
. Ji l H l l .IL.H«

PHYSICAL REVIEW B VOLUME 54, NUMBER 18 l NOVEMBER 1996-H

Phase-dependent magnetoconductance fluctuations in a chaotic Josephson junction
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Motivated by recent experiments by Den Hartog et al, we present a random-matrix theory for the magne-
toconductance fluctuations of a chaotic quantum dot that i s coupled by point contacts to two superconductors
and one or two normal metals. There are aperiodic conductance fluctuations äs a function of the magnetic field
through the quantum dot and 2 π-periodic fluctuations äs a function of the phase difference φ of the super-

conductors. If the coupling to the superconductors is weak compared to the coupling to the normal metals, the
φ dependence of the conductance is harmonic, äs observed in the experiment. In the opposite regime, the
conductance becomes a random 27r-periodic function of φ, in agreement with the theory of Altshuler and
Spivak. The theoretical method employs an extension of the circular ensemble which can describe the
magnetic-field dependence of the scattering matrix. [80163-1829(96)51442-6]

The conductance of a mesoscopic metal shows small fluc-
tuations of universal size e2lh äs a function of magnetic
field.1 These universal conductance fluctuations are sample
specific, which is why a plot of conductance G versus mag-
netic field B is called a "magnetofingerprint." The magne-
toconductance is sample specific because it depends sensi-
tively on scattering phase shifts, and hence on the precise
configuration of scatterers. Any agency which modifies
phase shifts will modify the magnetoconductance. Altshuler
and Spivak first proposed to use a Josephson junction for
this purpose. If the metal is connected to two superconduct-
ors with a phase difference φ of the order parameter, the
conductance Ο(Β,φ) contains two types of sample-specific
fluctuations: aperiodic fluctuations äs a function of B and
27r-periodic fluctuations äs a function of φ. The magnetic
field should be sufficiently large to break time-reversal sym-
metry, otherwise the sample-specific fluctuations will be ob-
scured by a much stronger B and φ dependence of the
ensemble-averaged conductance.3"5

In a recent paper, den Hartog et al.6 reported the experi-
mental observation of phase-dependent magnetoconductance
fluctuations in a Γ-shaped two-dimensional electron gas. The
horizontal arm of the T is connected to two superconductors,
the vertical arm to a normal metal reservoir. The observed
magnitude of the fluctuations was much smaller than e2/h,
presumably because the motion in the T junction was nearly
ballistic. Larger fluctuations are expected if the arms of the
T are closed, leaving only a small opening (a point contact)
for electrons to enter or leave the junction. Motion in the
junction can be ballistic or diffusive, äs long äs it is chaotic
the statistics of the conductance fluctuations will only de-
pend on the number of modes in the point contacts and not
on the microscopic details of the junction.

In this paper we present a theory for phase-dependent
magnetoconductance fluctuations in a chaotic Josephson
junction. We distinguish two regimes, depending on the rela-
tive magnitude of the number of modes M and N in the point
contacts to the superconductors and normal metals, respec-
tively. For M^>N the φ dependence of the conductance is
strongly anharmonic. This is the regime studied by Altshuler
and Spivak.2 For M&N the oscillations are nearly sinu-

soidal, äs observed by den Hartog et al.6 The difference be-
tween the two regimes can be understood qualitatively in
terms of interfering Feynman paths. In the regime M&N
only paths with a single Andreev reflection contribute to the
conductance. Fach such path depends on φ with a phase
factor ε±ιφ12. Interference of these paths yields a sinusoidal
φ dependence of the conductance. In the opposite regime
M^>N, quasiparticles undergo many Andreev reflections be-
fore leaving the junction. Hence higher harmonics appear,
and the conductance becomes a random 2-7r-periodic func-
tion of φ.

