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0. INTRODUCTION AND MAIN RESULTS

The present paper studies the iterates of a non-linear transformation F
acting on a class of functions g: [0, �) � [0, �). The problem arises in a
probabilistic context, namely, the study of systems of hierarchically interac-
ting diffusions ([CGS], [DG1-4], [DGV]). This study is part of a larger
area, where the goal is to understand universal behavior on large space-
time scales of stochastic systems with interacting components (see e.g.,
[dMP], [Sp]). Part II, like Part I, focusses on the analytic aspects of
the transformation (and can be read independently of Part I). Some
probabilistic motivation is given in Part I Sections 0.3 and 0.6 and Part II
Section 0.6.

The transformation F that will be studied in this paper plays the role of
a renormalization transformation for an infinite system of diffusions, taking
values in [0, �) and interacting with each other in a hierarchical fashion.
The iterates F ng (n�0) describe the behavior of this system along an
infinite hierarchy of space-time scales indexed by n. The transformation F
acts on a function g: [0, �) � [0, �) (chosen from an appropriate class)
playing the role of the local diffusion rate for the single components in the
system. The n th iterate F ng is the local diffusion rate of a typical block
average on space-time scale n (see Section 0.6 below).

In Part I we considered a similar system, but with the diffusions taking
values in [0, 1]. Therefore we had a similar transformation, but acting on
a different class of functions. In Part II we continue our study for functions
on [0, �). We again analyze the orbit of the transformation. However, the
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behavior of the orbit is qualitatively very different from that in Part I and
therefore new techniques are required. The non-compactness of [0, �)
gives rise to new phenomena.

Renormalization transformations come up in many other interacting
stochastic systems. Sometimes a rigorous implementation is possible (see
e.g., [BM], [D], [BK]), but frequently the transformation is so untrac-
table that one has to resort to non-rigorous approximation techniques (see
[DoG] for an overview in a statistical mechanics context). In some
systems the transformation is even at risk of not being properly definable
(see [EFS]).

0.1. The Transformation

Let H be the class of functions g: [0, �) � [0, �) satisfying

(i) g(0)=0

(ii) g(x)>0 for x>0
(0.1)

(iii) g locally Lipschitz continuous on [0, �)

(iv) lim
x � �

x&2g(x)=0.

For g # H, let (& g
% )% # [0, �) be the family of probability measures on [0, �)

given by & g
0 =$0 (the point measure at 0) and

& g
%(dx)=

1
Z g

% {
1

g(x)
exp _&|

x

%

y&%
g( y)

dy&= dx (%>0), (0.2)

where Z g
% is the normalizing constant. Define the transformation F acting

on g # H as

(Fg)(%)=|
�

0
g(x) & g

%(dx) (% # [0, �)). (0.3)

Since & g
%(dx) itself depends on g the transformation F is non-linear. The

starting point of our analysis is the following:

Lemma 1. (i) F is well defined on H.

(ii) FH/H.

(iii) For all g # H the function % � (Fg)(%) is C� on (0, �).

In Section 0.6 we shall explain how (0.1�0.3) arise naturally from a
space-time scaling analysis of a system of interacting diffusions on [0, �).
We shall see that & g

% is the equilibrium measure of a single diffusion with
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drift towards % and with local diffusion rate given by g (see (0.26) below).
Hence (Fg)(%) is the average diffusion rate in equilibrium as a function of
the drift parameter % (see (0.30) below).

0.2. The Orbit

Our main object of study will be the orbit

[F ng]�
n=0. (0.4)

Our goal will be to identify subclasses of H for which there exists a g* # H

and a sequence (dn)n�0/(0, �) such that

lim
n � �

dnF ng=g*, (0.5)

either pointwise or in a suitable norm, satisfying

(i) g* and dn (n � �) are independent of g within each subclass

(ii) the distinction between subclasses only depends on
g(x) (x � �) and g(x) (x a 0). (0.6)

The subclasses on which (0.5�0.6) hold we call universality classes for the
transformation F. For the probabilistic interpretation, this property means
that the space-time scaling limit of the corresponding infinite system of
interacting diffusions on [0, �) has universal behavior independent of
model parameters (see [DG3]; see also Part I Sections 0.3 and 0.6 and
Part II Section 0.6).

One easily checks from (0.2�0.3) by explicit calculation (see Lemma 7 in
Section 2.1) that for any a # (0, �)

Fga=ga (0.7)

where

ga(x)=ax (x # [0, �)). (0.8)

Thus all linear functions are fixed points of F. Because of this fact, the
prime candidate for the limit function g* in (0.5) is g1 .

Our program for this paper will be to answer the following questions:

(Q1). Does F have fixed points in H other than (ga)a # (0, �) ?

(Q2). Are there g # H for which Fg=*g with *{1 (i.e., does F have
fixed shapes in H)?
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(Q3). Can one identify large subclasses of H on which (0.5�0.6) hold
with pointwise convergence? For which of these subclasses is g*=g1? What
is dn (n � �) as a function of g(x) (x � �) and g(x) (x a 0)?

(Q4). Can the pointwise convergence be extended to convergence in a
stronger norm?

Questions (Q1)�(Q4) will be addressed in Sections 2�4. Our main results
are formulated in Section 0.3.

Remark. Let us briefly recall that in Part I we had a similar transfor-
mation, but defined on [0, 1]. Namely, instead of (0.1) we had the class
of functions g: [0, 1] � [0, �) satisfying g(0)=g(1)=0, g(x)>0 for
x # (0, 1) and g Lipschitz continuous on [0, 1], while in (0.2�0.3) both x
and % ran over [0, 1]. It turned out that the transformation on [0, 1] had
no fixed point. This already is a first indication that the behavior on [0, 1]
is qualitatively different from that on [0, �). On the other hand, there was
a unique g* and a unique normalizing sequence (dn)n�0 such that (0.5)
was satisfied pointwise, namely g*(x)=x(1&x) and dntn (see Part I
Theorem 1). In other words, there was a globally attracting limit after
appropriate scaling and this limit was in fact a fixed shape (i.e., F ng*=dn g*
for all n). We shall see that for the transformation on [0, �) this type of
global universality does not occur and that there are various different
universality classes. Thus the situation is quite different.

0.3. Main Theorems
Theorems 1�6 below describe the universality classes of F.

(Q1). Fixed points.

Theorem 1. There are no fixed points in H other than (ga)a # (0, �) .

The proof of this theorem is quite delicate. In particular, we shall need
the fact that F is convexity preserving, i.e., if g is convex then Fg is convex
(see Proposition 3(f) in section 1.4 and Appendices A�B). This will allow
us to show that every fixed point must be convex. Via a comparison with
straight lines we shall then be able to show that fixed points cannot be
strictly convex.

(Q2). Fixed shapes.

A fixed point gives rise to a trivial orbit. This brings up the following
question. Can we find functions g # H solving Fg=*g with *{1? More
in particular, can we find a g for which there exists d � *(d ) such that
F(dg)=*(d ) g for all d>0? This question is important, because for
such a g the orbit would run through the multiples of one fixed shape.
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Namely, F ng=*n g with *n=*n(1), so that g*=g and dn=1�*n in (0.5). In
Part I we had this situation. However, it does not arise now:

Theorem 2. There are no g # H solving Fg=*g with *{1.

The proof of this theorem will come out of a comparison with parabolas.
One easily checks from (0.2�0.3) by explicit computation that if

g(x)=ax2+bx (0<a<1, b�0) then Fg=(a�(1&a)) g (see Lemma 5(c) in
Section 1.2). Thus parabolas are fixed shapes. However, they fail to satisfy
(0.1)(iv) and therefore are not in our class H. Moreover, since F ng=
(a�(1&na)) g there is a finite n for which their orbit explodes. Still, parabolas
will be very useful later on, when we shall use them as comparison objects.1

(Q3). Convergence properties.

I. We start with the simplest possible case, namely, one where (0.5�0.6)
hold with a constant normalizing sequence. Denote by Cc([0, �)) the
space of continuous functions on [0, �) with the topology induced by the
uniform convergence on compact subsets.

Theorem 3. If limx � � x&1g(x)=a # (0, �), then

lim
n � �

F ng=ga in Cc([0, �)). (0.9)

This result says that if g(x) grows asymptotically like ax, then (0.5�0.6)
hold pointwise and uniformly on compact subsets of [0, �), with g*=g1

and dn#a&1. Note here that it is g(x) (x � �) which determines (F ng)(%)
(n � �) for % fixed. The limit in (0.9) depends on g through its asymptotic
slope a but is otherwise universal.

II. Next we consider examples where (0.5�0.6) hold with non-constant
normalizing sequences.

Theorem 4. Suppose that g(x)tx:L(x) (x � �) with : # (0, 2)"[1]
and L slowly varying at infinity. Let (en)n�1 be defined by

1
n

=
g(en)

e2
n

(n�1). (0.10)

Then there exist constants 0<K1(:)�K2(:)<� such that

gK1
�lim inf

n � �

n
en

F ng�lim sup
n � �

n
en

F ng�gK2
pointwise. (0.11)
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Remark. The solution (en)n�1 of (0.10) is in general not unique.
However, all solutions are asymptotically equivalent (see Lemma 14 in
Section 4.1). Therefore (0.11) identifies the asymptotic behavior of F ng
uniquely.

The proof of Theorem 4 is based on an approximation by parabolas.
Unfortunately, we are not able to narrow down the constants. Our best
estimates for K1 and K2 are

: # (0, 1): K1�1, K2�(2&:)1�(2&:)

(0.12)
: # (1, 2): K1�(2&:)1�(2&:), K2�1.

We conjecture that

lim
n � �

n
en

F ng=gK pointwise, with K=(:!)1�(2&:) 2(1&:)�(2&:). (0.13)

However, as we shall see in Section 4.1, the proof of this result would
depend on solving some delicate problems related to scaling properties of
certain kernel iterates.

If L#1, then entn1�(2&:) and so F ng �� n&(1&:)�(2&:)g1 . Thus, n � F ng
moves down when : # (0, 1) and up when : # (1, 2). The rate at which this
happens depends on g through its asymptotic growth exponent : but is
otherwise universal. Note that locally F ng gets close to linear (assuming that
the conjecture in (0.13) is true). Still, it keeps on moving with n because
globally it is not linear (recall that straight lines are fixed points). In other
words, the attracting orbit is a rotating line that attracts on an expanding
domain but not as a whole. This is an interesting phenomenon coming from
the non-linearity of the map F. What Theorem 4 says in essence is that F ng
is determined by what g looks like in the neighborhood of en=en(g) and that
it ``moves by curvature'' (see Proposition 3(b) in Section 1.4).

(Q4). Finer topologies.

I. Equation (0.9) gives us a good description of the orbit away from 0
and �. In order to capture what may happen close to these boundaries, we
next introduce two finer topologies {0 and {� on subspaces of Cc([0, �)).
Namely, define the seminorms

& f &A=sup
x # A }

f (x)
g1(x) } (A/(0, �), f # Cc([0, �)), & f &A<�) (0.14)

and let

(i) {0 is generated by [& }&(0, N) , N<�]
(0.15)

(ii) {� is generated by [& }&($, �) , $>0].
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In (0.14) we have chosen g1 as the ``natural '' reference function, because in
the situation of Theorem 3 we have g*=g1 in (0.5). Convergence in {0

means uniform convergence of (F ng)�g1 in a neighborhood of 0. Con-
vergence in {� means uniform convergence of (F ng)�g1 in a neighborhood
of �.

Theorem 5. Suppose that limx � � x&1g(x)=a # (0, �). Then the con-
vergence in (0.9) holds:

(i) in {� always
(ii) in {0 if lim inf x a 0 x&2g(x)>0

(iii) not in {0 if lim sup x a 0 x&2g(x)=0.

We see from Theorem 5 that the two boundaries behave differently. In
particular, to get convergence in the {0-topology it is apparently critical
that g stays above a quadratic in a neighborhood of 0. We shall see in
Section 3 that, if and only if g has this property, F ng develops a strictly
positive slope at 0 after finitely many iterations and this slope tends to a as
n � �, which is the slope of the limit ga . The same phenomenon was found
in Part I Theorem 2. Thus, F has a remarkable behavior near the boundary
at 0.

II. The analogue of Theorem 5 corresponding to Theorem 4 reads as
follows.

Theorem 6. Assume g as in Theorem 4.

(i) The convergence in (0.11) strengthens to

lim
$, = a 0

lim sup
n � � " n

en
F ng&gK" ($, =en)

�&gK1
&gK2

& (0, �) . (0.16)

(ii) If lim infx a 0 x&2g(x)>0, then (0.16) holds with $=0.

(iii) If lim supx a 0 x&2g(x)=0, then (0.16) does not hold with $=0.

Thus, the behavior in the {0-topology carries over, while the convergence
at the other end is uniform on a growing interval of length o(en). If
the conjecture (0.13) is true, then K1=K2=K and the limit in (0.16)
is 0. Incidentally, the latter cannot be extended to convergence in the
{� -topology, since it can be shown that F does not change the behavior
at infinity, i.e., lim% � � (Fg)(%)�g(%)=1 for all g as in Theorem 4 (see
Lemma 21 in Section 4.6). Consequently, &(n�en) F ng&gK&($, �)�1 for all
n�1 and $>0.

Theorems 1�6 are proved Sections 2�4.
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0.4. A Generalization

For the application of (0.1�0.3) to the infinite system of interacting diffu-
sions (as explained in [DG3] and Part I Sections 0.3 and 0.6) it is actually
important to slightly generalize the transformation F. For c>0, let & g, c

%

and Fc be defined by

& g, c
% =& (1�c) g

%

(0.17)
(Fc g)(%)=\cF \1

c
g++ (%)=|

�

0
g(x) & g, c

% (dx).

