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For users of germplasm collections, the purpose of measuring characterization and
evaluation descriptors, and subsequently using statistical methodology to summarize the
data, is not only to interpret the relationships between the descriptors, but also to charac-
terize the differences and similarities between accessions in relation to their phenotypic
variability for each of the measured descriptors.

The set of descriptors for the accessions of most germplasm collections consists of
both numerical and categorical descriptors. This poses problems for a combined analysis
of all descriptors because few statistical techniques deal with mixtures of measurement
types. In this article, nonlinear principal component analysis was used to analyze the
descriptors of the accessions in the Australian groundnut collection. It was demonstrated
that the nonlinear variant of ordinary principal component analysis is an appropriate
analytical tool because subspecies and botanical varieties could be identified on the basis
of the analysis and characterized in terms of all descriptors. Moreover, outlying accessions
could be easily spotted and their characteristics established.

The statistical results and their interpretations provide users with a more efficient
way to identify accessions of potential relevance for their plant improvement programs
and encourage and improve the usefulness and utilization of germplasm collections,
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1. INTRODUCTION

Germplasm collections contain large numbers of accessions (samples of germplasm

material of a crop) on which several characteristics are measured. For users of germplasm
collections, the purpose of collecting these measurements, and subsequently using mul-
tivariate statistical techniques, is not only to acquire an insight into the relationships
between the descriptors, but also to characterize the differences and similarities between

accessions in relation to their phenotypic variability.
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This article focuses on obtaining information about the phenotypic variability in the
Australian groundnut (Arachis hypogaea L..) germplasm collection. Eight hundred and
thirty-five (835) groundnut accessions were sown during the 1990/1991 growing season,
and several descriptors varying in measurement type were recorded. For instance, stem
color was binary (green or purple), pod constriction was ordinal or ordered multicategory
(absent, slight, moderate, deep, and very deep), and weight per hundred seeds (or 100-
seed weight) was numerical. Full details, analyses, and references with respect to the
Australian groundnut germplasm collection can be found in Harch (1996; see also Harch
et al. 1995: Harch et al. 1996a).

Although Wynne and Coffelt (1982) and Stalker (1989) reported extensive pheno-
typic variability in the characteristics of Arachis hypogaea L., Gregory et al. (1951) and,
more recently, Krapovickas and Gregory (1994) have devised a taxonomy for distin-
guishing the subspecies and botanical varieties of Arachis hypogaea L. In the Australian
groundnut collection, two subspecies and three botanical varieties of Arachis hypogaea
L. can be identified:

l. subspecies hypogaea

var. hypogaea (Virginia type: Bunch and Runner)
2. subspecies fastigiata

2.1 var. fastigiata (Valencia type)

2.2 var. vulgaris (Spanish type)

Summarizing the phenotypic variability in germplasm data, such as that contained
in the Australian groundnut collection, can be undertaken using multivariate statistical
techniques. The results from these techniques allow users (e.g., plant breeders) to interpret
patterns or the lack of patterns found in the data. These interpretations often involve using
either the descriptors that are distinguishing most amongst the accessions or taxonomic
information, or both, Together, the summary information and interpretations provide
users with a more time-efficient way to identify accessions of potential relevance for
their particular plant improvement programs and ultimately encourage and improve the
usefulness and utilization of germplasm collections.

As mentioned previously, germplasm collection descriptors have different types or
levels of measurement; that is, some of the descriptors are numerical and others are
categorical. Although this may pose serious problems for standard multivariate statisti-
cal procedures, a relatively new technique, nonlinear principal component analysis, is
especially geared toward handling datasets in which descriptors have different types of
measurement. The statistical theory, methods, algorithms, and programs, as well as the
history of the subject, have been fully described in a book by Gifi (1990, chap. 4).

In this article, the Australian groundnut data are explored using nonlinear principal
component analysis. The aim is to provide an overall summary of the collection using
all descriptors irrespective of their measurement type. Such a unified analysis should
give plant breeders a comprehensive overview of the available phenotypic diversity for
groundnut accessions (Bretting et al. 1990; Perry and McIntosh 1991; Singh et al. 1991).
Given the relative unfamiliarity of the technique, a conceptual introduction into non-
linear principal component analysis is presented to provide sufficient background for
understanding the analysis of the groundnut germplasm data.
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2. EXPERIMENTAL DETAILS

The Australian groundnut germplasm collection comprises 835 accessions, of which
693 are cultivars and advanced breeding lines and 142 are land races. These accessions
were grown in 1990/91 at the J. Bjelke-Petersen Research Station, Kingaroy, Queensland
(26° 35’ S and 150°0" E), in a single replicate, completely random design with grid plot
checks. Grid plot check data were not provided for analysis. Details of the plots and
growing conditions are outlined in Harch et al. (1995).

