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Class field theory and the first case of Fermat's last theorem

H. W. Lenstra, Jr. and P. Stevenhageii

For a prime number p, the first case. of Fermat's last theorem for exponent p asserts that

for any three integers x, y, z with xp + yp + zp = 0, at least one of x, y, z is divisible by p.

In. the present chaptcr we use class field theory to prove several classical results concerning

the first case. Our treatment is based on Hasse's exposition [6, Section 22], but whereas

Hasse applied explicit reciprocity laws, our proofs depend only on general properties of

power and norm residue Symbols.

Theorem 1. The first case of Fermat's last theorem with exponent p is correct for each

prime number p for which 2p + l is prime.

This theorem is due to Sophie Gcrmaiii (1823).

For a positive integer &, we define Nk = Π,,̂  (l + »7 + $), the product ranging over

all kth roots of unity η and ϋ in an algebraic closure of the field Q of rational numbers. It

is easy to see that N k is a rational integer for each k, and that Nk vanishes if and only if

k is divisible by 3.

Theorem 2. Lei p be a prime number, and suppose that there exists a positive integer k

not divisible by p for which kp + l is a prime number not dividing Nk· Then the first case

of Fermat's last theorem with exponent p is correct.

This result, which is similar to a theorem of Wenclt (1894), is taken from [1]. The integer

k is necessarily even and not divisible by 3.

Let k be a positive integer, and let Tk be the set of odd primes p for which p divides

k or kp + l is a prime factor of Nk. By Theorem 2, the first case of Fermat's last theorem

is correct for exponent p if p is a prime number not in Tk for which kp + l is prime. When

k is not divipible by 3, the estimate \Nk\ < 3fc shows that the exceptional set Tk has

cardinality at most k2 + log k.

In 1985, Adleman, Heath-Brown, and Fouvry [l, 4] deduced from Theorem 2 that the

first case is valid for infimtely maiiy p, äs follows. Using sieve methods, Fouvry showecl

that there exists c > 0 with the following property: for all sufficiently large t, there are at

least c · 11 log i prime numbers q < t with q = 2 mod 3 for which q — l has a prime factor

p > 'Λ6687. Each pair q, p gives rise to an integer k = (q - l)/p that is less than u = i0·3313.

The inequality c · t/logt > u · (υ? + log«), which is valid when t is large enough, shows

that some value of k must arise for more than k2 +log k pairs q, p. For at least one of these

pairs the number p is outsicle 2\, so that the first case holds for p.

From NZ = —3 one fincls that TZ is empty, so Theorem l follows from Theorem 2,

with k = 2. In general, when k is a givcn positive integer that is not divisible by 3, then
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it is usually easy to cleduce from Theorem 2 that the first case of Fermat's last theorem is

correct for each prime exponent p for which kp + l is prime. For example, from

JV4 = -3-53, N8 = -37·53·173, Nlo = -3 · II9 · 3l3

one finds T± = Tg = 0 and TIO = {3,5}. Since Theorem l applies to p = 3 and to p — 5,

one concludes that the first case is true for p if 4p +1, 8p +1, or 10p +1 is a prime number.

This result is due to Legendre (1823). Exceptional primes p that may arise for other values

of k are generally easily dealt with by means of the following theorem.

Theorem 3. Lei p be a prime number, and suppose that the ßrst case of Fermat's last

theorem for exponent p is false. Then we have

(a) 2P-1 = lmodp2,

(b) Z?'1 = lmodp2.

These two results are due to Wieferich (1909) and Mirimanoff (1910), respcctively.

There is an efficient algorithm that for a given prime number p tests the validity of

(a) and (b). It is believed that there is not a single prime p satisfying both (a) and (b),

so that this algorithm, combined with Theorem 3, could be used to prove the first case of

Fermat's last theorem for any given prime exponent. This belief is borne out by numerical

experiments. In fact, of all primes for which (a) has ever been tested—and this includes

all primes less than 4 · 1012 (see [3])—only p = 1093 and p — 3511 satisfy (a), and neither

of these primes satisfies (b). (The only primes p < 232 w 4.3 · 109 satisfying (b) are p = 11

and p - 1,006,003, see [8].)

It is an amusing consequence of (a) that the first case of Fermat's last theorem holds

for exponents that are Mersenne or Fermat primes.

Several mathematicians proved, with the same hypotheses äs in Theorem 3, that for

various other small prime numbers q one has qp~l = l modp2. The best result of this

nature, prior to the work of Wiles and Taylor, was obtained by Granville and Monagan [5],

who covered all prime numbers q < 89. If it had been possible to replace 89 by an expression

that tends sufficiently rapidly to infinity with p, such äs 4 · (logp)2, then the first case of

Fermat's last theorem would have followed for all p, by [7]; but this could apparently

not be achieved by the method of [5]. However, by a theorem of Gunderson (1948) the

bound 89 is good enough to imply the first case for all p up to the limit in the title

of [5]. Tanner and Wagstaff [9] improved upon Gunderson's work and raised the limit to

156,442,236,847,241,729.