Pick any sequence (ck)k�0/(0, �) and define the inhomogeneous com-
position

F (n)=Fcn&1
b } } } b Fc0

(n�0) (0.18)

(F (0)=Id ). Then we can ask the same questions (Q1)�(Q4) for the orbit

[F (n)g]�
n=0 (0.19)

replacing (0.4). The answers will now also depend on ck (k � �).
The parameter ck plays the role of the interaction strength between dif-

fusing components that are at hierarchical distance k (see Part I Section 0.3).
It turns out that the behavior of the system is similar as in the case ck#1,
as long as 1�ck is not summable.

Theorem 7. Assume g as in Theorem 4. Define

_n= :
n&1

k=0

1
ck

(0.20)

and assume that _�=�. Let (en)n�1 be defined by

1
_n

=
g(en)

e2
n

(n�1). (0.21)

Then for the same K1 , K2 as in (0.11)

gK1
�lim inf

n � �

_n

en
F (n)g�lim sup

n � �

_n

en
F (n)g�gK2

pointwise. (0.22)

The extension to the finer topologies introduced in (0.14�0.15) is similar as
in Theorem 6: simply replace (F n, n) by (F (n), _n).
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This result shows that apparently the roles of g and (ck)k�0 can be
separated. The same situation was found in Part I.

The meaning of the restriction _�=� can be found in Part I. Roughly,
if _�<� then F (n)g converges to a limit that depends on g and therefore
does not meet the universality requirement in (0.6)(i).

Theorem 7 is proved in Section 5.

0.5. A Larger Domain
The class where the transformation F is defined can actually be chosen

much larger than H given by (0.1). Namely, let H$#H be the class of
functions g: [0, �) � [0, �) satisfying

(i) g measurable

(ii) g&1 locally integrable on (0, �)
(0.23)

(iii) g&1 not integrable at 0

(iv) lim
x � �

x&2g(x)=0.

Then the analogue of Lemma 1 reads:

Lemma 2. (i) F is well defined on H$.

(ii) FH$/H.

(iii) For all g # H$ the function % � (Fg)(%) is C� on (0, �).

The class H is the ``natural'' class for the probabilistic interpretation of
(0.1�0.3) (see [Sh]). Still, F as a transformation makes sense on H$.
However, Lemma 2(ii) says that after one iteration one falls back onto the
original class H. Therefore the extension to H$ does not survive the trans-
formation.

Lemma 2(iii) shows that F has a strong smoothing property. Thus, after
one iteration one in fact falls back onto a class much smaller than H.

0.6. Probabilistic Background

We close this Section 0 with a brief explanation of how (0.1�0.3) arise
naturally from a space-time scaling analysis of a system of interacting diffu-
sions on [0, �). The remarks are intended to motivate the reader and are
independent of the rest of the paper.

Consider the following system of N coupled stochastic differential
equations:

dX N
i (t)=

1
N

:
N

j=1

[X N
j (t)&X N

i (t)] dt+- 2g(X N
i (t)) dWi (t)

(0.24)
X N

i (0)=% (i=1, ..., N).
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Here the Wi (t) are independent standard Brownian motions, and g is any
function satisfying (0.1). Eq. (0.24) says that the X N

i (t) are diffusions on
[0, �), with a local diffusion rate given by g and with a mean field interac-
tion that makes each diffusion drift towards the current empirical mean of
the whole system. The conditions on g in (0.1) are natural: g(0)=0, the
Lipschitz property of g at 0, and g(x)>0 for x>0 guarantee that the diffu-
sions live on [0, �); the local Lipschitz property of g on (0, �) guarantees
that (0.24) has a unique strong solution.

Now, it can be shown that as N � � (see [DG4])

L[(X N
1 (t), ..., X N

k (t))t�0] O [L[(Z g
%(t))t�0]] �k (k�1) (0.25)

(L means law and O means weak convergence), where the limit process
is the k-fold product of the unique strong solution of the 1-component
stochastic differential equation

dZ(t)=[%&Z(t)] dt+- 2g(Z(t)) dW(t)
(0.26)

Z(0)=%.

In other words, each component decouples from the rest (``propagation of
chaos'') but retains a drift towards %, the initial empirical mean of the
whole system.

How can we understand (0.25�0.26)? The heuristics is as follows. For
large N the empirical mean fluctuates on a slow time scale. It will stay con-
stant on the original time scale in the limit as N � �, i.e., fixed at its initial
value %. This explains why each component of (0.24) has as limit dynamics
(0.26). The behavior of Z g

%(t) as t � � in (0.25) will be given by the equi-
librium solution of (0.26). The link with the probability measure & g

% , defined
in (0.2) and appearing in the definition of F in (0.3), is that & g

% is precisely
the marginal law of this equilibrium.

Next consider the quantity

X� N(t)=
1
N

:
N

i=1

X N
i (tN), (0.27)

i.e., the empirical mean but speeded up proportionally to the size of the
system. It follows from (0.24) that

dX� N(t)=
1
N

:
N

i=1

- 2g(X N
i (tN)) dWi (tN). (0.28)
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With the help of a martingale argument it can be shown that as N � �
(see [DG4])

(X� N(t))t�0 O (ZFg(t))t�0 , (0.29)

where the limit process is the unique strong solution of

dZ(t)=- 2(Fg)(Z(t)) dW(t)
(0.30)

Z(0)=%,

i.e., a diffusion without drift but with a new diffusion function Fg.
How can we understand (0.29�0.30)? This result becomes quite natural

when we remember the definition of F in (0.3), which says that (Fg)(%) is
the average of g(x) under & g

%(dx). Namely, in these terms (0.29�0.30) simply
say that the empirical mean X� N(t) (N � �) has a local diffusion rate that
is the average of the local diffusion rate for the single components under
their equilibrium law. Indeed, this is plausible from (0.28) when we observe
that L[N &1�2Wi (tN)]=L[Wi (t)] and X N

i (tN) O & g
% (N � �).

Thus we have explained why the transformation F is naturally induced by
the space-time scaling in (0.27) in the limit as N � �. The higher iterates of
F come into play when, instead of (0.24), one considers an infinite system
with an infinite hierarchy of components and interactions. This gives rise to
an infinite hierarchy of space-time scales, which are described by F ng (n�1)
(see [DG3-4]). More precisely, F ng appears as the diffusion function
associated with ``block averages on space-time scale n,'' i.e., block averages of
Nn components observed at time tN n (similarly as in (0.27)). These are
described by an equation like (0.30) with Fg replaced by F ng. The univer-
sality properties of F formulated in Theorems 1�6 in Section 0.3 mean that
the fluctuations of these block averages show universal behavior as n � �.

1. PROOF OF LEMMAS 1, 2, AND SOME
KEY PROPERTIES OF F

In this section we give the proof of Lemmas 1 and 2 and collect some
major tools (Propositions 1�4 below) that will be needed for the proof of
Theorems 1�6 in Sections 2�4.

1.1. Reformulation of F

It will be expedient to rewrite the definition of F into a form more
suitable for manipulations. Namely, define

+ g
%(x)=

1
g(x)

exp _&|
x

%

y&%
g( y)

dy& (x, %>0) (1.1)
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and write (0.3) as

(Fg)(%)=
��

0 g(x) + g
%(x) dx

��
0 + g

%(x) dx
(%>0). (1.2)

The integrand in the numerator has a nice shape property:

Lemma 3. For all % # (0, �)

�
�x

[ g(x) + g
%(x)]=(%&x) + g

%(x)
(1.3)

g(%) + g
%(%)=1.

Hence x � g(x) + g
%(x) is increasing on (0, %), decreasing on (%, �) and has

a maximum value 1 at the point %. Moreover, limx a 0 g(x) + g
%(x)=0.

Proof. Immediate from (1.1). The first relation in (1.3) expresses the
fact that + g

% is the density of the equilibrium of (0.26) up to normalization.
The last statement is a direct consequence of (0.1)(i, iii), which imply that
g&1 is not integrable at 0. K

To prove Lemmas 1�2 we shall need the following monotonicity
property:

Lemma 4. For any 0�a�%�b��, if g1�g2 on [a, b] then

(a) g1+ g1
% �g2+ g2

% on [a, b]
(1.4)

(b) |
b

a
+ g1

% (x) dx�|
b

a
+ g2

% (x) dx.

Proof. Part (a) is evident from (1.1), because &g &1
1 �&g &1

2 on [a, b].
Part (b) follows from Part (a) and the representations

|
b

%
+ g

%(x) dx=
1&g(b) + g

%(b)
b&%

+|
b

%

1&g(x) + g
%(x)

(x&%)2 dx (b>%)

(1.5)

|
%

a
+ g

%(x) dx=
1&g(a) + g

%(a)
%&a

+|
%

a

1&g(x) + g
%(x)

(%&x)2 dx (a<%),

which are obtained by partial integration using (1.3). (First exclude an
=-neighborhood of % to avoid the pole of x � (x&%)&1 and then let
= a 0.) K

Note that the inequalities in (1.4)(a�b) go in the opposite direction. This
will be important later on.
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1.2. Proof of Lemmas 1 and 2

Lemma 2 is a generalization of Lemma 1 (compare (0.1) and (0.23)), so
we need only prove the former.

We begin by explaining conditions (0.23)(i�iv). It is clear that (0.23)(i�ii)
are the minimal conditions required for the integrals in (0.2�0.3) to make
sense. To explain (0.23)(iv) we prove the following.

Lemma 5. Assume (0.23)(i�ii).

(a) If g(x)�x2 then Fg is � on (0, �).

(b) If g(x)�ax2+b (0�a<1, 0<b<�) then Fg is finite on
[0, �).

(c) If g(x)=ax2 (0<a<1) then (Fg)(x)=(a�(1&a)) x2.

(d) If g(x)=o(x2) (x � �) then (Fg)(x)=o(x2) (x � �).

Proof. Let N(%) and D(%) denote the numerator resp. denominator
of (1.2).

(a) Insert g(x)�x2 into N(%) to find, using Lemma 4(a),

N(%)�|
�

0
exp _&|

x

%

y&%
y2 dy& dx

=|
�

0

%
x

exp \1&
%
x+ dx

�|
�

%

%
x

dx

=�. (1.6)

Similarly, using Lemma 4(b),

D(%)�|
�

0

1
x2 exp _&|

x

%

y&%
y2 dy& dx

=|
�

0

%
x3 exp \1&

%
x+ dx

=
e
% |

�

0
ze&z dz

<�. (1.7)

(d) Assume g(x)=o(x2) (x � �). Then for every =>0 there exists
N=N(=) such that g(x)�=x2 for all x�N. Hence, using Lemma 4(a), we
can estimate for %�N
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N(%)�N+|
�

N
exp _&|

x

%

y&%
=y2 dy& dx

=N+e1�= |
�

N \%
x+

1�=

exp \&
%
=x+ dx

=N+%e1�==(1�=)&1 |
%�=N

0
z(1�=)&2e&z dz (1.8)

and similarly, using Lemma 4(b),

D(%)�|
�

N

1
=x2 exp _&|

x

%

y&%
=y2 dy& dx

=e1�= |
�

N

1
=x2 \%

x+
1�=

exp \&
%
=x+ dx

=%&1e1�==1�= |
%�=N

0
z1�=e&z dz. (1.9)

By combining (1.8�1.9) and letting % � � for fixed =, we get

lim sup
% � �

%&2 N(%)
D(%)

�
e1�==(1�=)&11((1�=)&1)

e1�==1�=1((1�=)+1)
=

=
1&=

. (1.10)

Now let = a 0 to get the claim.

(b) Since & g
0 =$0 (recall (0.2)), we have (Fg)(0)=0. Next, fix %>0.

Since g&1 is locally integrable on (0, �), the part of the integrals in N(%)
and D(%) where the integrating variable x is restricted to a compact subset
of (0, �) is finite. On the other hand, the estimates in (1.8�1.9) show that
no divergence can occur at x=� as soon as g(x)�ax2 for large x with
(1�a)&2>&1, i.e., a<1 (set N=0 and ==a in (1.8�1.9)). Morover, in
N(%) no divergence can occur at x=0 because g+ g

% �1 by Lemma 3.

(c) The same type of computation as in (1.8�1.9) yields N(%)=
%e1�aa(1�a)&11((1�a)&1) and D(%)=%&1e1�aa1�a1((1�a)+1) (again set
N=0 and ==a in (1.8�1.9)). This gives the claim because 1((1�a)+1)�
1((1�a)&1)=(1&a)�a2. K

We see from Lemmas 5(a, c) that without (0.23)(iv) the orbit [F ng]�
n=0

would be ill defined. Namely, the n th iterate of the map a � a�(1&a) is
a � a�(1&na), and this explodes when n>1�a. Combining Lemmas 4 and
5(a, c), one can show that (0.23)(iv) is essentially a necessary condition to
avoid explosion. Lemmas 5(b, d) show that it is a sufficient condition.

To understand (0.23)(iii), we look a bit closer at the behavior of F close
to the left boundary.
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Lemma 6. Assume (0.23)(i�ii, iv).

(a) lim% a 0 (Fg)(%)=c<� exists with c=0 iff x � 1�g(x) is not
integrable at 0.

(b) If x � 1�g(x) is not integrable at 0, then lim% a 0 %&1(Fg)(%)=
c$<� exists with c$=0 iff x � x�g(x) is not integrable at 0.

Proof. Same as Propositions 4 and 5 in Part I. The proof relies on
Lemma 3 in combination with a sequence of explicit estimates that are
given in Part I Section 2.2. K

We can now give the proof of Lemma 2. Lemma 2(iii) is the same as
Theorem 5 in Part I and can be proved by the same method as in Part I
Section 2.6. This method used an explicit representation of the formal
derivatives of Fg. The same representation holds here. We omit the details.
Lemmas 5(d) and 6 imply Lemmas 2(i�ii). Indeed, if g satisfies (0.23)(i�iv)
then:

(1) F is well defined on H$, because of (0.23)(i�ii, iv).