The System under consideration is shown schematically in
Fig. 1. It consists of a chaotic cavity in a time-reversal-
symmetry breaking magnetic field B, which is coupled to
two superconductors and to one or two normal metals by
ballistic point contacts. The superconductors (S ι and S2)
have the same voltage (defined äs zero) and a phase differ-
ence φ. The conductance of this Josephson junction is mea-
sured in a three- or four-terminal configuration. In the three-
terminal configuration (Fig. la), a current / flows from a
normal metal Nl into the superconductors. The conductance
G = 11V ι is the ratio of 7 and the voltage difference V j be-
tween N ι and Slt S2. This corresponds to the experiment of
den Hartog et al.6 In the four-terminal configuration (Fig.
Ib), a current / flows from a normal metal N ι into another
metal N2. The conductance G = / / ( V j - V 2 ) now contains
the voltage difference between N ι and N2. This is the con-
figuration studied by Altshuler and Spivak.2

Following Ref. 6 we split the conductance Ο(Β,φ)
= Go(B) + Gφ(Β, φ) into a (/»-independent background

FIG. 1. Josephson junction in a three-terminal (a) and four-
terminal (b) configuration.
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^Ο(Β,φ), (D stub

plus 2 Tr-periodic fluctuations G ψ. In the absence of time-
reversal symmetry, the ensemble average (Ο(Β,φ)} = (Ο) is
independent of B and φ. Hence (GQ(B)) = (G) and
(Οφ(Β,φ)) = 0. The correlator of G is

€(δΒ,δφ) = (0(Β,φ)0(Β+δΒ,φ+δφ))-(0)2. (2)

Fluctuations of the background conductance are described by
the correlator of G0,

(3)(δβ,δφ).

(In the second equality we used that (G^G0} = 0.) The dif-
ference €ψ=€—€0 is the correlator of G ψ,

€φ(δΒ,δφ) = (Οφ(Β,φ)Οφ(Β+δΒ,φ+δφ)). (4)

We compute these correlators for the three- and four-
terminal configurations, beginning with the former.

In the three-terminal configuration, the cavity is con-
nected to three point contacts (Fig. la). The contact to the
normal metal has N propagating modes at the Fermi energy
and the contacts to the superconductors have M/2 modes
each. The (N+M) X (N+M) scattering matrix S of the cav-
ity is decomposed into MX M (NXN) reflection matrices
r ( r 1 ) and NX M (MXN) transmission matrices t ( t ' ) ,

S =
t'

(5)

The conductance at zero temperature is determined by the
matrix she of scattering amplitudes from electron to hole,7"9

= 2\ishes\e,

she=-it*(l re VT
(6a)

(6b)

The diagonal matrix Φ has diagonal elements Φηη=φ/2 if
l =s«s=M/2 and - φ/2 if l +MI2^n^M. We measure G in
units of 2e2/h.

For chaotic scattering without time-reversal symmetry,
the matrix S is uniformly distributed in the unitary group.10

This is the circular unitary ensemble (CUE) of random-
matrix theory.11 The CUE does not specify how S at differ-
ent values of B is correlated. The technical innovation used
in this work is an extension of the CUE, which includes the
parametric dependence of the scattering matrix on the mag-
netic field. The method (described in detail elsewhere12) con-
sists in replacing the magnetic field by a time-reversal-
symmetry breaking stub (see Fig. 2). This idea is similar in
spirit to Büttiker's method of modeling inelastic scattering
by a phase-breaking lead.13 The stub contains Nstüb modes.
The end of the stub is closed, so that it conserves the number
of particles without breaking phase coherence. (Büttiker's
lead, in contrast, is attached to a reservoir, which conserves
the number of particles by matching currents, not ampli-
tudes, and therefore breaks phase coherence.) We choose our

FIG. 2. Schematic picture how the magnetic field is included in
the scattering-matrix ensemble. A chaotic cavity with a spatially
homogeneous magnetic field (left diagram) is statistically equiva-
lent to a chaotic cavity in zero magnetic field (right diagram), which
is coupled to a closed lead (a stub) having a nonsymmetric reflec-
tion matrix.

scattering basis such that the NstubXNslub reflection matrix
rstub(ß) of the stub equals the unit matrix at B — O. For non-
zero magnetic fields we take

(7)

where the matrix A is real and antisymmetric:
Anm=A*m=-Amn. Particle number is conserved by the
stub because rstub is unitary, but time-reversal symmetry is
broken because rstub is not Symmetrie if B Φ 0. In order to
model a spatially homogeneous magnetic field, it is essential
that Nstub$>N+M. The value of Nstub and the precise choice
of A are irrelevant, all results depending only on the single
parameter a.