Accessions were evaluated for 16 descriptors, including plant characteristics, seed
characteristics, and fatty acid composition, following the IBPGR and ICRISAT (1992)
groundnut descriptor guidelines. This information is made available to plant breeders and
other researchers for use in their breeding programs through the Australian Tropical Field
Crops Genetic Resource Center. Details of the Australian groundnut germplasm collec-
tion, its objectives, format and use of databases, and the status, location, regeneration,
and evaluation of accessions are outlined in Lawrence (1989).

Of the 835 accessions, 831 have been used in this study. The 16 descriptors have
been partitioned into three data types: five binary, five ordinal (or ordered multicategory),
and six numerical descriptors (Table 1). Details of the descriptor measurements taken are
provided in IBPGR and ICRISAT (1992) and the methods used to obtain the fatty acid
samples are given in Harch et al. (1995).

3. NONLINEAR PRINCIPAL COMPONENT ANALYSIS
3.1 GENERAL DESCRIPTION

Nonlinear principal component analysis is an extension of ordinary principal compo-
nent analysis to handle descriptors of any measurement type. Thus, the descriptors need
not be numerical, but may be categorical (binary, unordered multicategory, or ordered
multicategory). The additional generality introduces some complexities in interpretation,
but the major principles behind ordinary principal component analysis are maintained. In
particular, the first principal component is a new descriptor resulting from a linear com-
bination of the original descriptors, which on its own explains as much of the variation
in the descriptors as possible. One way to express this is that the new descriptor should
have an average squared correlation with the original descriptors as high as possible.
How to achieve this with only numerical descriptors is part of the standard literature on
multivariate analysis (e.g., see Joliffe 1986). When some of the descriptors are categori-
cal, the technical complexity to achieve the same goal is considerably increased, but not
the basic idea of maximizing the average squared correlation between the descriptors and
the component.

The new aspect in nonlinear principal component analysis is that the correlations
of the categorical descriptors with the component have to be determined. In nonlinear
principal component analysis, this is achieved by assigning numerical values to the cat-
egories in a specific way. This assignment of numerical values to the categories of a
categorical descriptor is called quantification. For instance, stem color green might be
assigned a value of, say, —1.09 and stem color purple might be assigned a value .32.
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Table 1. Descriptors Observed From the Australian Groundnut Germplasm Collection (Containing

831 Accessions)

Abbreviation Description Category definitions

Binary descriptors:

Branch branching pattern 1=alternate; 2=sequential

Stem stemn pigmentation 1=green; 2=purple

Peg peg pigmentation 1=absent; 2=present

Petal petal colour 1=yellow; 2=orange

Sdcol seed colour 1=non-variegated; 2=variegated

Ordinal descriptors:

Habit growth habit 1=procumbent & decumbenti;
2=decumbent2; 3=decumbent3 & erect

Beak pod beak 1=absent; 2=slight; 3=moderate;
4=prominent; S5=very prominent

Constr pod constriction 1=absent; 2=slight; 3=moderate;
4=deep & very deep

Retic pod reticulation 1=absent; 2=slight; 3=moderate;
4=prominent; 5=very prominent

Seeds most frequent number of seeds per pod 1=1 seed; 2=2 seeds; 3=3 or 4 seeds

Numeric descriptors:

Shell shelling percentage (%) 1<58,; 2=58,59; 3=60,61; 4=62,63,

5=64,65; 6; 66,67, 7=68,69; 8=70,71;
9=72,73; 10>73

Height! estimated plant height 1<25; 2=25; 3=30; 4=35; 5=40;
(em; nearest multiple of 5) 6=45; 7=50, 8>50
Width estimated plant width 1<65; 2=65,70; 3=75,80; 4=85,90,
(em; nearest multiple of 5) 5=95,100; 6=105,110;
7=115,120; 8>120
Waeight 100-seed weight 1<30; 2=30 to 40; 3=40 to 50;
4=50 to 60; 5=60 to 70; 6=70 to BO;
7=80 to 90; 8=90 to 100; 9>100
Qil oil content (%) 1<47; 2=47 to 48; 3=48 to 49;
4=49 to 50; 5=50 to 51, 6=51 to 52;
7=52 to 53; 8=53 to 54; 9>54
Ol/Lin logarithm of oleic-linoleic ratio 1< -3;2=-310-.2; 3=—210 —-.1;

4=-110.0; 5=.010 .1; 6=.1 10 .2;
7=21t0 .3; 8=3 10 .4;
9=410 .5; 10>.5

! Descriptor was treated as an unordered multicategory descriptor for the analyses reported in this article.