(2) (Fg)(0)=0 because & g
0 =$0 (recall (0.2)), so Fg satisfies (0.1)(i).

(3) (0.23)(iii) and Lemma 6 give that Fg is continuous at 0 and has
a finite slope at 0, so in particular Fg is Lipschitz at 0. Since Lemma 2(iii)
implies that Fg is locally Lipschitz on (0, �), it follows that Fg satisfies
(0.1)(iii).

(4) (0.23)(iv) and Lemma 5(d) show that Fg satisfies (0.1)(iv).

(5) (0.23)(ii) obviously implies that Fg satisfies (0.1)(ii).

1.3. Moment Relations

The following four relations play a crucial role in the paper:

Proposition 1. For all g # H and % # [0, �)

(a) |
�

0
& g

%(dx)=1

(b) |
�

0
x& g

%(dx)=%

(1.11)

(c) |
�

0
x2& g

%(dx)=%2+(Fg)(%)

(d) |
�

0
g(x) & g

%(dx)=(Fg)(%).
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Proof. (a, d) are (0.2�0.3). It is straightforward to check (b�c) by
explicit calculation. Another way is via Itô's formula using that & g

%(dx) is
the equilibrium of (0.26). The derivation along this line also makes it clear
that what matters for (b�c) is not the explicit form of & g

%(dx) but rather its
equilibrium property. Note that (b) shows that linear functions are fixed
points of F. K

For g # H, define the probability kernel on [0, �)_[0, �)

Kg(x, dy)=& g
x(dy) (1.12)

and the inhomogeneous composition

K (n)
g =KFn&1g b } } } b KF 0g (n�1). (1.13)

(F 0=Id, K (1)
g =Kg , Fg=Kg g.) In terms of these quantities Proposition 1

can be iterated:

Proposition 2. For all g # H, % # [0, �) and n�1

(a) |
�

0
K (n)

g (%, dy)=1

(b) |
�

0
yK (n)

g (%, dy)=%

(1.14)

(c) |
�

0
y2K (n)

g (%, dy)=%2+n(F ng)(%)

(d) |
�

0
g( y) K (n)

g (%, dy)=(F ng)(%).

Proof. Combine (1.12�1.13) with Proposition 1: (a�b, d) are immediate
from (1.11)(a�b, d); (c) is obtained by combining (1.11)(c�d). K

1.4. Some Key Properties of F

We formulate some key properties of the transformation F that will be
needed later on.

Proposition 3. On H the following properties hold:

(a) g1�g2 O Fg1�Fg2 , with strict inequality everywhere on (0, �)
unless g1#g2 .

(b) g convex (concave) O Fg�g (Fg�g), with strict inequality
everywhere on (0, �) unless g is linear.
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(c) F is continuous in the metric induced by

& f &= sup
x # [0, �)

| f (x)|
1+x2 , (1.15)

i.e., if limn � � &gn&g&=0 then limn � � &Fgn&Fg&=0.

(d) F is a contraction in the global Lipschitz norm, i.e., L(Fg)�L(g)
where L is defined by Lg=supx, y # (0, �), x{ y | g(x)&g( y)|�|x& y|.

(e) g increasing (decreasing) O Fg increasing (decreasing).

(f) g convex (concave) O Fg convex (concave).

Proof. (a) Immediate from Lemma 4 after setting a=0 and b=�.
The second half of the statement is an easy consequence of the fact that F
acts globally, meaning that (Fg)(%) depends on the value of g(x) for all
x>0.

(b) Jensen's inequality applied to (0.3). Use the identity ��
0 x& g

%(dx)
=%, which is Proposition 1(b).

(c) First we show that F is pointwise continuous under monotone
convergence. Indeed, let gn A g in H. We know from Lemma 4 that g � g+ g

%

is monotone increasing. Hence, in (1.2) the numerator of (Fgn)(%) con-
verges to the numerator of (Fg)(%). On the other hand, from (1.5) and the
last statement in Lemma 3 we know that

|
�

0
+ g

%(x) dx=|
�

0

1&g(x) + g
%(x)

(x&%)2 dx+
1
%

. (1.16)

Therefore, in (1.2) also the denominator of (Fgn)(%) converges to the
denominator of (Fg)(%). Thus, Fgn � Fg pointwise. A similar argument
works when gn a g in H.

Next we show that F is pointwise continuous under convergence in & }&.
Indeed, assume that &gn&g& � 0 in H. Then both

g&
n = inf

m�n
gm

(1.17)
g+

n = sup
m�n

gm .

are in H for all n (see (0.1)). Clearly, g&
n A g and g+

n a g. Hence, Fg&
n A Fg

and Fg+
n a Fg. But g&

n �gn�g+
n and therefore Fg&

n �Fgn�Fg+
n , so we get

Fgn � Fg pointwise.
Finally, since &Fgn&Fg&�&Fg+

n &Fg&
n & a 0 we get the claim.

(d) See Part I Section 2.7. See also [DG2] Lemma 2.2 and Equa-
tion (2.58).

(e�f ) Implied by Propositions 4(e$�f$) below. K
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The following proposition is a version of Proposition 3 for the kernel Kg

defined in (1.12). This version will play an important role in the proof of
Theorems 1�2, 4 and 6. The advantage of working with Kg is that f � Kg f
is linear, while g � Fg=Kg g is not.

Proposition 4. For g # H and f , f1 , f2 # �% # [0, �) L1([0, �); & g
% ):

(a$) f1� f2 O Kg f1�Kg f2 , with strict inequality everywhere on
(0, �) unless f1# f2 .

(b$) f convex (concave) O Kg f � f (Kg f � f ), with strict inequality
everywhere on (0, �) unless f is linear.

(e$) f increasing (decreasing) O Kg f increasing (decreasing).

(f$) f convex (concave) O Kg f convex (concave).

For g1 , g2 # H and f # �% # [0, �) L1([0, �); & g2
% ):

(g$) f convex (concave), g1�g2 O Kg1
f �Kg2

f (Kg1
f �Kg2

f ).

Proof. (a$�b$) Trivial extensions of (a�b).

(e$�g$) Deferred to Appendices A�C. The proof is analytic but
lengthy. K

Note that, by Propositions 1(a, c), for all g # H

[ f : [0, �) � R measurable: & f &<�]/ ,
% # [0, �)

L1([0, �); & g
% ), (1.18)

with & }& defined in (1.15). Thus Proposition 4 applies to a very large class
of functions.

2. PROOF OF THEOREMS 1�3

The proof will run via a comparison with straight lines and parabolas,
which are fixed points resp. fixed shapes. Propositions 3�4 will turn out to
be crucial.

2.1. Proof of Theorem 1

Each g # H can be trivially extended to a function on R by defining
g(x)=0 for x<0 (recall (0.1)). The same can be done for Fg, and we shall
henceforth view H and F as trivially extended in this way.

We have seen in Section 0.2 that all the linear functions (ga)a # (0, �) are
fixed points of F in H. (This fact is immediate from Proposition 1(b).)
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To prove Theorem 1 it will be useful to temporarily enlarge H by adding
all functions that fall in H after a shift, i.e., the class

Hs=[g: g( } &b) # H for some b # R]. (2.1)

We can extend F from H to Hs in the obvious way. Namely, for g # H and
b # R define

+ g( } &b)
% (x)=+ g( } )

%&b(x&b) (x, %>b)

=0 (x�b or %�b) (2.2)

and use this extended definition in (1.1�1.2). In other words, F commutes
with the shift, written F(g( } &b))=(Fg)( } &b).

The reason for looking at the larger class Hs is that now also the shifted
linear functions become fixed points (in Hs), and this will turn out to be
useful for the proof of Theorem 1 (see below).

Lemma 7. All (ga, b)a # (0, �), b # R defined by

ga, b(x)=a(x&b) 1[x�b] (x # R) (2.3)

are fixed points of F in Hs .

Proof. Immediate from Propositions 1(a�b) or (2.1�2.2). K

Furthermore, Lemmas 3�6 and Propositions 1�4 carry over in the
obvious way.

The proof of Theorem 1 now comes in two steps.

Step 1. All fixed points are convex.

Proof. Suppose that Fg=g. Let f (x)=x2. Then, by Propositions
1(c�d),

([Kg]n f )(%)=%2+ng(%) (n�0). (2.4)

Since f is convex, it follows from Proposition 4(f$) that the r.h.s. of (2.4) is
convex for all n�0. Divide by n and let n � � to get the claim. K

Step 2. Convex fixed points must be linear.

Proof. The proof is by contradiction, through the following geometrical
argument. Suppose that Fg=g. Then g is convex by Step 1. Suppose that
g is not linear. Then somewhere on (0, �) it is strictly convex and so there
exist a, b>0 and x0>0 such that

g�ga, b with equality at x0 but not everywhere on (0, �) (2.5)
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(``linear minorization''). But now, by Proposition 3(a),

Fg>Fga, b everywhere on (0, �). (2.6)

However, since Fg=g and Fga, b=ga, b , this contradicts (2.5) at x0 . K

2.2. Proof of Theorem 2

Let Fg=*g. We show that if *{1 then g � H. We distinguish between
the cases *<1 and *>1.

*<1: Let f (x)=x2. Then by Propositions 1(c�d)

([Kg]n f )(%)=%2+\ :
n

m=1

*m+ g(%) (n�0), (2.7)

where the r.h.s. is convex for all n�0 by Proposition 4(f $). Define

f� (%)= lim
n � �

([Kg]n f )(%)=%2+
*

1&*
g(%). (2.8)

Then f� is convex and

Kg f� = f� . (2.9)

By the same linear minorization argument as in the proof of Step 2 in
Section 2.1, it now follows that f� must be linear (use Proposition 4(a$)).
Thus, f� (%)=a% for some a # (0, �). However, this says that g(%)=
[(1&*)�*](a%&%2). So g(%)<0 for %>1�a and therefore g � H.

*>1: By (0.1)(iv), for every a>0 there exists b=b(a) such that

g(x)�ax2+b (x�0). (2.10)

Applying [Kg]n to both sides and recalling that Kg g=Fg=*g, we obtain
with the help Propositions 1(a, c�d) and 4(a$) that

*ng(%)=([Kg]n g)(%)�([Kg]n (ax2+b))(%)

=(a%2+b)+a \ :
n

m=1

*m+ g(%) (n�0). (2.11)

Divide by *n and let n � � to get

g(%)�a
1

1&*&1 g(%). (2.12)

Since a is arbitrary we conclude that g#0 and so g � H.
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This completes the proof of Theorem 2. In the rest of this section we give
an alternative proof of Theorem 2, one that is more geometrical and there-
fore more intuitive. It is based on a domination argument similar to the
one used in Section 2.1 to prove Theorem 1.

For a>0 and b, c # R define up-parabolas resp. down-parabolas as
follows:

g_
a, b(x)=a(x&b)2 1[x�b] (x # R)

(2.13)
g&

a, b, c(x)=a(x&b)(c&x) 1[b�x�c] (x # R).

None of these functions is in our class Hs (recall (2.1)), but they are all
shape invariant under F:

Lemma 8. For all b, c # R

(a) Fg_
a, b=

1
1&a

g_
a, b (0<a<1)

(2.14)

(b) Fg&
a, b, c=

1
1+a

g&
a, b, c (a>0).

Proof. Immediate from Propositions 1(a�c).2 Property (a) appeared
before as Lemma 5(c) (for b=0). Note that the eigenvalues only depend on
the scale parameter a and not on the shift parameters b, c. K

The point that we shall exploit is that both eigenvalues in (2.14) tend to 1
as a a 0.

The key to the alternative proof of Theorem 2 is the following domina-
tion lemma analogous to (2.5).

Lemma 9. For every g # H:

1. (``up-parabolic majorization '') For every a>0 sufficiently small
there exist b�0 and x0>0 such that

g�g_
a, b with equality at x0 . (2.15)
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2 The fact that g_
a, b and g&

a, b, c are not in Hs is no problem for F. For the up-parabolas we
can define the image under F by the same construction as in (2.1�2.2). For the down-
parabolas, on the other hand, we can define the image under F as limn � � Fgn , where (gn)
is any decreasing sequence of functions in Hs that converges to g&

a, b, c pointwise. Lemma 4
guarantees that the result of this limiting procedure is the same as if we simply restrict the
integrations in (1.1�1.2) to the interval [b, c]. See also the proof of Proposition 3(c).
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2. (``down-parabolic minorization '') For every a>0 there exist
c>b�0 and x0>0 such that

g�g&
a, b, c with equality at x0 . (2.16)

Proof. 1. Consider the family (g_
a, b)b�0 for some 0<a<g(1). Since

g(x)=o(x2) (x � �), we obviously have that g<g_
a, b for b sufficiently

small. On the other hand, g intersects g_
a, b in some point x # (0, 1) for b=0.

Hence, by continuity, there exists b�0 for which the claim holds.

2. For every a>0 there exist c>b�0 with c&b sufficiently small
such that g>g&

a, b, c . Fix a, b and consider the family (g&
a, b, c)c�b . The top

of the down-parabola has height 1
4a(c&b)2, which increases quadratically

with c. Therefore, since g(x)=o(x2) (x � �), there exists c large enough so
that g intersects g&

a, b, c . By continuity the claim follows. K

Using Proposition 3(a) and Lemmas 8�9 we can now give the alternative
proof of Theorem 2. Suppose that g # H satisfies Fg=*g. We want to
prove that *{1 is not possible. This goes in two steps:

(1) By property 1 in Lemma 9 we have g�g_
a, b for any a>0 suf-

ficiently small and some b�0. Apply Proposition 3(a) to get Fg�Fg_
a, b .