The magnetic-field dependent scattering matrix S (B) in
this model takes the form

S(B)=Un+Ul2[l-rstab(B)U22T
lrstnb(B)U2l. (8)

The matrices U'^ are the four blocks of a matrix U represent-
ing the scattering matrix of the cavity at B = 0, with the stub
replaced by a regulär lead. The distribution of U is the cir-
cular orthogonal ensemble (COE), which is the ensemble of
uniformly distributed, unitary and Symmetrie matrices.11 The
distribution of S(B) resulting from Eqs. (7) and (8) crosses
over from the COE for B = 0 to the CUE for £-*«>. One can
show12 that it is equivalent to the distribution of scattering
matrices following from the Pandey-Mehta Hamiltonian14

H=H0 + iBHl [where H0 (H^ is a real Symmetrie (anti-
symmetric) Gaussian distributed matrix].

It remains to relate the parameter α to microscopic prop-
erties of the cavity. We do this by Computing the correlator
^mn(SB) = (Smn(B)S*„(B+SB)) from Eq. (8). Using the
diagrammatic method of Ref. 15 to perform the average over
the COE, we find (for N+M9> 1)

Smn

 = (Af+M)~ 1[l +(δΒ/Β0)
2]~ι, ηφτη, (9)

with Bc=a~l^N+M. This correlator of scattering matrix
elements also has been computed by other methods.16"19

Comparing results we can identify

with c a numerical coefficient of order unity depending on
the shape of the cavity (linear dimension L, mean free path
/, Fermi velocity VF, and level spacing δ). For example, for
a disordered disk or sphere (radius Li>/) the coefficient
c— 7Γ/8 for the disk and ττ/15 for the sphere.
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We now proceed with the calculation of the correlator of
the conductance. We consider broken time-reversal symme-
try (B9>BC) and assume that N and M are both >1. Using
the method of Ref. 15 for the average over U, we obtain the
average conductance (G) = 2NM/(N+2M) and the correla-
tor

€(δΒ,δφ)=16ΚΝ2Μ2(Ν+Μ)2(Ν+2Μ) ~4

X-
[(N+M)2-M2Kcos2(ö(f>/2)]2

(H)

where we have abbreviated K=[l + ( S B / B C ) 2 ] ~ 2 . Equation
(11) simplifies considerably in the two limiting regimes

and M>N. For M<N we find

(12a)

(12b)€φ(δΒ,δφ) =

whereas for M>N we have (for \δφ\<π)

Ml δΒ -3/2

€φ(δΒ,δφ)=- 1 +
Ml δΒ

N\BC

M -2

(13a)

(13b)

The two regimes differ markedly in several respects:
(1) The 2 7r-periodic conductance fluctuations are har-

monic if M<N and highly anharmonic if Μί>Ν. Α small
increment δφ— ^ΝΙΜ<2ττ of the phase difference between
the superconducting contacts is sufficient to decorrelate the
conductance if M^-N.

(2) The variance of the conductance varG
= C0(0) + C0(0,0) has the universal magnitude 1/2 if
M>N, while it is reduced by a factor (8M/N)2 if M<N.

(3) The variance varG^= (1 (̂0,0) of the ζά-dependent
conductance is larger than the variance varG0=C0(0) of the
background conductance if M9>N (by a factor \lM/8N),
while it is smaller if M<N (by a factor 1/3).

(4) The correlators €φ(δΒ,0) and €ΰ(δΒ) both decay äs
a squared Lorentzian in δΒΙΒ0 if M^N. If M^>N, on the
contrary, €φ(δΒ,0) decays äs a squared Lorentzian, while
€0(δΒ) decays äs a Lorentzian to the power 3/2.

