4 random matrices HO
in the GUE were generated to compute p (E)]. In the inset
the analytical result is shown on an expanded scale for the
same values of §A äs in the main plot. The dashed line is
Eq. (3), corresponding to the limit gA —* °°. The dotted line
corresponds to the limit g A —> 0 of a folded GUE.
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As a check on oui calculations, we have also computed

p (E) numencally from the eigenvalue equation (10), by

geneidtmg a large number of mndom matnces HO m the

GUE The numencal tesults (data pomts m Fig 2) are m

good agieement with Eq (19)

The parameter gA which governs the openmg of the

excitation gap, does so by enforcing a C'T antisymmetiy

on the nonlmear σ model To see this, consider the

term (17) m the action, which is proportional to g A For

gA » l this term constiams Qi to be close to Q\, and in

the hmit gA —> °° one obtams the C T" antisymmetry

02 = -C7' Q[C = ρ,
For g A <£ l, on the contrary, Qi may be quite different

from öi, and the C'T antisymmetry is effectively broken
We generahzed these considerations to level-density

correlation functions For this, one has to consider a more
general source term [replacing the term z L in Eq (13)],
and higher-dimensional supervectors (contaming both ad-
vanced and retarded components) After carrymg out the
same Steps outhned above for the density of states, we ar-
nve at a nonlmear σ model with a broken C T antisym-

metry This symmetry is restored for gA —> °°, when the
σ model becomes equivalent to that associated with the

Laguerre unitary ensemble of Ref [1] This establishes

the validity of the distnbution (2) in the limit of a strong

couplmg to the superconductor

In summary, we have presented a microscopic the-

ory for the random-matrix ensemble which Altland and

Zirnbauer obtamed from a maximum-entropy hypothesis

The C T' antisymmetry of the Hamiltoman of nonmter-

actmg quasiparticles induces an excitation gap even if

the conventional proximity effect is destroyed by a mag-

netic field The Andreev conductance g A — 5 ΝΓ2 of the

contact between the normal metal and the superconduc-

tor governs the size of the gap, which becomes of the

order of the mean level spacmg δ for g A » l An inter-

estmg problem for future research [20] is the sensitivity
of the gap to Coulomb mteractions between the quasipar-

ticles, which break the charge-conjugation invariance of

the Hamiltoman
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