Together with Lemma 8(a) this yields *g�[1�(1&a)] g_
a, b . But g(x0)=

g_
a, b(x0)>0. Hence *�[1�(1&a)]. Now let a a 0 to get *�1.

(2) A similar argument, running via property 2 in Lemma 9 and via
Lemma 8(b), gives that *�1�(1+a) for any a>0. Again, let a a 0 to get
*�1.

Combine (1) and (2) to conclude that *=1.

2.3. Proof of Theorem 3

Fix g # H such that limx � � x&1g(x)=a # (0, �). Let g+ # H be the
concave upper envelope of g, i.e., the smallest concave function dominating
g. Then it follows from Proposition 3(b) that

g+�Fg+ (2.17)

and hence from Proposition 3(a), after repeatedly applying F to both sides
of (2.17), that

g+�Fg+�F 2g+� } } } (2.18)

(alternatively, use Proposition 3(f )). Similarly, let g& # H be the convex
lower envelope of g. Then

g&�Fg&�F 2g&� } } } . (2.19)
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Moreover, since g+�g�g&, Proposition 3(a) also gives us the sandwich

F ng+�F ng�F ng& (n�0). (2.20)

Next, define F �g+ and F �g& to be the pointwise limits of F ng+ resp.
F ng& as n � �. We claim that both these limits are uniform on compacts
in [0, �). To see why, note that

lim
x � �

x&1g+(x)= lim
x � �

x&1g&(x)=a. (2.21)

Since g+ is Lipschitz at 0 (recall (0.1)(iii)) and since a<�, (2.21) implies
that both g+ and g& are globally Lipschitz. It therefore follows from
Proposition 3(d) that [F ng+]n�0 and [F ng&]n�0 are uniformly equicon-
tinuous on [0, �). Since both sequences are bounded by g+, the claim
follows via the theorem of Arzela-Ascoli.

Next, F ng+ and F ng& in fact converge to F �g+ resp. F �g& in the
metric induced by & }&, defined in (1.15). Indeed, this immediately follows
from the uniform convergence on compacts, together with the fact that g+

bounds both sequences and g+(x)=o(x2) (x � �). It therefore follows
from the continuity property of F, as formulated in Proposition 3(c), that
pointwise

F �g+= lim
n � �

F(F ng+)=F(F �g+)
(2.22)

F �g&= lim
n � �

F(F ng&)=F(F �g&),

i.e., F �g+ and F �g& are fixed points of F. This in turn implies, via
Theorem 1, that they must be linear. Hence, in accordance with (2.21),

F �g+=F �g&=ga (2.23)

(recall (0.8) for the definition of ga).
Finally, let n � � in (2.20) and use (2.23) to get that (0.9) in Theorem

3 holds pointwise. To see that (0.9) also holds uniformly on compacts in
[0, �), simply use that this is true for g=g+ and g=g& by the above
argument, and remember (2.20) and (2.23).

3. PROOF OF THEOREM 5

The proof of Theorem 5(i) is immediate from the argument in Section 2.3.
Simply combine the uniform convergence on compacts in [0, �) with
(2.20�2.21), to conclude that the convergence in (0.9) holds in the
{� -topology (defined in (0.15)(ii)).
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The proof of Theorems 5(ii�iii) is more delicate. We shall see that to get
convergence in the {0-topology (defined in (0.15)(i)), it is critical that g
stays above a quadratic in a neighborhood of 0. In fact, we shall see that:

(1) if g decays faster than quadratic, then the same is true for F ng for
all n;

(2) if g decays slower than or equal to quadratic, then as n increases
F ng develops a strictly positive slope.

3.1. Preparatory Lemmas

Lemmas 10�12 below are technical statements about the behavior of F
near the boundary at 0 and will be needed for the proof of Theorems
5(ii�iii) in Section 3.2.

For g # H, define

s(g)=lim sup
x a 0

x&2g(x)
(3.1)

i(g)=lim inf
x a 0

x&2g(x).

Define the map T: [0, �) � [0, �] by

T(a)=
a

1&a
if 0�a<1

=� if a�1. (3.2)

Lemma 10. For all g # H

(a) s(Fg)�T(s( g))

(b) i(Fg)�T(i( g)).

In particular, if s(g)=i(g)=a then s(Fg)=i(Fg)=T(a).

Proof. Same as Lemma 9 in Part I. The proof relies on Lemma 3 in
combination with a sequence of explicit estimates that are given in Part I
Sections 2.1 and 3.3 K
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3 The reason why we have assumed limx � � x&2g(x)=0 in (0.1)(iv) is not just that the
transformation F can under this assumption be iterated (recall Lemma 5 in Section 1.2), but
also that the left and the right boundary are ``decoupled,'' i.e., there is no interference between
the qualitative properties of Fg near 0 and near �. Consequently, all the analysis that was
done in Part I for the boundary behavior of the transformation on [0, 1] near 0 carries over
to the present situation.
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Lemma 11. If g(x)tax2 (x a 0, 1<a<�), then (Fg)(x)tCa x1+(1�a)

(x a 0, Ca>0).

Proof. See Part I Propositions 6�7 and Section 2.3. K

Lemma 12. If x � x�g(x) is integrable at 0, then

lim
% a 0

%&1(Fg)(%)=|
�

0
dx exp _&|

x

0
dy

y
g( y)& . (3.3)

Proof. Let N(%) and D(%) denote the numerator resp. denominator of
(1.2). The proof amounts to showing that:

(i) lim% a 0 %D(%)=1 when x � x�g(x) is integrable at 0;

(ii) lim% a 0 N(%)=r.h.s. (3.3).

Property (i) is the same as Part I Lemma 6 and uses the estimates in Part
I Lemma 5. Property (ii) is the same as Part I Equation (2.29), and follows
from (1.1) via the observation that

lim
% a 0

g(x) + g
%(x)=exp _&|

x

0
dy

y
g( y)& (x>0), (3.4)

where the convergence is monotone for %<x. K

3.2. Proof of Theorem 5(ii�iii)

The key step in the proof is the following lemma. Define for n�1

cn(g)=lim
% a 0

%&1(F ng)(%). (3.5)

The limit in (3.5) exists by Lemma 6(b), because F n&1g is Lipschitz at 0.

Lemma 13. Suppose that limx � � x&1g(x)=a # (0, �). Let g+, g& be
the concave upper resp. convex lower envelope of g (as in Section 2.3).

(a) If lim infx a 0 x&2g(x)>0, then

lim
n � �

cn(g+)= lim
n � �

cn(g&)=a. (3.6)

(b) If lim supx a 0 x&2g(x)=0, then

cn(g+)=cn(g&)=0 for all n�1. (3.7)
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Proof. Lemma 13(b) is immediate from (3.2) and Lemma 10(a).
Indeed, if s(g)=0 then s(F ng)=0 for all n�1. Hence cn(g)=0 for all n�1
(see (3.1) and (3.5)).

The proof of Lemma 13(a) comes in three steps.

1. Use (3.2) and Lemma 10(b) to see that if i(g)>0, then there exists
0�n0<� for which i(F n0&1g)<1<i(F n0g).

2. Combining Lemma 11 with i(F n0g)>1 (and recalling Proposition
3(a)) we get that x � x�(F n0+1g)(x) is integrable at 0, i.e., the decay at 0
is slower than quadratic.

3. From Lemma 12 we therefore have the following representation
(see (3.3) and (3.5)):

cn+1(g)=|
�

0
dx exp _&|

x

0
dy

y
(F ng)( y)& (n�n0+1). (3.8)

Now pick g=g+, g& and use that F ng+ and F ng& both tend to ga point-
wise and monotonically as n � � (see Section 2.3). Then, by monotone
convergence,

lim
n � �

cn+1(g+)= lim
n � �

cn+1(g&)=|
�

0
dx exp _&|

x

0
dy

y
ga( y)&=a. K (3.9)

We can now complete the proof of Theorem 5(ii�iii). Theorem 5(iii)
is immediate from Lemma 13(b), because cn(g)=0 implies that
&F ng&ga&(0, N)�a for any N>0 (recall (0.14)). To get Theorem 5(ii), use
Proposition 3(f ) to see that F ng+ is concave and F ng& is convex for all n.
Therefore (3.5�3.6) imply that (F ng+)$ and (F ng&)$ converge to a uniformly
on (0, �). Together with (2.20) this gives that limn � � &F ng&ga& (0, N)=0
for all N<� (recall (0.14)).

4. PROOF OF THEOREMS 4 AND 6

4.1. Heuristic Background

We start with a heuristic discussion of the result in Theorem 4, since this
will help us to devise a strategy for the proof. Our task is to investigate
(F ng)(%) for fixed % # (0, �) and n � �. In view of Proposition 2(d), this
means that we need to collect information about the kernel K (n)

g (%, dy)
defined in (1.13). Along the way it will be necessary to place some
regularity assumptions on g. It turns out that the right notion is regular
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variation. For that reason we shall make the assumption stated in
Theorem 4:

g(x)tx:L(x), : # (0, 2)"[1] and L(x) slowly varying at infinity. (4.1)

As a guide we have the situation in the special case g=ga . In this case
K (n)

ga
=[Kga]

n (recall that ga(x)=ax is a fixed point of F ). Moreover, Kga

has the so-called ``branching property'':

Kga(%1+%2 , } )=Kga(%1 , } ) V Kga(%2 , } ), (4.2)

where V denotes convolution of measures. Using this property in connec-
tion with moment formulas, it is possible to show (with the help of Laplace
transform techniques [DG4]) that

lim
n � �

K (n)
ga

(%, [=, �))=0

(4.3)

lim
n � �

K (n)
ga

(%, nI & [=, �))

K (n)
ga

(%, [=, �))
=

1
a |

I
dy e&y�a

for any %>0, any interval I/(0, �) and any =>0. This means that the
distribution K (n)

ga
(%, } ) has the following shape: ``Close to 0 sits almost all of

the mass, while almost all of the remaining mass is distributed on scale n
according to an exponential law with parameter 1�a.''

In the situation where g satisfies (4.1) we expect that (4.3) changes as
follows:

(I) scale n becomes scale en=en(g) defined by (0.10);

(II) the law of the mass on scale en remains exponential (with some
g-dependent parameter).

Assuming (I) and (II) we can use Proposition 2 to determine F ng. Namely,
let mn be the mass on scale en and 1&mn the mass around 0. Let + be the
mass distribution on scale en . Let ên be the multiple of en such that +(ên } )
is exponential with parameter 1. Then, as n � �, the three relations in
Propositions 2(b�d) give us, respectively,

mnên1!t%

mn ê2
n2!tn(F ng)(%) (4.4)

mn g(ên) :!t(F ng)(%).
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(In the second relation we have dropped a term %2 because the r.h.s. tends
to �. In the third relation we have used that g(ên x)tx:g(ên). The latter
follows from (4.1) via [BGT] Theorem 1.5.2.) From (4.4) we can solve

g(ên)
ê2

n

t
2!
:!

1
n

,
n
ên

(F ng)(%)t
2!
1!

%. (4.5)

Now put

ên=\:!
2!+

1�(2&:)

en . (4.6)

Then (4.5) turns into

g(en)
e2

n

t
1
n

,
n
en

(F ng)(%)t\2!
1!+\

:!
2!+

1�(2&:)

%, (4.7)

which precisely corroborates the conjecture (0.13).
Unfortunately, we are not able to make (I�II) and (4.4) rigorous. In

order to derive a version of (4.4) that will prove Theorem 4, we shall have
to work with bounds from above and below. These bounds will use the
properties established in Propositions 3�4 and the explicitly solvable cases
g(x)=ax(b+x) and g(x)=ax(b&x)+, i.e., the up- and down-parabolas
introduced in Section 2.2.

In order for our considerations to make sense, we need to show that the
sequence (en)n�1 is asymptotically uniquely determined by the behavior of
g(x) as x � � (recall (0.10)). This is formulated in the following lemma.

Lemma 14. (a) Let g # H satisfy (4.1). Let (e$n)n�1 and (e"n)n�1 be any
two solutions of the equation

1
n

=
g(en)

e2
n

(n�1). (4.8)

Then

lim
n � �

e$n
e"n

=1. (4.9)

(b) Let g1 , g2 # H satisfy (4.1) and

lim
x � �

g1(x)
g2(x)

=K # (0, �). (4.10)
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Let (en, 1)n�1 and (en, 2)n�1 be any two solutions of the equations

1
n

=
gi (en, i)

e2
n, i

(n�1; i=1, 2). (4.11)

Then

lim
n � �

en, 1

en, 2

=K1�(2&:). (4.12)

Proof. (a) Define h(x)=x2�g(x). Then (4.8) reads n=h(en), i.e.,
n � en is the inverse of x � h(x). Now, the function h is regularly varying
with index 2&:. It therefore follows from [BGT] Theorem 1.5.12 that en

is determined uniquely up to asymptotic equivalence (and is regularly vary-
ing with index 1�(2&:)).

(b) This is a direct consequence of the conjugacy properties stated in
[BGT] Propositions 1.5.14�1.5.15. K

In Sections 4.2�4.5 we prove upper and lower bounds for the two cases
: # (0, 1) and : # (1, 2). The guiding idea is that, for large n, F ng is deter-
mined by what g looks like on scale en=en(g). Therefore our bounds will
be successful if we manage to approximate g well in the neighborhood of
en . The approximation is done by parabolas, and therefore we loose some-
thing in the constants.

4.2. Lower Bound for : # (0, 1)

The derivation of the lower bound for : # (0, 1) proceeds in two steps:
(1) derivation under the assumption that x � g(x)�x is decreasing; (2)
removal of this restriction.

Step 1. x � g(x)�x decreasing.