The assignment will be such that the newly quantified descriptor stem color will have as
high a correlation with the first component as possible, given the other descriptors. The
assignment of values is thus related to both the other descriptors in the dataset (we have to
maximize the average squared correlations) and to the component. When more than one
component is desired, two possibilities with respect to quantification are available—the
same quantification for the categories of a descriptor for all components (called single
quantification) or a separate quantification for each component (called multiple quan-
tification). The rationale behind the latter option is that one type of contrast between
the categories might be related to the descriptors determining the first component, and
another type of contrast between the categories might be related to the descriptors deter-
mining another component. With two categories, only one contrast (single quantification)
is possible.
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3.2 INTERPRETATION

One of the major interpretative tools of standard principal components analysis is
the matrix of correlations between the descriptors and the components. In psychology
these correlations are mostly referred to as loadings, but the use of the term is not al-
ways unambiguous. In nonlinear principal component analysis, similar correlations may
be computed using the quantified (or optimally scaled) descriptors (also referred to as
component-quantified descriptor correlations). For descriptors with multiple quantified
categories, such as plant height (see Section 4), the correlations refer to a different
quantification for each component. Squared multiple correlations for the regression of
the descriptors on the components (often called communalities) indicate how well the
components succeed in accounting for the variability of the quantified descriptors. The
proportional variance accounted for by the component is the average of the squared
multiple correlations with the component. Small numbers of categories often limit the
variability of a descriptor and thus it has an averse effect on percentages variance ac-
counted for by a component. However, relatively low percentages of variance accounted
for should not necessarily be taken as an indication of a lack of structure.

One caveat must be expressed with respect to the interpretation in nonlinear principal
component analysis when there are missing data. In that case, the correlations are no
longer exact correlations but only approximations to them. When there are a limited
number of missing data, as is the case here (.7%), the deviations are not serious (see Gifi
1980, pp. 136-140).

3.3 TecHNICAL BACKGROUND: NATURE OF THE DATA

In order to gain a deeper understanding of the way nonlinear principal component
analysis works, it is necessary to briefly discuss the philosophy about data and mea-
surement types underlying nonlinear multivariate analysis as contained in Gifi (1990).
This philosophy can be summarized as “All data are categorical (measured with finite
precision) and the measurement type is determined by the transformations that may be
applied to the categories.”

With ordinal data, we may assign the values 1, 2, 3, and so on to the categories
provided category 3 has more of the property measured by the descriptor than category
2 has, and 2 has in turn more of the property than category | has. However, only the
order of the values 1, 2, and 3 is important, not the numerical values themselves. The
values 5, 9, and 20 would have done as well. In fact, any order-preserving or monotonic
transformation of the values 1, 2, and 3 may be used without changing the meaning of the
categories. In nonlinear principal component analysis, we are using this transformational
freedom to find the monotonic transformation that leads to maximum correlation between
the descriptor and the component, given the other descriptors.

For binary data, there are no restrictions on the values assigned to the two categories.
Thus, any transformation that will produce a high descriptor-component correlation may
be used. However, only a single quantification for each category is possible, because
two categories can only have one contrast. For unordered multicategory descriptors, the
transformations are unrestricted, but a choice between single and multiple quantifications




CoMBINED ANALYSIS OF CATEGORICAL AND NUMERICAL DESCRIPTORS 299

exists. As mentioned previously, ordinal descriptors, or ordered multicategory descriptors,
are defined by monotonic transformations. In practice, only single quantifications are
considered even though multiple quantifications could theoretically be envisaged.

Finally, given that the measured values are in the correct scale, the only transfor-
mations allowed for numeric data are linear in the category values. Thus, equidistant
observed values have to remain equidistant after transformation. When all descriptors
are numeric, the results from nonlinear and ordinary principal component analysis will
be the same. Also, if the measured scale is not the “natural” one, log-transformations
and other power transformations may be used. In nonlinear principal component analy-
sis, a problem may arise with numeric descriptors in that most observed values are only
observed a limited number of times, mostly once. This might cause practical problems
during analyses when all distinct values are treated as separate categories. Practice has
shown that it is often advantageous to reduce numerical descriptors to a more limited
number of categories, say, 7 to 10, preferably covering equal intervals except for the end
points. Gifi (1990) indicated that for balanced analyses most categories should preferably
not have too low a frequency, say, smaller than 5.