The difference between the two limiting regimes is illus-
trated in Fig. 3. The "sample-specific" curves in the upper
panels were computed from Eq. (6) for a matrix S which was
randomly drawn from the CUE. The correlators in the lower
panels were computed from Eq. (11). The qualitative differ-
ence between M^N (Fig. 3a) and Mi>N (Fig. 3b) is clearly
visible.

We now turn to the four-terminal configuration (Fig. Ib).
The two point contacts to the superconductors have M/2
modes each, äs before; The two point contacts to the normal
metals have N/2 modes each. The conductance is given by
the four-terminal generalization of Eq. (6),7

0 0.5 l 1.5 0 0.5 l 1.5 2
δφ/Ζη δφ/2π

FIG. 3. Top panels: conductance minus the ensemble average
(in units of 2e2/h) äs a function of the phase difference between
the superconductors. Bottom panels: normalized correlator
ο(δφ) = €(0,δφ)/€(0,0), computed from Eq. (11). (a) is for
N= 120, M = 60; (b) is for N= 10, M= 160.

(14a)

(14b)

L11T"22 121

•r —te~ (14c)

Here (c i ) m n =l if m = n^N/2 and 0 otherwise, and
c2= l — Cj. The matrix sAe was defined in Eq. (6b). Perform-
ing the averages äs before, we find (G) = N/4 and

C( 8B, δφ) = ̂ N2K[(N + M)2 + M2Kcos2( δ φ/2)]

Χ[(Ν+Μ)2-Μ2Κ^&2(δφ/2)Γ2. (15)

In the regime M<N this simplifies to

(16a)

(16b)

while in the regime Mi>N we find again Eq. (13) (with an
extra factor of 1/16 on the r.h.s.).

The four-terminal configuration with M^N is similar to
the system studied by Altshuler and Spivak.2 One basic dif-
ference is that they consider the high-temperature regime
kBT9>fi/Tdvien (with Tdweii the mean dwell time of a quasipar-
ticle in the junction), while we assume T= 0 (which in prac-
tice means kBT<fi/Tawel{). Because of this difference in tem-
perature regimes, we cannot make a detailed comparison
with the results of Ref. 2.

The features of the regime Μ·&Ν in the three-terminal
configuration agree qualitatively with the experimental ob-
servations made by den Hartog et αϊ.6 In particular, they find
a nearly sinusoidal φ dependence of the conductance, with
€φ(Β,0) being smaller than C0(B), while having the same
B dependence. The magnitude of the fluctuations which they
observe is much smaller than what we find for a point-
contact coupling with M and N of comparable magnitude.
This brings us to the prediction that the insertion of a point
contact in the vertical arm of the T junction of Ref. 6 (which
is connected to a normal metal) would have the effect of (1)
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mcreasing the magnitude of the magnetoconductance fluc-
tuations so that it would become of order e2lh, (2) mtroduc-
mg higher harmomcs m the φ dependence of the conduc-
tance This should be a feasible expenment which would
probe an mteresting new regime

In conclusion, we have calcuiated the correlation function
of the conductance of a chaotic cavity coupled via pomt con-
tacts to two superconductors and one or two normal metals,
äs a function of the magnetic field through the cavity and the
phase difference between the superconductors If the super-
conductmg pomt contacts dommate the conductance, the
phase-dependent conductance fluctuations are harmonic,
whereas they become highly anharmomc if the normal pomt
contact hmits the conductance The harmonic regime has
been observed m Ref 6, and we have suggested a modifica-

tion of the expenment to probe the anhaimomc regime äs
well We introduced a novel technique to compute the mag-
netoconductance fluctuations, consistmg in the replacement
of the magnetic field by a time-reversal-symmetry breakmg
stub This extension of the circular ensemble is hkely to be
useful in other applications of random-matnx theory to me-
soscopic Systems
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