Recall from Proposition 3(a) that g1�g2 implies Fg1�Fg2 . In what
follows we shall bound g from below by a down-parabola, chosen in such
a way that it approximates g well in the neighborhood of en=en(g). The
iterates under F of this down-parabola are easy to compute and provide a
lower bound for the iterates under F of g. For the method to work the con-
stants have to be chosen carefully.

For $ # (0, 1), define

g&
n, $(x)=

$(1&:)
n

x \2&:
1&:

en&x+
+

. (4.13)

Note that g&
n, $(en)=$e2

n�n=$g(en) by (0.10).
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Lemma 15. For every $ # (0, 1) there exists n0=n0($) such that

g�g&
n, $ for all n�n0 . (4.14)

Before we prove this lemma, we first complete the argument of the lower
bound. Applying Proposition 3(a) and Lemma 8(b), we get

F ng�F ng&
n, $=

1
1+n[$(1&:)�n]

g&
n, $=

1
1+$(1&:)

g&
n, $ (n�n0).

(4.15)

Hence

lim inf
n � �

1
%

n
en

(F ng)(%)�
1

1+$(1&:)
lim inf

n � �

1
%

n
en

g&
n, $(%)

=
$(1&:)

1+$(1&:)
2&:
1&:

. (4.16)

Now let $ A 1 to obtain

lim inf
n � �

1
%

n
en

(F ng)(%)�1. (4.17)

This is the lower bound in (0.11�0.12). Note that (4.16�4.17) are in fact
valid for % # (0, o(en)), so also the corresponding bound in (0.16) follows.

Proof of Lemma 15. Recall that

1
n

=
g(en)

e2
n

. (4.18)

With this relation we can write (4.14) as the condition

g(x)
g(en)

�
$(1&:)

e2
n

x \2&:
1&:

en&x+
+

(x�0). (4.19)

Put x= yen . Then (4.19) becomes

g( yen)
g(en)

�$(1&:) y \2&:
1&:

& y+ \y # _0,
2&:
1&:&+ . (4.20)

Since g is regularly varying with index : and en � �, we have by [BGT]
Theorem 1.5.2 that

lim
n � �

g( yen)
g(en)

= y: uniformly on compacts in [0, �). (4.21)
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Furthermore, the following inequality holds:

y:�(1&:) y \2&:
1&:

& y+ ( y�0). (4.22)

To check this, note that (4.22) is equivalent to (1&:)( y&1)�
1& y&(1&:)�0. This is correct for y=1, and we are done once we estab-
lish that f ( y)=(1&:)( y&1)&1+ y&(1&:) attains a minimum at y=1.
But f $( y)=(1&:)(1& y&(2&:)), which changes sign at y=1.

Combining (4.21�4.22) and using that $<1, we now know that (4.20)
holds uniformly on compacts in (0, �) for n sufficiently large. Thus, it
suffices to check (4.20) in a neighborhood of 0. At this point the assump-
tion that x � g(x)�x is decreasing comes in. Namely, pick =>0. Then, for
all y # [0, =], the l.h.s. of (4.20) is larger than yg(=en)�=g(en). But g(=en)�
=g(en)t=:&1 as = a 0 by (4.21). Since :<1, the inequality in (4.20) therefore
also holds on [0, =] for = sufficiently small and n sufficiently large. K

Step 2. Removal of x � g(x)�x decreasing.

The idea is to approximate g by a completely monotone function. We
have the following fact from [BGT] Theorem 1.8.3: For every g # H

satisfying (4.1) there exists ĝ # H such that

(i) lim
x � �

ĝ(x)
g(x)

=1
(4.23)

(ii) ĝ is completely monotone.

(For these properties to be true it is important that : in (4.1) is not
integer.) Since we are dealing with the case 0<:<1, we must have

ĝ�0, ĝ$�0, ĝ"�0. (4.24)

Using these facts, we proceed as follows. For every =>0 there exists
x0=x0(=) such that

g(x)�(1&=) ĝ(x) for all x�x0 . (4.25)

Moreover, for every $>0 there exists $$=$$($, x0)>0 such that

g(x)�$$(x&$)+ for all 0�x<x0 . (4.26)

(Here we shift by $ to allow for g with limx a 0 g(x)�x=0.) We now define
the function

f (x)=min[(1&=) ĝ(x), $$(x&$)+] (x�0). (4.27)
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This function satisfies

(i) g� f

(ii) x �
f (x)

x&$
decreasing on ($, �) (4.28)

(iii) lim
x � �

f (x)
(1&=) ĝ(x)

=1

((i) follows from (4.25�4.26); (ii) holds because ĝ is concave; (iii) holds
because ĝ is sublinear). Now, by Proposition 3(a) and (4.28)(i) we have
that

F ng�F n f. (4.29)

Moreover, by (4.28)(ii) we can apply the result from Step 1 to
f : [$, �) � [0, �) and conclude that, as in (4.17),

lim inf
n � �

1
%

n
en( f )

(F n f )(%)�1 (%�$). (4.30)

Since $ can be picked arbitrarily small, this limit in fact holds for all %>0.
Finally, by Lemma 14, (4.28)(iii) and (4.23)(i),

lim
n � �

en( f )
en((1&=) ĝ)

=1

lim
n � �

en((1&=) ĝ)
en( ĝ)

=(1&=)1�(2&:) (4.31)

lim
n � �

en( ĝ)
en(g)

=1.

Combining (4.29�4.31) and letting = a 0, we again arrive at (4.17). This
completes the proof of the lower bound for : # (0, 1).

4.3. Upper Bound for : # (1, 2)

The strategy here is similar to the one followed in Section 4.2. Again we
proceed in two steps: (1) derivation under the assumption that x � g(x)�x
is increasing; (2) removal of this restriction.

Step 1. x � g(x)�x increasing.

This time we use an up-parabola to bound g from above. This up-
parabola is chosen in such a way that it approximates g well in the
neighborhood of en=en( g). Indeed, for $ # (1, �), define
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g_
n, $(x)=

$(:&1)
n

x \2&:
:&1

en+x+ . (4.32)

Note that g_
n, $(en)=$e2

n�n=$g(en) by (0.10).

Lemma 16. For every $ # (1, �) there exists n0=n0($) such that

g�g_
n, $ for all n�n0 . (4.33)

Before we prove this lemma, we first complete the argument of the upper
bound. The analogues of (4.15�4.16), based on Proposition 3(a) and
Lemma 8(a), read

F ng�
1

1&n[$(:&1)�n]
g_

n, $=
1

1&$(:&1)
g_

n, $ (4.34)

(pick 1<$<1�(:&1)) respectively

lim sup
n � �

1
%

n
en

(F ng)(%)�
1

1&$(:&1)
lim sup

n � �

1
%

n
en

g_
n, $(%)

=
$(:&1)

1&$(:&1)
2&:
:&1

. (4.35)

Let $ a 1 to obtain

lim sup
n � �

1
%

n
en

(F ng)(%)�1. (4.36)

This is the upper bound in (0.11�0.12). Note that (4.35�4.36) are in fact
valid for % # (0, o(en)), so also the corresponding bound in (0.16) follows.

Proof of Lemma 16. Use (4.18) to write (4.33) as the condition

g( yen)
g(en)

�$(:&1) y \2&:
:&1

+ y+ ( y�0). (4.37)

Using the fact that g is regularly varying with index :, we again have
(4.21):

lim
n � �

g( yen)
g(en)

= y: uniformly on compacts in [0, �). (4.38)
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But (compare with (4.22))

(:&1) y \2&:
:&1

+ y+� y: ( y�0). (4.39)

(As before, this holds for y=1 and f ( y)=(:&1)( y&1)& y:&1+1 takes
its minimum at y=1.) Combining (4.38�4.39), we see that (4.37) holds
uniformly on compacts in (0, �) for n sufficiently large. To see that it also
holds in a neighborhood of 0, pick =>0 and use the assumption that
x � g(x)�x is increasing. Then, for all y # [0, =], the l.h.s. of (4.37) is smaller
than yg(=en)�=g(en). But g(=en)�=g(en)t=:&1 as = a 0 by (4.28). Since :>1,
we conclude that the inequality in (4.37) also holds on [0, =] for = suf-
ficiently small and n sufficiently large. Thus, it remains to check (4.37)
for y in a neighborhood of �. But this follows easily from the observation
that the r.h.s. grows like y2 and the l.h.s. like y:. (See also [BGT]
Theorem 1.5.6.) K

Step 2. Removal of x � g(x)�x increasing.

This is completely analogous to Step 2 in Section 4.2 and we leave the
details to the reader.

4.4. Lower Bound for : # (1, 2)

In Section 4.3 we were able to bound g from above by an up-parabola
g_

n . This gave F ng�F ng_
n , and the r.h.s. could be computed explicitly. The

approach in this section, however, must be different. The reason is that
we cannot bound g from below by an up-parabola, simply because
limx � � g(x)�x2=0. What we shall do is by iteration construct a family
(hn)n�1 of functions such that F ng�hn+1 . Each hn+1 is an up-parabola on
``most'' of the space relevant for approximating F ng and a straight line on
the ``rest'' of the space.

The calculation requires several new elements compared to what was
done in Section 4.3. In particular, we need an estimate showing that the
contribution of the piece where hn+1 is a straight line (rather than an up-
parabola) is asymptotically negligible. This in essence means that [hn]n�1

compare well with the iterates of an up-parabola. The latter can be
calculated explicitly and yield the desired bound.

The proof proceeds in two steps: (1) derivation under the assumption
that g is convex, g$ exists and is regularly varying (with index :&1),
g$(0)>0, and x � g(x)�x2 is strictly decreasing; (2) removal of these
restrictions.

Step 1. Proof under the above restrictions on g.
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The main ingredients for our construction of the approximating family
are the following.

(i) Since x � g(x)�x2 is strictly decreasing, the sequence (en) is
uniquely defined and strictly increasing to infinity (see (4.8)). For n�1, let
An , Bn # (0, �) and define g_

n by

g_
n (x)=

An

n
x(Bn en+x). (4.40)

These are up-parabolas with slope AnBn(en�n) at x=0. Recall that en �n is
the scale factor we want to achieve. We shall later specify how to choose
An and Bn in an optimal way for our purpose of approximating F ng.

(ii) Let ln be the linear function

ln(x)=ân+b� nx (4.41)

that touches the function g in x=cen , i.e., ân=g(cen)&cen g$(cen) and
b� n=g$(cen). Here c # (0, �) is a parameter that we shall choose at the end
of the proof in order to optimize the bounds. Since g is convex we know
that

g�ln . (4.42)

Furthermore, since g$ is regularly varying we have limn � � cen g$(cen)�g(cen)
=: (see [BGT] Theorem 1.5.11), so for n � �

ânt&(:&1) c:g(en)
(4.43)

b� nt:c:&1 g(en)
en

(use also (4.21)).

(iii) Let 0<e &
n <e +

n <� be the two solutions of

ln(x)=g_
n (x). (4.44)

The existence of two such solutions imposes a restriction on the possible
choices for An and Bn , as will be displayed in Lemma 17 below. For
admissible choices we can define

hn(x)={g_
n (x)

ln(x)
for x�e &

n

for x�e &
n .

(4.45)

Note that, because g$(0)>0 and :>1, we can choose A1B1 small enough
so that g�h1 . In order to make sure that hn is well defined we need the
following simple lemma.
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Lemma 17. Let

an=ân
1

g(en)
(4.46)

bn=b� n
en

g(en)
.

If An , Bn satisfy

bn&AnBn>- Dn
(4.47)

Dn=(bn&AnBn)2+4anAn>0,

then e&
n , e +

n exist and are strictly positive.

Proof. Equation (4.44) written out in standard quadratic form reads

\An

n + x2&\b� n&
AnBnen

n + x&ân=0. (4.48)

Now use (4.46) and the defining relation for en (i.e., g(en)�e2
n=1�n), to

rewrite (4.48) as

An \ x
en+

2

&(bn&AnBn) \ x
en+&an=0. (4.49)

This gives precisely the conditions on An , Bn formulated in (4.47). K

The key lemma of this section reads:

Lemma 18. For every =>0 there exist $(=)>0 and sequences (An), (Bn)
satisfying (4.47) such that

lim inf
n � �

An Bn�K1(:)&=, with K1(:)=(2&:)1�(2&:),

(4.50)

lim inf
n � �

e &
n+1

en
�$(=)

and such that the corresponding sequence of functions (hn) has the property

g�h1
(4.51)

Fhn�hn+1 on [0, e&
n+1] (n�1).
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With this lemma we can complete the proof of the lower bound as
follows. By (4.51), g�h1 and hence Fg�Fh1 (recall Proposition 3(a)). By
(4.51), we also know that Fh1�h2 on [0, e &

2 ], so Fg�h2 on [0, e &
2 ]. But,

g being convex, we also know that Fg�g�l2 (recall Proposition 3(b) and
(4.42)). Therefore, using that h2=l2 on [e +

2 , �), we get that Fg�h2 .
Since convexity is preserved under F (recall Proposition 3(f)), we can
repeat the above argument and so we get by induction

F ng�hn+1 (n�0). (4.52)

Now, by definition,

hn+1(x)=
An+1

n+1
x(Bn+1en+1+x) for x�e &

n+1 (n�0) (4.53)

and hence we obtain (recall that en+1�en)

1
%

n
en

(F ng)(%)�
n
en

An+1

n+1
(Bn+1en+1+%)

�
n

n+1
An+1Bn+1 for %�e &

n+1 (n�0). (4.54)

According to Lemma 18 the sequences (An), (Bn) can be chosen such that
(4.50) holds and so we get

lim inf
n � �

1
%

n
en

(F ng)(%)�K1(:)&=, (4.55)

the limit being uniform for % # (0, $en). Let = a 0 to get the lower bound in
(0.11�0.12) and the corresponding bound in (0.16).