3.4 TecHNICAL BACKGROUND: ALGORITHM

A compact, simplified description of one-dimensional nonlinear principal component
analysis is that, simultaneously, (non)linear transformations of the descriptors and a linear
combination of the transformed descriptors are sought such that the average squared cor-
relation of the transformed descriptors and the linear combination is as large as possible.
Thus, the technique consists of a combination of two distinct processes. The first consists
of transforming the descriptors, and these transformations should be optimal with respect
to the aim of achieving as high an average squared correlation between the quantified
descriptors and a component as possible. Therefore, this process is called optimal scal-
ing. The other process is the formation of linear combinations of transformed descriptors.
The latter process is identical to ordinary principal component analysis, and it aims to
achieve as high a variance as possible for the component, given the quantified descriptors.
However, neither the optimal transformations nor the best linear combinations are known
beforehand, so they have to be determined simultaneously. In practice, the way to do
this is to start with some particular transformation for each of the descriptors, perform a
principal component analysis on the transformed descriptors, readjust the transformations
to suit the derived components, search again for the linear combinations, and so forth
until the procedure converges and both the optimal transformations and the best linear
combinations are found. This procedure is the basis of the program PRINCALS, which
is part of the Category package contained in SPSS (SPSS, Inc. 1990), and was used for
all analyses presented in this article.

4. DATA PREPARATION OF PEANUT ACCESSIONS

Before the analysis proper, all values of the numerical descriptors were grouped into
7-10 categories in such a way that, except for the end points, the new categories spanned
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Table 2. Correlations Between Optimally Quantified Variables and Components (Loadings) for All

821 Accessions
Component * Variance

Descriptor 1 2 accounted for
Branching pattern ~.T73 375 738
Log Oleic/Linoleic ratio 685 332 579
Shelling percentage 654 061 431
100-seed weight 807 -.293 454
Growth habit -518 428 450
Seeds per pod -.503 -.489 492
Pod constriction 480 .094 239
Plant height (1st quant.)? ~.455

Stem pigmentation —~.450 —.142 223
Pod reticulation -.519 -.616 649
Plant height (2nd quant.)! ~.570 531
Plant width 271 —.541 367
Peg pigmentation 327 462 320
Petal colour ~.414 -.458 381
Seed colour -214 371 183
Oil content -.002 136 .018
Pod beak 252 -.088 071
Variance accounted for 235 148 .383

! Because Plant height was treated as an unordered multicategory de-
scriptor, it received separate independent quantifications for each dimen-
sion and thus the correlations between the two components and Plant
height pertain to these two independent quantifications.

* Values larger than .50 are set in bold.

equal intervals and no category had fewer than 5 accessions. For ordinal descriptors,
categories were combined with their neighboring categories if they contained fewer than
5 accessions. This was only necessary for end categories (see Table 1). Categories were
combined to prevent rare categories unduly influencing the analysis. Oleic-linoleic ratio
was first logtransformed with natural logarithms to make the descriptor symmetric with
respect to oleic and linoleic content.

For the final analysis reported here, plant height was treated as an unordered multicat-
egory descriptor because preliminary analyses revealed that the descriptor had a nonlinear
relationship with other numerical descriptors (see Fig. 1), and multiple quantifications
within nonlinear principal component analysis can be used to handle this. The effective-
ness of treating plant height as an unordered multicategory descriptor is highlighted in
the following section.

5. RESULTS FOR THE OVERALL ANALYSIS
5.1 DESCRIPTOR—COMPONENT CORRELATIONS

Table 2 contains the component-quantified descriptor correlations for all accessions,
as well as the squared multiple correlations for the regression of the descriptors on the
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Figure 1. Plot of the Optimal Scaled Values for 16 Descriptors Along the 1st and 2nd Principal Component
Vectors, Based on the Entire Australian Groundnut Germplasm Collection Containing 831 Accessions.

components (or communalities). The overall proportion variance accounted for by the
components, .38, is the average of the squared multiple correlations (variance accounted
for of the descriptors by the components) in the last column. As mentioned in the previous
section, the relatively low percentage of variance accounted for can be partly attributed
to the presence of descriptors with a limited number of categories and should not be
taken as an indication of a lack of structure, as will become evident in the sequel.