We are left with the task to prove Lemma 18.

Proof of Lemma 18. The key point is to obtain information about Fhn

on the interval [0, e &
n+1]. To do so we shall exploit properties of the kernel

Kg defined in (1.12), in particular its action on convex functions and the
formula for its action on quadratic functions. This way we shall be able to
reduce the necessary estimates to ones involving the kernel Kgn

_ , which we
can calculate explicitly.

In order to compare Fhn and hn+1 , we shall need another function fn

defined as follows:

fn(x)={g_
n (x)

ln(x)
for x�e +

n

for x�e +
n .

(4.56)
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Note from (4.44�4.45) that hn� fn and hence

Fhn�Ffn . (4.57)

Next, the function Ffn can be expressed as follows using the kernel Kg :

Ffn=Kfn
( fn)=Kgn

_(g_
n )&2n&2� n , (4.58)

where we define

2n=Kfn
(g_

n & fn)
(4.59)

2� n=Kgn
_(g_

n )&Kfn
(g_

n ).

Now, by Lemma 8(a) the first term in (4.58) is explicitly known to be

Kgn
_(g_

n )=\1&
An

n +
&1

g_
n . (4.60)

On the other hand, by Propositions 1(b�c) we have

2� n=
An

n
(Fg_

n &Ffn)

=
An

n
[Kgn

_(g_
n )&Kfn

( fn)]

=
An

n
(2n+2� n) (4.61)

and hence

2� n=
An

n \1&
An

n +
&1

2n . (4.62)

Combining (4.57�4.58), (4.60), and (4.62) we arrive at

Fhn�\1&
An

n +
&1

(g_
n &2n). (4.63)

Thus we have, up to the term 2n , an estimate where the r.h.s. can be easily
compared with hn+1 , since both g_

n and hn+1 are explicitly known func-
tions. Hence what remains is to show that 2n is small compared to g_

n for
n large. This is formulated in the following lemma, which will be proved
later.
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Lemma 19. Suppose that limn � � An = A and limn � � Bn = B with
A, B # (0, �). Then there exists a sequence ($n) such that

2n�$n g_
n on [0, e&

n+1] (n�1)
(4.64)

lim
n � �

n$n=0.

We continue the proof of Lemma 18. Since hn+1=g_
n+1 on [0, e &

n+1], it
follows from (4.63�4.64) that the following condition on the sequences
(An), (Bn) implies the second statement in (4.51):

(1&$n) \1&
An

n +
&1 An

n
x(Bnen+x)

�
An+1

n+1
x(Bn+1en+1+x) for x�e &

n+1 . (4.65)

If Bn+1en+1�Bnen , then this condition is sharpest as x a 0 and so it
suffices to have (recall that en+1�en)

An+1Bn+1�(1&$n)
en

en+1

n+1
n \1&

An

n +
&1

An Bn

(4.66)

Bn+1�Bn .

We have finally to see that the recursion formula (4.66) allows us to
choose An , Bn such that AnBn converges to K1(:) (see (4.50)). Now, (4.66)
is in essence a condition on the asymptotic behavior of An , Bn as n � �.
Namely, for small n the inequalities can be easily satisfied by picking An

large and Bn small (in particular, we need A1B1 small because of g�h1).
The asymptotic analysis runs as follows.

First, since g$ is regularly varying (with index :&1), we have

en

en+1

=1&
en+1&en

en+1

=1&
1

2&:
1
n

+o \1
n+ (4.67)

(because en g$(en)�g(en)t: by [BGT] Theorem 1.5.11). Therefore, using
that $n=o(1�n), we have

(1&$n)
en

en+1

n+1
n

=1&
:&1
2&:

1
n

+o \1
n+ . (4.68)
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It follows that if

An a A�
:&1
2&: (4.69)

Bn A B>0

(with An converging slow enough and Bn converging fast enough), then
(4.66) will be satisfied. Here we have to choose A, B such that the condi-
tions in Lemma 17 can still be satisfied, in other words

b&AB>- D
(4.70)

D=(b&AB)2+4aA>0

with a, b the limits of an , bn as n � �.
Both a and b depend on the parameter c in the definition of (ln), which

we can still choose. We have (recall (4.43) and (4.46))

a=&(:&1) c:, b=:c:&1. (4.71)

For fixed a, b, A the maximal value of AB subject to (4.70) is

AB=b&- 4(&a) A. (4.72)

(Note that 4aA<0, so the second condition in (4.70) implies the first. The
value in (4.72) is in fact the boundary case with D=0.) Substitute (4.71)
and pick A=(:&1)�(2&:) as best choice, to get

AB=:c:&1&�4
(:&1)2

2&:
c:. (4.73)

Maximize the r.h.s. over c. The maximizer is

cmax=(2&:)1�(2&:) (4.74)

and consequently the maximal value for AB is cmax=K1(:), as claimed in
Lemma 18.

The = in (4.50) is needed to allow for strict inequality in (4.70) and to
ensure that lim infn � � e&

n+1 �en=lim infn � � e&
n+1 �en+1�$(=) (see (4.49)).

K

Proof of Lemma 19. We shall estimate the function 2n from above by
a function that can be explicitly calculated.
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Recall from (4.56) that fn�g_
n , with equality on the interval [0, e +

n ].
Moreover, g_

n & fn is convex. Therefore it follows from Proposition 4(g$)
that

2n=Kfn
(g_

n & fn)�Kgn
_(g_

n & fn)�Kgn
_(g_

n 1[en
+, �)). (4.75)

Now, the kernel Kgn
_ is known explicitly. Indeed, a straightforward com-

putation gives (see (0.2), (1.12) and (4.40))

Kgn
_(%, dx)=

dx
Zn(%)

1
(An �n) x(Bnen+x)

__\x
%+

%�en

\Bnen+x
Bn en+%+

&(Bn en+%)�en

&
n�AnBn

, (4.76)

where Zn(%) is the normalizing constant. Next, pass to the scale en by
putting x=zen , %={en , and define

r &
n =e &

n+1 �en , s &
n =e &

n �en
(4.77)

r +
n =e +

n+1 �en , s +
n =e +

n �en .

Estimate

g_
n (zen)=

An

n
zen(Bn en+zen)�_An \Bn

s +
n

+1+ e2
n

n & z2 (z�s +
n ). (4.78)

Combine (4.76�4.78) with the bound g_
n ({en)�[AnBn(e2

n�n)] { to obtain
the estimate

2n({en)�_ 1
Bn \

Bn

s +
n

+1+& g_
n ({en)

1
{

In({) ({>0) (4.79)

with

In({)=|
�

sn
+

dz
Zn({)

z2 1
z(Bn+z)

[z{(Bn+z)&(Bn+{)]n�AnBn, (4.80)

where Zn({) is the normalizing constant (i.e., the integral over [0, �) but
without the term z2).

To proceed we shall need the following:
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Lemma 20. Suppose that (4.69�4.70) hold. Then there exist 0<t&<
t+<� such that

lim
n � �

r &
n = lim

n � �
s &

n =t&

(4.81)
lim

n � �
r +

n = lim
n � �

s +
n =t+.

Proof. Elementary. See the proof of Lemma 17 and use that
limn � � en �en+1=1. K

To complete the proof of Lemma 19 it now suffices to show that (see (4.64)
and (4.79))

sup
0<{�rn

&

1
{

In({)=o \1
n+ . (4.82)

This goes as follows. Estimate

Zn({)�|
{

0
dz

1
z(Bn+z)

[z{(Bn+z)&(Bn+{)]n�AnBn

�
1

Bn+{
[(Bn+{)&(Bn+{)]n�AnBn |

{

0
dz z{(n�AnBn)&1

=
AnBn

{n(Bn+{)
[{{(Bn+{)&(Bn+{)]n�AnBn. (4.83)

Hence

1
{

In({)�
n(Bn+{)

AnBn
|

�

sn
+

dz
z

Bn+z _\
z
{+

{

\Bn+z
Bn+{+

&(Bn+{)

&
n�AnBn

. (4.84)

Now, the term between square brackets in (4.84) uniquely assumes the
maximal value 1 at z={. Hence it follows from the separation of s +

n and
r&

n stated in Lemma 20 that

sup
0<{�rn

&

1
{

In({)=O(e&;n) for some ;>0, (4.85)

which is much stronger than (4.82). K

Step 2. Removal of the restrictions on g.

This is completely analogous to Step 2 in Section 4.2. The details are left
to the reader.
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4.5. Upper Bound for : # (0, 1)

The argument here runs essentially parallel to that of Section 4.4 and
complements the lower bound derived in Section 4.2. We replace the up-
parabolas by down-parabolas

g&
n (x)=

An

n
x(Bnen&x)+. (4.86)

The steps in the proof are the same (with all the inequality signs reversed)
except for two points: (I) the definition of the function fn in (4.56) has to
be modified; (II) the integral in (4.80) comes out a bit different. We shall
only describe these changes, skipping the rest of the argument.

(I) We keep the definition of ln in (4.41), which now dominates (and
touches) g from above. The new definition of fn replacing (4.56) is

fn=g&
n 7 ln . (4.87)

The definition of hn is the same as in (4.45) but with g&
n . First, since fn�hn

and hn is concave, we have by Proposition 4(g$)

Fhn=Khn(hn)�Kfn
(hn)=Kfn

( fn)+Kfn
(hn& fn). (4.88)

Second, fn�g&
n and hence

Kfn
( fn)=Ffn�Fg&

n =\1+
An

n +
&1

g&
n (4.89)

(see Proposition 3(a) and Lemma 8(b)). Third, since hn& fn is convex,
Proposition 4(g$) also gives

Kfn
(hn& fn)�Kgn

&(hn& fn)�ln(Bnen) Kgn
&(1[en

& , Bnen]). (4.90)

Combine (4.88�4.90) to get

Fhn�\1+
An

n +
&1

(g&
n &2n) (4.91)

with

2n=\1+
An

n + ln(Bn en) Kgn
&(1[en

& , Bnen]). (4.92)

The integral can, similarly as in (4.83�4.84), be estimated in an elementary
way and one arrives at an estimate of the form (4.85).
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(II) Equation (4.76) is replaced by

Kgn
&(%, dx)=

dx
Zn(%)

1
(An�n) x(Bnen&x) _\

x
%+

%�en

\Bnen&x
Bn en&%+

(Bn en&%)�en

&
n�AnBn

.

(4.93)

Correspondingly, the integral in (4.80) now runs only up to Bn en . The
crucial estimate is again (4.82), now with

In({)=|
Bn

sn
+

dz
Zn({)

1
z(Bn&z)

[z{(Bn&z)(Bn&{)]n�AnBn. (4.94)

Etcetera.

4.6. Proof of Theorem 6(ii�iii)

Theorem 6(i) has already been proved, since the estimates in Sections
4.2�4.5 are valid for % # (0, o(en)). The proof of Theorems 6(ii�iii) below is
a slight variation on the argument in Section 3.2.

We need a small preparatory lemma.

Lemma 21. If g satisfies (4.1), then

lim
% � �

(Fg)(%)
g(%)

=1. (4.95)

Proof. Left to the reader. Recall (1.1�1.2). K

(ii) lim infx a 0 x&2g(x)>0. Consider first the case : # (0, 1). Return
to the proof of Lemma 13(a). Equation (3.8) tells us that F n0+2g has a
strictly positive slope at 0. Apply the argument of Section 4.2 to F n0+2g
instead of g. The down-parabola can be fitted under F n0+2g all the way up
to 0. Moreover, by Lemmas 14 and 21, F n0+2g has the same sequence (en)
as g asymptotically. Hence we get the same lower bound as in Section 4.2
for the scaled functions

1
%

n
en

(F n+n0+2g)(%). (4.96)

This in turn leads to the desired lower bound as n � �, because
limn � � en+n0+2 �en=1.
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To get the complementary upper bound, we use the concave upper
envelope g+ of g. Since F ng+ is concave by Proposition 3(b) and
dominates F ng, it suffices to get an upper bound on the slope at 0 of the
scaled functions

1
%

n
en

(F ng+)(%). (4.97)

Now, (3.8) tells us that

lim
% a 0

1
% _

n
en

(F ng+)(%)&=|
�

0
du exp _&|

u

0
dv

1
hn(v)& (4.98)

with

hn(v)=
1

v(en �n) _
n
en

(F ng+) \v
en

n +& . (4.99)

Since g+ has the same sequence (en) as g asymptotically, the argument in
Section 4.5 provides us with an upper bound on (n�en) F ng+. Substitution
into (4.98) gives the desired upper bound on the slope at 0.

The same argument works for the case : # (1, 2) and follows the
arguments in Sections 4.3�4.4.

(iii) lim supx a 0 x&2g(x)=0. Trivial by Lemma 13(b).

5. PROOF OF THEOREM 7

In this section we briefly explain why Theorem 7 is a straightforward
generalization of Theorem 4.

Our heuristic argument in Section 4.1 was based on Proposition 2 in
Section 1.3, which describes the action of the kernels K (n)

g (n�1) defined in
(1.13). For the generalized transformation defined in (0.17�0.18) the new
kernels are

K (n)
g =KF (n&1)g b } } } b KF (0)g (n�1) (5.1)

with

F (n)=Fcn&1
b } } } b Fc0

(n�1). (5.2)
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We easily deduce that the new version of Proposition 2 reads:

(a) |
�

0
K (n)

g (%, dy)=1

(b) |
�

0
yK (n)

g (%, dy)=%

(5.3)

(c) |
�

0
y2K (n)

g (%, dy)=%2+_n(F (n)g)(%)

(d) |
�

0
g( y) K (n)

g (%, dy)=(F (n)g)(%)

for all g # H, % # [0, �) and n�1, with _n given by (0.20):

_n= :
n&1

k=0

1
ck

. (5.4)

The action of K (n)
g on straight lines, up- and down-parabolas becomes

K (n)
g (ga, b)=ga, b (a>0, b # R)

K (n)
g (g_

a, b)=
1

1&a_n
g_

a, b \0<a<
1
_n

, b # R+ (5.5)

K (n)
g (g&

a, b, c)=
1

1+a_n
g&

a, b, c (a>0, b, c # R),

generalizing Lemmas 7�8. This forms the basis for the rigorous bounds that
were derived in Sections 4.2�4.5.

Thus, all we have to do is replace (F n, n) by (F (n), _n). All the calcula-
tions in Section 4 carry over with the same constants everywhere. Only the
defining relation for en needs to be modified into (0.21), resulting in all free
factors n changing into _n . The reader will be easily convinced that there
is no snag.

A. APPENDIX A

In this appendix we give an outline of the main steps in the proof of
Propositions 4(e$�f $). The technicalities will be worked out in Appendix B.
Proposition 4(g$) will be proved in Appendix C as a corollary.
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A.1. Informal Background

Return to the stochastic differential equation in (0.26). In terms of the
solution to this equation, (Z g

%(t))t�0 , we can write

(Fg)(%)=|
�

0
g(x) & g

%(dx)

= lim
t � �

E( g(Z g
%(t)) | Z g

%(0)=x). (A.1)

Namely, Z g
%(t) as t � � converges in law to & g

% , the unique equilibrium of
(0.26). The limit in (A.1) is independent of the initial value Z g

%(0)=x as
long as x>0. This is because the diffusion in (0.26) is ergodic, which can
be proved easily by coupling (see [DG2]). The semigroup (S g

%(t))t�0 on
L1([0, �); & g

% ) associated with (0.26) is

(S g
%(t) f )(x)=E( f (Z g

%(t)) | Z g
%(0)=x). (A.2)

The generator of this semigroup is the closure of the operator (%&x)(���x)+
g(x)(�2��x2). Thus, informally, if we define u(%, x, t)=(S g

%(t) f )(x) then
this function satisfies the equation

ut=(%&x) ux+g(x) uxx (x, t>0)
(A.3)

u(%, x, 0)= f (x) (x>0).

One way to prove (e$) and (f $) would be to show that u% (%, x, t) and
u%% (%, x, t) have a sign for all x, t>0 and that this sign is the same as that
of f $ resp. f ". Namely, we could then draw out (e$) and (f $) by observing
that this property would be inherited by the limit (recall (1.12))

(Kg f )(%)=|
�

0
f (x) & g

%(dx)= lim
t � �

u(%, x, t). (A.4)

We shall essentially follow this strategy here. However, we use the Laplace
transform w.r.t. the time variable as the basic object. This way we avoid
t-derivatives.

Define

û(%, x, *)=
1
* |

�

0
e&(t�*) u(%, x, t) dt (*>0). (A.5)

Then (A.4) gives

(Kg f )(%)= lim
* � �

û(%, x, *). (A.6)
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We shall obtain (e$) and (f $) by proving the following result: For g # H

and f : [0, �) � R such that f # �% # [0, �) L1([0, �); & g
% ),

(e") f increasing (decreasing) O % � û(%, x, *) increasing (decreasing)
for all x, *>0.

(f") f convex (concave) O % � û(%, x, *) convex (concave) for all
x, *>0.

(Note here that both statements are true for arbitrary g # H. The restric-
tion is on f .)

The way we approach the proof of (e") and (f") is via a standard-type
variational argument. Define, still informally,

p=û
(A.7)

q=ûx .

Keep %, * fixed and take x as the running variable.

Lemma 22. The functions p and q satisfy:

(a) p=*[ gpxx+(%&x) px]+ f .

(b) (1+*) q=*[ gqxx+(g$+(%&x)) qx]+ f $.

Proof. Use (A.3�A.5). K

Fix %, *>0. We shall use the representations in Lemma 22 to prove the
following three positivity principles:

(1) f �0 O p�0

(2) f $�0 O px=q�0 (A.8)

(3) f "�0 O pxx=qx�0.

A precise formulation of (A.8)(1�3) will be given in Propositions 5�7
below. Here we explain informally how (e") and (f") follow.

Proof of (e"). For fixed 2>0, put

r(x)=p(%+2, x, *)&p(%, x, *). (A.9)

From Lemma 22(a) and px=q it follows that

r&*[ grxx+(%&x) rx]=*2 q(%+2, x, *). (A.10)
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This is the same equation as in Lemma 22(a), but with p replaced by r and
f replaced by x � *2 q(%+2, x, *). Applying (A.8)(1�2), we therefore get

f $�0 O q�0 O r�0, (A.11)

which is (e") because of (A.7) and (A.9). K

Proof of (f"). Fix 2>0. For 0<:<1, define

s(x)=(1&:) p(%, x, *)+:p(%+2, x, *)&p(%+:2, x, *). (A.12)

^From Lemma 22(a) it follows that

s&*[ gsxx+(%&x) sx]

=(1&:) f +:[ f +*2 q(%+2, x, *)]&[ f +*:2 q(%+:2, x, *)]

=*:2 [q(%+2, x, *)&q(%+:2, x, *)]. (A.13)

This is the same equation as in Lemma 22(a), but with p replaced by s and
f replaced by the last term. Hence, if we could show that

f "�0 O q(%+2, x, *)&q(%+:2, x, *)�0, (A.14)

then we would obtain s�0 by (A.8)(1), which is (f") because of (A.7) and
(A.12). To prove (A.14), put %� =%+:2 and 2� =(1&:) 2, and define

t(x)=q(%� +2� , x, *)&q(%� , x, *). (A.15)

Substitution into Lemma 22(b) gives

(1+*) t&*[ gtxx+(g$+(%� &x)) tx]=2� %� qx(%� +2� , x, *). (A.16)

According to (A.8)(2), it now remains to show that

f "�0 O qx(%� +2� , x, *)�0. (A.17)

But this is precisely (A.8)(3). K

The technicalities behind (A.8) and (A.9�A.17) are slightly delicate,
because we are dealing with functions on the non-compact set [0, �).
Therefore we cannot use standard positivity principles from the literature
(see e.g. [PW]). In Sections A.2�A.3 we give an outline of the main steps.
These will be based on three propositions and three lemmas, the proof of
which is deferred to Appendix B.

A.2. Proof of (e")

The strategy of the proof of (A.8)(1�3) is to reformulate (a) and (b) in
Lemma 22 as variational problems. However, here a number of technical
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difficulties arise due to the fact that the x-variable runs over an unbounded
domain. We shall therefore first discuss the problem not for general g # H

but for g satisfying some appropriate restrictions. Later we shall remove
these restrictions via an approximation argument.

Below we abbreviate I=[0, �], and int(I ) denotes the interior of I. (All
statements below will in fact be proved for arbitrary I=[A, B] with
&��A<B��.)

Definition (``class R''). R is the set of functions g: R � [0, �) such
that

(i) g is locally Lipschitz continuous

(ii) there exist 0<c�a<� and 0<d�b<1 such that

c+dx2�g(x)�a+bx2 (x # R). (A.18)

The domain of equations (a) and (b) in Lemma 22 has to be specified
properly and for this purpose we need to introduce classes Hi (g, :, %) with
i=0, 1, 2 and :=0, 1, 2 as follows.

Definition (``classes Hi (g, :, %)''). For g # R and % # int(I ), let

H0(g, :, %)=[v: R � R measurable: (i) and (ii) hold]

H1(g, :, %)=[v # H0(g, :, %): (iii) and (iv) hold] (A.19)

H2(g, :, %)=[v # H1(g, :, %): (v) and (vi) hold]

with

(i) v=0 on I c

(ii) |
I

dx g:+ g
% v2<�

(iii) v # AC(int(I ))
(A.20)

(iv) |
I

dx g:+1+ g
% v2

x<�

(v) g:+1+ g
% vx # AC(int(I ))

(vi) |
I

dx [(g:+1+ g
% vx)x]2 1

g:+ g
%

<�.

Note that H0(g, 0, %)=L2(I; + g
% ). With these ingredients we can now prove

the following two positivity principles (which give a precise meaning to
(A.8)(1�2)):
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Proposition 5. Fix % # int(I ). Let g # R, *>0 and f # H0(g, 0, %).
Consider the equation

p=*[ gpxx+(%&x) px]+ f
(A.21)

p # H1(g, 0, %), px # AC(int(I )).

(a) The solutions of (A.21) are minimizers of the variational problem

min
p # H1(g, 0, %) |R

dx [ p2+*gp2
x&2fp] + g

% . (A.22)

(b) This variational problem has a unique minimizer p*, satisfying
p* # H2(g, 0, %), p*x # H1(g, 1, %) and solving (A.21).

(c) If f �0 then p*�0.

Proposition 6. Fix % # int(I ). Let g # R, *>0 and f # H1(g, 0, %). Let
p* be the solution of (A.21�A.22) and put q*=p*x .

(a) q* solves the equation

(1+*) q=*[ gqxx+(g$+(%&x)) qx]+ f $
(A.23)

q # H1(g, 1, %), qx # AC(int(I )).

(b) q* is the unique minimizer of the variational problem

min
q # H1(g, 1, %) |R

[(1+*) q2+*gq2
x&2f $q] g+ g

% (A.24)

and satisfies q* # H2(g, 1, %).

(c) If f $�0 then q*�0.

To give a formal proof of (e") we need two more facts:

Lemma 23. Fix g # R and % # int(I ). Then p*=p*(%, x, *) satisfies

lim
* � �

p*(%, x, *)=(Kg f )(%) for all x>0. (A.25)

Lemma 24. For all g # R, i=0, 1 and :=0, 1:

(a) Hi (g, :, %2)=Hi (g, :, %1) for all %1 , %2 # int(I ).

(b) Hi (g, :+1, %)�Hi (g, :, %) for all % # int(I ).
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The argument in (A.9�A.11) can now be formalized as follows.
Abbreviate

Hi (g, :)= ,
% # int(I )

Hi (g, :, %)
(A.26)

L1(g)= ,
% # int(I )

L1(I; + g
% ).

Let us assume that g # R, f # H1(g, 0) and f $�0. Then x � q(%+2, x, *)
satisfies

q # H1(g, 1, %+2)=H1(g, 1, %)/H1(g, 0, %), (A.27)

by (A.21), (A.23) and Lemmas 23�24. Moreover, x � r(x) satisfies

r # H1(g, 0, %), rx # AC(int(I )), (A.28)

by (A.21) and Lemma 24(a). We may therefore apply Propositions 5�6 to
(A.10) and obtain that r�0. The conclusion is that (recall (A.6�A.7))

g # R, f # H1(g, 0), f $�0 O Kg f increasing. (A.29)

The next step is to pass from f # H1(g, 0), f $�0 to f # L1(g), f increasing.
This can be done by a standard approximation: pick ( fn) such that
fn # H1(g, 0), f $n�0 and fn � f in L1(g). Since

(Kg f )(%)=
�I f (x) + g

%(x) dx
�I + g

%(x) dx
, (A.30)

it follows that Kg fn � Kg f pointwise. Thus we now know that

g # R, f # L1(g), f increasing O Kg f increasing. (A.31)

Finally, we have to show that we can pass from g # R to g # H, the class
defined in (0.1). This comes out of the following approximation lemma.

Lemma 25. For all g # H:

(a) There exists a sequence (gn)/R such that gn a g pointwise
(a means monotone decreasing as a sequence of functions).

(b) If gn a g pointwise then Kgn f � Kg f pointwise for all f # L1(g).

This completes the proof of (e").
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A.3. Proof of (f ")

The proof comes out of the following positivity principle (which gives a
precise meaning to (A.8)(3)):

Proposition 7. Fix % # int(I ). Let g # R, *>0 and f # H2(g, 0, %). Let
p* and q*=p*x be the solutions of (A.21�A.22) resp. (A.23�A.24). Define

!*=g2+ g
% p*xx=g2+ g

% q*x (A.32)

and the class

K(g, %)={v: R � R measurable: v=0 on Ic, |
I

dx (v2+gv2
x)

1
g2+ g

%

<�= .

(A.33)

(a) !* solves the equation

(1+*) !=*[ g!xx&(%&x) !x]+ f "g2+ g
%

(A.34)
! # K(g, %), !x # AC(int(I )).

(b) !* is the unique minimizer of the variational problem

min
! # K(g, %) |R

dx [(1+*) !2+*g!2
x& f "g2+ g

% !]
1

g2+ g
%

. (A.35)

(c) If f "�0 then !*�0.

This positivity principle gives us the proof of (f") when g # R,
f # H2(g, 0, %) and f "�0. The generalization to g # H, f # L1(g) and f
convex follows the route taken in the proof of (e") and we shall not
elaborate on it further.

In Appendix B we prove Propositions 5�7 and Lemmas 23�25.

B. APPENDIX B

The proofs will be given for functions on an arbitrary closed interval
I=[A, B] with &��A<B��. By specializing to the case A=0, B=�
we recover the situation described in Appendix A and the main body of the
paper.
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B.1. Definitions

Let H(I ) denote the class of functions g: R � [0, �) satisfying

(i) g=0 on I c

(ii) g&1 # L1
loc(int(I ))

(B.1)
(iii) g globally Lipschitz continuous on I

(iv) g(x)�ax2+b (x # R) for some 0�a<1, b�0.