From Table 2, descriptors like branching pattern, the log oleic/linoleic ratio, shelling
percentage, 100-seed weight, growth habit, seeds per pod, pod reticulation, plant height,
and plant width are important in distinguishing between the accessions, while, for in-
stance, oil content and pod beak are not.

5.2 PLOTTING DESCRIPTORS AND ACCESSIONS

To get a proper view of the relationships among the descriptors and the accessions,
one needs to look at their joint representation, especially with some descriptors being
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Figure 2. Plot of Accession Scores Along the 1st and 2nd Principal Companent Vectors for the Entire Australian
Groundnut Germplasm Collection Containing 831 Accessions. Accession points are labeled with their Branching
partern as either “F and [ (sequential), “"H and h" (alternate), or “M" (unavailable information). Lower case
letters refer to accessions removed in subsequent analyses. Dashed lines indicate where Figure | should be
superimposed.

discrete rather than continuous. This can be done by constructing displays with the
optimal scale values for the categories of the descriptors (Fig. 1) and the accession
scores (Fig. 2). Ideally, they should be presented in a single plot, but the large number
of descriptor categories and the large number of accessions makes separate plots easier
to interpret. The two figures may be superimposed after equalizing the physical scales of
the plots. The dashed lines on Figure 2 indicate where Figure 1 should be superimposed.

Interpretation of the plots is based on the fact that nonlinear principal component
analysis attempts to place categories in the center of gravity of the accessions scoring
in this category. For numerical and ordinal descriptors the categories lie on a straight
line through the origin, and for the numerical descriptors we may employ the standard
biplot interpretation by projecting accessions on the descriptor vectors shown in Figure 1
(Gabriel 1971).
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5.3 INTERPRETATION OF THE DESCRIPTOR DISPLAY

Whereas Table 2 provided the summary measures for the relationships between
the descriptors, Figure 1 allows a more detailed inspection of the descriptors and their
categories, particularly with there being so many categorical descriptors.

Figure 1 clearly shows the high correlations between the quantified descriptors of
the log oleic/linoleic ratio, plant width, and 100-seed weight, as their arrows all point
in the same direction. At the same time, procumbent and slightly decumbent (hbl, hb2)
accessions with an alternate branching pattern (bl) generally produce wide plants with
large 100-seed weight and high oleic versus linoleic content in their seeds, while de-
cumbent and erect (hb3) accessions with a sequential branching pattern tend to produce
narrow plants with small 100-seed weight and high linoleic versus oleic content in their
seeds. Furthermore, the lengths of the arrows of the continuous and ordered descriptors
generally reflect the importance of the descriptors for distinction between the accessions.
As remarked previously, oil percentage with its small arrow is not important, while plant
width and 100-seed weight are. Similarly, the spread of the categories of an unordered
descriptor also reflects this importance; that is, the descriptor pod reticulation is important
for the distinction between accessions but pod beak is not, because all pod beak category
points are close to the origin of the plot.

In the lower left hand corner, there is a clustering of categories from several descrip-
tors. In particular, there seem to be a group of accessions that tend to have tall plants
in excess of .5 m (ht8), orange petals (pt2), prominent pod reticulation (r4), variegated
seed coloring (sc2), three to four seeds per pod (sc3), and green pegs (pgl).

5.4 INTERPRETATION OF THE ACCESSIONS DISPLAY

In Figure 2 the majority of the accessions (about 750 of them) roughly form an
ellipse with its major axis running from northwest to southeast, with increased saturation
indicating large numbers of overlapping accessions. There is also a group of 30-40
“stragglers” located in the southwestern direction of the plot. As mentioned previously,
Figure 1 can be superimposed on Figure 2 so that we can establish which accessions have
particular characteristics. When describing the patterns in Figure 1, we have implicitly
described the accessions as well, To evaluate which characteristics a particular (or group
of) accession(s) has, we may drop perpendiculars on the continuous descriptors and
evaluate the relevance of the descriptor for that accession, analogous to the way this
is done on biplots. To get an overview of the extent to which categorical descriptors
succeed in distinguishing between accessions, one may label each accession with its
category value for a particular descriptor. This enables insight into the extent of overlap
existing between the categories, and it gives the opportunity to identify outlying values if
they exist, It also allows searching for accessions with specific or unusual characteristics.
Multivariate information about the descriptors is already given in Figure 1, but labeling
individual accessions with single (categorical) descriptors illustrates the importance of
separate descriptors for discriminating amongst the accessions.