For g # H(I ) and x, % # int(I ), define

? g
%(x)=exp _&|

x

%

y&%
g( y)

dy& (B.2)

and

+ g
%(x)=

? g
%(x)

g(x)
if g(x)>0

=0 otherwise. (B.3)

Note that

? g
% >0, ? g

% # AC(int(I )), + g
% # L1

loc(int(I )) (B.4)

and

? g
% =g+ g

% , (? g
% )x=(%&x) + g

% , ? g
% �1. (B.5)

Before we proceed, let us first check that + g
% is integrable for all g # H(I )

and % # int(I ). Indeed, pick :, ; # int(I ) such that :<%<;. Then, by (B.5),

|
;

:
+ g

%(x) dx=|
;

:

g(x) + g
%(x)

g(x)
dx�|

;

:

1
g(x)

dx<�

|
:

A
+ g

%(x) dx=|
:

A

(%&x) + g
%(x)

%&x
dx

=_? g
%(x)

%&x&
:

A
&|

:

A

? g
%(x)

(%&x)2 dx�
1

%&A
+

1
%&:

<� (B.6)

and similarly for [;, B] in the latter.
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B.2. Proof of Propositions 5�7

Recall the definitions of the classes R, Hi (g, :, %) and K(g, %) in
Appendix A. In the proof we shall need the following technical lemma.

Lemma 26. For g # R and % # int(I ):

(a) :=0, 1: u # H1(g, :, %), v # H2(g, :, %) O (g:? g
% uvx)(\�)=0.

(b) Suppose that ! satisfies (A.34). Then u # K(g, %) O ((1�? g
% ) u!x)

(\�)=0.

Proof. (a) First we show that (g:? g
% uvx)(\�)=l exists. Then we

show that l=0.
For a<b, write

[ g:? g
% uvx]b

a=|
b

a
ux(g:? g

% vx) dx+|
b

a
u(g:? g

% vx)x dx (B.7)

and estimate

|1-st term|�\|
b

a
u2

x g:? g
% dx+

1�2

\|
b

a
v2

x g:? g
% dx+

1�2

(B.8)

|2-nd term|�\|
b

a
u2g:&1? g

% dx+
1�2

\|
b

a
[(g:? g

% vx)x]2 1
g:? g

%

dx+
1�2

.

All four factors tend to 0 as a, b � \�, because u # H1(g, :, %) and
v # H2(g, :, %) (see (A.19�A.20)). Hence (g:? g

% uvx)(x) � l as x � \�.
Next, for a<b, write (recall that ? g

% =g+ g
% )

} 1
b&a |

b

a
g:+1+ g

% uvx dx }
�\|

b

a
g:+ g

% u2 dx+
1�2

\|
b

a
g:+1+ g

% v2
x dx+

1�2 1
b&a

max
x # [a, b]

g1�2(x). (B.9)

Let b � � and use that g # R, to get that there exists C<� such that for
all a

|l |�C \|
�

a
g:+ g

% u2 dx+
1�2

\|
�

a
g:+1+ g

% v2
x dx+

1�2

. (B.10)

Now let a � � and use that u # H0(g, :, %) and v # H1(g, :, %), to obtain
l=0. Similarly when a, b � &�.
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(b) A similar argument works here, namely

_ 1
? g

%

u!x&
b

a
=|

b

a
ux \ 1

? g
%

!x+ dx+|
b

a
u \ 1

? g
%

!x+x
dx (B.11)

and

|1-st term|�\|
b

a
u2

x

1
?g

%

dx+
1�2

\|
b

a
!2

x

1
?g

%

dx+
1�2

(B.12)

|2-nd term|�\|
b

a
u2 1

g?g
%

dx+
1�2

\|
b

a \
!x

? g
%+

2

x
g? g

% dx+
1�2

.

The first three factors tend to 0 as a, b � \�, because u, ! # K(g, %) (see
(A.33)). Only the fourth factor needs closer inspection. We bound the
integrand with the help of (A.34):

\!x

? g
%+

2

x
g? g

% =
1
*2 \(1+*)

!
? g

%

& f "+
2

g? g
% �

2
*2 \(1+*)2 !2

g? g
%

+ f "2g? g
%+ .

(B.13)

The r.h.s. is integrable because ! # K(g, %) (see (A.33)) and f " # H0(g, 2, %)
(see (A.19�A.20)). The latter inclusion follows from the assumption that
f # H2(g, 0, %). Therefore also the fourth factor tends to 0 as a, b � \�.
Etcetera. K

Proof of Proposition 5. (a) Use (B.5) to rewrite (A.21) as

p+ g
% &*(g+ g

% px)x& f+ g
% =0

(B.14)
p # H1(g, 0, %), px # AC(int(I )).

In order to turn this into the variational problem (A.22), we shall need that
p # H2(g, 0, %). For this we must check (A.20)(v�vi) for :=0. Part (v)
follows from ? g

% =g+ g
% �1 and px # AC(int(I )). Part (vi) follows from the

estimate

[(g+ g
% px)x]2 1

+ g
%

=
1
*2 ( p& f )2 + g

% �
2
*2 ( p2+ f 2) + g

% (B.15)

with the r.h.s. integrable because p # H1(g, 0, %)/H0(g, 0, %) (recall Lemma
24(b)) and f # H0(g, 0, %) (see (A.19�A.20)).

Now multiply (B.14) by u # H1(g, 0, %) and integrate over R to obtain

|
R

dx [up+*gux px& fu] + g
% =0 for all u # H1(g, 0, %), (B.16)
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where we use Lemma 26(a) for :=0 to get rid of the boundary terms
(g+ g

% upx)(\�)=0. This proves that p is a minimizer of (A.22).

(b) The uniqueness of the minimizer follows from the strict convexity
of the integrand in (A.22). We already saw that p # H2(g, 0, %). To prove
px # H1(g, 1, %), note that p # H1(g, 0, %) trivially gives px # H0(g, 1, %).
We already have from (B.14) that px # AC(int(I )). Thus it remains
to check (A.20)(iv) for :=1, i.e., �I dx g2+ g

% p2
xx<�. But, (g+ g

% px)x=
[ gpxx+(%&x) px] + g

% , or

g2+ g
% p2

xx=[(g+ g
% px)x]2 1

+ g
%

&(%&x)2 + g
% p2

x . (B.17)

Hence, by (B.15), it suffices to check that �I dx (%&x)2 + g
% p2

x<�.
However, the latter is implied by px # H0(g, 1, %) because (%&x)2�Cg(x)
for some C<� (see (A.18)). It now also easily follows that the minimizer
of (A.22) solves (B.14).

(c) Suppose that not p�0. Then, since f �0, the integrand of (A.22)
does not increase when p is replaced by | p|. K

Proof of Proposition 6. (a) By differentiating (A.21) w.r.t. x and
putting q=px , we get (A.23). Note that q # H1(g, 1, %) and qx # AC(int(I ))
because p # H2(g, 0, %).

(b) Use (B.5) to rewrite (A.23) as

(1+*) q? g
% &*(g? g

% qx)x& f $? g
% =0

(B.18)
q # H1(g, 1, %), qx # AC(int(I )).

In order to turn this into the variational problem (A.24), we shall need that
q # H2(g, 1, %). For this we must check (A.20)(v�vi) for :=1. Part (v)
follows from ? g

% =g+g
%�1, (B.1)(iv) and qx # AC(int(I )). Part (vi) follows

from the estimate

[(g? g
% qx)x]2 1

? g
%

=
1
*2 ((1+*) q& f $)2 ? g

% �
2
*2 ((1+*)2 q2+ f $2) ? g

% (B.19)

with the r.h.s. integrable because q, f $ # H0(g, 1, %). Note that the latter
inclusion for f $ follows from the assumption that f # H1(g, 0, %).

Now multiply (B.18) by u # H1(g, 1, %) and integrate over R to obtain

|
R

dx [(1+*) uq+*guxqx& f $u] ? g
% =0 for all u # H1(g, 1, %), (B.20)
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where we use Lemma 26(a) for :=1 to get rid of the boundary terms
(g? g

% uqx)(\�)=0. This proves that q is the unique minimizer of (A.24).

(c) Obvious. K

Proof of Proposition 7. (a) By putting !=g? g
% qx and computing !x , !xx

with the help of (B.18), one easily checks that ! satisfies (A.34). Note that
! # K(g, %) and !x # AC(int(I )) because q # H2(g, 1, %).

(b) In view of the relation

\!x

? g
%+x

=
g!xx&(%&x) !x

g? g
%

, (B.21)

we may rewrite (A.34) as

(1+*)
!

g? g
%

&* \!x

? g
%+x

& f "=0. (B.22)

Multiply by u # K(g, %) and integrate over R to get

|
R

dx [(1+*) u!+*gux!x& f "g? g
% u]

1
g? g

%

=0 for all u # K(g, %),

(B.23)

where we now use Lemma 26(b) to get rid of the boundary terms
(u!x�? g

% )(\�)=0. This proves that ! is the unique minimizer of (A.35).

(c) Obvious. K

B.3. Proof of Lemmas 23�25

Proof of Lemma 23. Fix g # R and % # int(I ). Let A be the operator
defined by Ap=gpxx+(%&x) px . Then (A.21) reads

p=[Id&*A]&1 f
(B.24)

p # H1(g, 0, %), px # AC(int(I )).

A is self-adjoint in L2(I; & g
% ), satisfies (Ap, p) L2(I; &%

g)�0, and has a 1-dimen-
sional null space given by the constant functions. We therefore have, by a
standard argument,

lim
* � �

[Id&*A]&1 f =( f , e) L2(I; &%
g) e, (B.25)

with e the constant function equal to 1. The limit is the orthogonal projec-
tion onto the null space of A. Note that ( f , e) L2(I; &%

g)=(Kg f )(%) (see
(A.30)). K
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Proof of Lemma 24. (a) Fix g # R. We show that + g
%1

and + g
%1

are com-
parable for all %1 , %2 # int(I ). Indeed, write (recall (1.1))

+ g
%1

(x)

+ g
%2

(x)
=

g(x) + g
%1

(x)

g(x) + g
%2

(x)

=exp _&|
x

%1

y&%1

g( y)
dy+|

x

%2

y&%2

g( y)
dy&

=exp _(%2&%1) |
%1

x

dy
g( y)

+|
%2

%1

%2& y
g( y)

dy& . (B.26)

Now, the second integral is independent of x, while the first integral is
bounded in absolute value by �R (dy�g( y)). But the latter is finite because
g # R implies g(x)�c+dx2 for some c, d>0 (see A.18)).

(b) Straight from the definitions in (A.19�A.20), because g # R

implies g�c for some c>0.

Proof of Lemma 25. (a) Fix g # H(I ) (recall (B.1)). Define gn # H(I )
by

gn(x)=max {1
n

(1+x2), g(x)= (x # R, n�1). (B.27)

Then gn # R, gn�g and gn a g pointwise.

(b) The following holds when gn a g pointwise in H(I ) and
f # �% # int(I ) L1(I; + g

% ):

lim
n � � |

R

f (x) + gn
% (x) dx=|

I
f (x) + g

%(x) dx+ :
x # �I

f (x)
? g

%(x)
%&x

(B.28)

with the convention that the boundary terms at x # �I=[A, B] disappear
when A=&� and�or B=�. Indeed, if f is continuously differentiable
with compact support, then (B.28) is easily read off from the relation

|
b

a
f (x) + gn

% (x) dx=_ f (x)
? gn

% (x)
%&x &

b

a

&|
b

a
? gn

% (x) d \ f (x)
x&%+ (&��a<b��), (B.29)

in combination with the fact that limn � � ? gn
% =? g

% pointwise (recall
Lemma 4). The extension to f # �% # int(I ) L1(I; + g

% ) follows from a standard
approximation argument.
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The boundary terms in (B.28) vanish when g # H/H([0, �]) (com-
pare (0.1) with (B.1)), because ? g

%(0)=0 by Lemma 3. Since Kgn f and Kg f
are defined by (A.30), it follows that Kgn f � Kg f pointwise. K

C. APPENDIX C

In this section we prove Proposition 4(g$). The proof is an easy corollary
of the positivity principles established in Appendices A�B.

We begin with a small observation, analogous to Lemma 24.

Lemma 27. For all g1 , g2 # R with g1�g2 , i=0, 1 and :=0, 1:

Hi (g2 , :, %)/Hi (g1 , :, %) for all % # int(I ). (C.1)

Proof. Fix g1 , g2 # R with g1�g2 . Then from (B.2�B.3) we have that
for all x, % # int(I )

g1(x) + g1
% (x)

g2(x) + g2
% (x)

=exp _&|
x

% {
1

g1( y)
&

1
g2( y)= ( y&%) dy&�1. (C.2)

Moreover, g1 �g2 is bounded away from 0 and � by (A.18). Now recall
(A.19�A.20). K

Fix % # int(I ) and *>0. Pick g1 , g2 # R with g1�g2 and f # H2(g2 , 0, %)
with f "�0. Return to Proposition 5. By Lemma 24 we have

f # Hi (gj , 0, %) (i=0, 1; j=1, 2). (C.3)

Next, let p1* and p2* be the unique solutions of (A.21) for the pairs ( f , g1)
resp. ( f , g2). Define 2=p2*&p1* . Then subtraction in (A.21) gives

2=*[ g12xx+(%&x) 2x]+(g2&g1)( p2*)xx
(C.4)

2 # H1(g2 , 0, %), 2x # AC(int(I )).

Because f "�0, Propositions 5�7 applied to the pair ( f , g2) give that
( p2*)xx�0. Together with g1�g2 we therefore have (g2&g1)( p2*)xx�0.
Now apply Proposition 5 to (C.4) to get that 2�0. Recalling Lemma 24
and (A.26), we have now proved that

g1 , g2 # R, g1�g2 , f # H2(g2 , 0, %), f "�0 O Kg1
f�Kg2

f. (C.5)
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The generalization to g1 , g2 # H, g1�g2 , f # L1(g2), f convex follows the
route explained at the end of section A.2.
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