The groundnuts in the Australian collection can be distinguished according to two
main subspecies, Arachis hypogaea L. spp. hypogaea (Virginia: Bunch and Runner) and
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Arachis hypogae L. spp. fastigiata (Spanish and Valencia). In particular, they are distin-
guished on the basis of their branching patterns (i.e., alternate and sequential, respec-
tively). Table 2 shows that branching pattern is one of the most discriminating descriptors.
In other words, many differences between accessions are strongly related to subspecies.
To illustrate this distinction, each accession has been labeled according to its subspecies
in Figure 2, that is, by “H” or *h” (alternate branching - spp. hypogaea), “F" or “f" (se-
quential branching - spp. fastigiata), or “M", with M referring to accessions for which no
information about subspecies is available; lower case letters refer to accessions that will
be removed from subsequent analyses (see next section). The discriminatory power of the
subspecies designation is evident because the subspecies clearly occupy different parts
of the plot. Note that from the location of the accessions in the plot, one could make an
intelligent guess about the branching patterns (and thus subspecies) of accessions labeled
with an “M™.

Apart from their branching pattern, Virginias and the Spanish and Valencias differ in
many other aspects. To illustrate this, we need to look along the long axis of the ellipse
that can be drawn around the main body of accessions in Figure 2, which more or less
coincides with the line connecting the two categories of branching pattern. This axis is
highly correlated with 100-seed weight, plant width, and the log oleic¢/linoleic ratio. In
particular, the Virginias located in the southeastern corner of Figure | have predominantly
larger 100-seed weight, procumbent or slight decumbent growth habit (hbl in Fig. 1)
coupled with higher log oleic/linoleic ratios, large plant widths, and somewhat higher
shelling percentages. The Spanish and Valencias on the opposite northwestern side have
smaller 100-seed weight, decumbent or erect growth habits (hb3 in Fig. 1) coupled with
lower log oleic/linoleic ratios, smaller plant widths, and lower shelling percentages. Note
that the vector oil percentage is more or less independent of the distinction between the
two subspecies.

As mentioned previously, groundnuts in the Australian collection can also be dis-
tinguished by a botanical classification into the varieties Valencia (Arachis hypogaea
L. spp. fastigiata var. fastigiata), Spanish (Arachis hypogaea L. spp. fastigiata var. vul-
garis), and Virginia (Arachis hypogaea L. spp. hypogaea var. hypogaea), with Virginia
having a bunched habit type (Virginia Bunch) and a runner habit type (Virginia Runner).

The additional subdivision of subspecies spp. fastigiata into Spanish and Valencia
is generally based on more than one characteristic. The Valencias are primarily located
in the southwestern part of the plot (i.e., the “stragglers” in Fig. 2) as they generally
have prominent pod reticulation (r4 in Fig. 1), three seeds per pod (sd3 in Fig. 1), and
sequential branching patterns (b2 in Fig. 1).

6. RESULTS FOR THE BULK OF THE ACCESSIONS

Due to the deviating patterns of the small group of Valencias, a clear view on the sim-
ilarities and differences between the major groups of accessions is somewhat obscured.
To gain a clearer insight, the analysis was repeated without the outlying Valencias; in
particular, 34 accessions with prominent pod reticulation (rd4) were not included. The
results are shown in Figure 3 (descriptors) and Figure 4 (accessions) for the first two
component vectors, which account for 33% of the total variance,
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Table 3. Correlations Between Optimally Quantified Variables and Components (Loadings) for the
Main 797 Accessions

Component * Variance

Descriptor 1 2 accounted for
Branching pattern -.857 -.035 735
Log Oleic/Linoleic ratio 754 001 568
100-seed weight J01 343 609
Growth habit -.602 574 691
Shelling percentage 584 .063 345
Plant height (1st quant.)’ —.488

Plant height (2nd quant.)! 557 548
Pod beak .286 541 375
Plant width 415 524 447
Pod reticulation —.048 445 .200
Stem pigmentation —-398 -435 347
Pod constriction .388 .359 .280
Seeds per pod -193 -.251 101
Oil content -.066 -.159 .029
Petal colour -.058 -.147 025
Peg pigmentation ~.034 118 015
Seed colour -,016 -.004 .000
Variance Accounted For 209 J23 332

! Because Plant height was treated as an unordered multicategory de-
scriptor, it received separate independent quantifications for each dimen-
slon and thus the correlations between the two components and Plant
height pertain to these two independent quantifications.

* Values larger than .50 are set in bold.

6.1 DESCRIPTOR-COMPONENT CORRELATIONS

In Table 3, we have presented the component—descriptor correlations for the analysis
based on 797 accessions. The first component more or less coincides with the alternate-
sequential distinction, as is evident from the very high correlation (.856), and it also
coincides with the long axis of the main body of accessions in Figure 2 (see Fig. 4).
From Table 3, it is clear that the descriptors log oleic/linoleic ratio and shelling percent-
age are almost exclusively related to subspecies distinction, but that 100-seed weight,
growth habit, and plant width also differentiate between accessions independent from the
subspecies distinction. Several descriptors fail to contribute to differences between the
majority of accessions, such as seeds per pod, oil content. pod beak, petal color, peg
pigmentation, and seed color.

6.2 INTERPRETATION OF THE DESCRIPTOR AND ACCESSION DISPLAYS

Figure 4 shows essentially the accessions in the ellipse of Figure 2, even though
the ellipse is no longer recognizable as such. The basic patterns for the descriptors
in Figure 3 are unchanged, except that plant height is much more linear, and some
of the categorical and ordinal descriptors can be more easily evaluated than before. The
accession plot shows a better separation into the two groups with sequential and alternate
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Figure 3. Plot of the Optimal Scaled Values for 16 Descriptors Along the 1st and 2nd Principal Component
Vectors, Based on a Restricted Subset From the Australian Groundnut Germplasm Collection Containing 797
Accessions.

branching patterns (labeled “F” and “H" in Fig. 4a), the Valencias and Spanish and the
Virginias, respectively. Moreover, there is a suggestion of further grouping within the
main subspecies.

To highlight these groupings (more specifically, the distinctions among the botanical
varieties), Figure 4a is redrawn as Figs. 4b, 4c and 4d, but with the accessions marked with
the categories of the more discriminating descriptors. Figure 4b uses stem pigmentation
to show the distinction in the subspecies spp. fastigiata, which can be mainly attributed
to differences in Valencias (“P" - purple; southwest region of Fig. 4b) and Spanish (“G"
- green; northwest) botanical varieties, while Figs. 4c and 4d use growth habit and plant
height to show distinctions in the subspecies spp. hypogaea, which can be attributed to
differences in the types Virginia Runner [“P" - procumbent, decumbent-1 (Fig. 4¢) and
“L" - < 30 mm (Fig. 4d); southeast region of plot] and Virginia Bunch ["“2" - decumbent-
2, “3" - decumbent-3, “E" - erect (Fig. 4c) and “M" - 35 to 40 mm, “H" - > 40 mm
(Fig. 4d); northeast).

Again, the categorical descriptors have been singled out to label the accessions in
the plots based on the multivariate analysis, because it is easier to assess the coherence of
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groups of accessions with particular characteristics. We could have labeled the same plot
with two or more discrete descriptors, but this would have complicated the interpretation
of the plot.

7. DISCUSSION AND CONCLUSION

In this article, nonlinear principal component analysis was used to analyze both cat-
egorical and numerical descriptors of the Australian groundnut germplasm collection.
The resulting plots provided a global picture of the diversity available for use in plant
improvement programs and showed the major relationships between all descriptors, to-
gether with the extent to which they contributed to distinguishing the accessions. For the
analysis that included all of the accessions, the two subspecies of Arachis hypogaea L.
spp. hypogaea and Arachis hypogaea L. spp. fastigiata could be clearly distinguished.
The results from the analysis with outliers removed enabled a more detailed characteriza-
tion of the accessions, providing not only an identification of the two subspecies, but also
allowing a clearer distinction between the three botanical varieties (Spanish, Valencia,
Virginia) as well as the separation of the Virginia types by their growth habit (Virginia
Runner and Virginia Bunch). The plots also clearly showed accessions that had different
characteristics from the main body of accessions.

The use of both the accession and descriptor plots is seen as valuable because it
allows data interpretation when there is a need for plant breeders to look for different
sources of variability to accommodate various breeding needs. For example, the domestic
market may demand larger sized groundnut seeds, whereas export markets may require
smaller sized groundnut seeds (known as cultural requirements; see Henning et al. 1982).
Consequently, the accessions with high 100-seed weight, which are suitable for the
domestic market, can be easily identified on accession plots (mainly Virginia types)
in relation to the direction of the 100-seed weight vector in the descriptor plot and
similarly for the accessions with low 100-seed weight (mainly Spanish and Valencias
types). Thus, perceiving the various breeding requirements as descriptor profiles enables
easy identification of relevant accessions from the accession and descriptor plots.

The graphics can also assist by providing information when data are incomplete (i.e.,
“M" on Fig. 2). The position of these accessions in the plots can indicate the most likely
subspecies, botanical variety, and so on, to which they may belong.

Compared to biplots constructed on the basis of numerical descriptors, the present
descriptor plots require more interpretational efforts, primarily because there is an em-
phasis on categories along with the descriptors. The introduction of transformations for
the values of descriptors requires an intimate knowledge of the data to decide on the
proper measurement level of the descriptors and to judge the acceptability of the trans-
formations. The nonlinear behavior of plant height, which only came to the foreground
during the analysis, emphasizes this point.

The information contained in these plots has the potential to simplify the identifica-
tion of valuable accessions, reduce the amount of time that it has previously taken for
evaluating relevant accession material for use in plant improvement programs, and ulti-
mately improve the usefulness and utilization of germplasm collections by plant breeders
(Knauft and Gorbet 1989; Smartt 1994, chap. 17).
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The advantage of using nonlinear principal component analysis is that descriptors
of different measurement levels can be combined into a single analysis. For efficiency
purposes this meant that the numerical descriptors had to be categorized into 7 to 10
categories, but the loss in precision this entails is relatively minor.

Previously, mixed measurement level data were often converted to separate matrices
of similarities between accessions for each descriptor using a similarity measure appro-
priate for the measurement level in question (see Gower 1971; Romesburg 1984). An
example of this procedure, using the same data taken from the Australian germplasm
collection, is contained in Harch et al. (1996a). They averaged the range-standardized
similarity matrices for the binary, ordered multicategory and quantitative descriptors (us-
ing equal and unequal weighting for the data types) and performed standard principal
component analysis and hierarchical clustering [Ward's (1963) method] on the averaged
similarity matrix. Although the computational approach taken by Harch et al. (1996a)
acknowledges the different data types within its algorithm and enables one complete anal-
ysis to be performed, in contrast to the analysis presented here, the similarities amongst
the descriptors could not be included in the analysis along with the similarities amongst
the accessions. One possible avenue that could be explored to address this is to apply in-
dividual differences scaling to the set of similarity matrices, but this will not be explored
in this article.

Both sets of analyses (equal and unequal weighting) found that the descriptors dis-
tinguishing among the accessions along the first principal component vector were branch-
ing pattern, 100-seed weight, shelling percentage, and the log oleic/linoleic ratio. These
results, like the results found here, were reflecting the main differences between the
subspecies of Arachis hypogaea L. spp. hypogaea (Virginia) and Arachis hypogaea L.
spp. fastigiata (Spanish and Valencia). Equal weighting of the data types provided addi-
tional information about distinguishing accessions with respect to their pod beak and pod
reticulation characteristics. It was uncertain whether this would apply to other datasets.

As found using nonlinear principal component analysis, further distinction between
the botanical varieties of Spanish (Arachis hypogaea L. spp. fastigiata var vulgaris) and
Valencia types (Arachis hypogaea L. spp. fastigiata var fastigiata) was also illustrated
in the ordination plots of the first and third component vectors. However, the distinction
between the subspecies of the Virginia types (Runner and Bunch) was not shown in
Harch et al. (1996a). Harch et al. (1996a) and Harch et al. (1996b) outlined the approach
taken by Esquivel et al. (1993a, 1993b) for the analysis of Cuban groundnut germplasm
data and the analysis taken by Holbrook et al. (1993) for the United States groundnut
germplasm data, respectively. Both of these datasets contained mixed data types. Harch
et al. (1996b) also proposed methodology for analyzing mixed data types from the world
groundnut database (12,160 accessions). Esquivel et al. (1993a, 1993b), Holbrook et al.
(1993), and Harch et al. (1996b) all found that their results reflected groundnut taxonomy.
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Figure 4. Plot of Accession Scores Along Ist and 2nd Principal Component Vectors Based on a Restricted
Subset of Australian Groundnut Germplasm Collection (797 Accessions). (a) Branching pattern of points are
“F" (sequential), "H" (alternate), or "M " (unavailable information). (b) Stem Pigmentation is “G" (green) or

“P" (purple).
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Figure 4. (continued). (c) Growth habit is "P" (procumbent, decumbent-1), “2" (decumbent-2), “3"
(decumbent-3), or “E" (erect). (d) Plant height is “L" (< 30 mm), “M" (35-40 mm), or “H" (> 40 mm).
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