In the proofs, we let p be a prime number, and we let ζ be a primitive pth root of unity in

an extension field of Q. We denote by (-) the pth power residue symbol for the cyclotomic

field Q(C), and by p = (( - 1) the unique prime of Q(() lying over p. The propcrties of

power and norm residue symbols that we use can all be found in [2, pp. 348-353].
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Let it now be supposed that z, y, z are integers not clivisible by p that satisfy xp +

yP + zp = 0. Clearly, p is odd. Removing a greatest common divisor, we may assume

that x, y, z are pairwise coprime. We have Π<"=ο (χ + Ϊ/C1) — χΡ + Vp ~ ~zP·> an(̂  frorn

gcd(x,y) = gcd(p, z) = l it follows that the factors x + y(l are pairwise coprime. Hence

each factor generates an ideal that is a pth ideal power.

—y/z
Lemma 1. Let n be an integer that is coprime to p and z. Then we have (~~) — („) >

where the exponent —y/z is computed modulo p.

Proof. With α = (x + yC)Ctf/*, the assertion reacls (f) = 1. Note that (a) is a pth ideal

power that is coprime to n, so the definition of the power residue symbol gives (̂) — l·

The general power reciprocity law (see [2, p. 352, Exercise 2.10]) asserts in this case that

(n) (a) equals the p-adic pth power norm residue symbol (n, a)p. Hence it suffices to prove

(n, a)p = 1. We do this by a computation in the ring of integers of the local field at p. The

units of that ring taken modulo p2 are of the form α + b(( — 1), where α, δ € Z/pZ, a ψ. Ο.

They form a group of order (p — l)p, which is the direct procluct of a group of order p — l,

consisting of the elements with 6 = 0, and a group of order p, consisting of the elements

with α = 1; the latter group is generated by ζ, since (6 = l + b^ — I) mod (ζ — 1) · A

general element α + ö(£ - 1) is decomposed äs α · (δ//α- Applying this to x + y( (mod p ),

which has α = x + y = —z mod p and 6 = y, we find that the {0-component of x + y(

(mod p2) equals ζ~y>z. The other component must then be (x + yC)/C~2//s = «· Therefore

the order of α (mod p2) clivides p - l, and ap~l = 1- β with β <= p2. Also, np~l is of the

form 1-7, with 7 € (p) = p*·"1 · From ̂ 7 € p̂ "1"1 it follows that l - β*γ = δρ for some

non-zero 8 in the p-adic field (cf. [2, p. 353, Exercise 2.12]). Using the bimultiplicativity of

the norm residue symbol and the fact that (l — 7,7)p = l we find

the last step because (l - 7) + (l - ß}j = δ? (see [2, p. 351, Exercise 2.5]). This proves

Lemma 1.

From Lemma l, we obtain the following result of Furtwängler (1912).

Lemma 2. We have qP~l = l mocl p2 for eveiy prime number q that satisfies one oi the

following conditions:

(i) q divides x, y, or z;

(ii) one of the differences x -y, y - z, z - x is divisible by q but not by p.

Proof. Suppose first that q is a prime number clividing y. Then q does not clivide p or z,

so we can apply Lemma l with n = q to find (|) = (̂7̂) = (f) "' * · As (|) is a Galois-

invariant pth root of unity, it equals 1. Also — y/z φ 0 mod p, so we have (-) = l· The

formula (̂) = ̂  1~l)/p from p, p. 349, Exercise 1.6] now implies q1*"1 = l mod p2.
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Next, suppose that q is a prime number dividing χ — y, and that x — y is not divisible

by p. Clearly, we may assume that q does not divide z. From the equality (-"t̂·) = (v+qx<*}

it follows, by another application of Lemma l, that (0 and m are equal. As

—y/£ and — x/z are not congruent modulo p, this implies (£) =1. As before, we obtain

qp~~l = l mod p2. This proves Lemma 2.

We derive Theorem 3 from Lemma 2. By the assumption of the theorem, there exist a:, y,

z äs above. As one of x, y, z is even, condition (i) holds for q = 2. This yields (a). To prove

(b), we first note that by (a) we have p ̂  3. It suffices to show that one of the conditions

in Lemma 2 is met by q = 3. If 3 divides one of x, y, z, then (i) holds. Otherwise, the

congruence xp + yp + zp = 0 mod 3 shows that 3 divides all differences χ — y, y — z, z — x;

but from 3icp =£ 0 mod p it follows that these differences are not all divisible by p, so (ii)

holds. This completes the proof of Theorem 3.

We next prove Theorem 2. Let k be a positive integer for which q = kp+1 is prime. It

suffices to show that if x, y, z are äs above, then p divides k or q divides Nk- We distinguish

two cases. First suppose that one of x, y, z is divisible by q. From Lemma 2 it follows that

cf~l = l mod p2, so we have l + kp — q = qp = (l + kp)p = l mod p2. Thus, in this case

p divides k. Next, suppose that none of x, y, z is divisible by q. From p = (q — l)/k we

see that each of xp, yp, zp, when taken modulo q, is a ktli root of unity in the finite field

Z/qZ. Hence there are, in the ring of ζτ-adic integere, fcth roots of unity e, e??, ed (say) that

are congruent to xp, yp, and zp, respectively, modulo q. From xp + yp + zp = 0 we find

l + 77 + ϋ = 0 mod 4, so that now q divides Nk. This proves Theorem 2.

Above we saw already that Theorem l follows from Theorem 2.
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Appendix

H. W. Lenstra, Jr. and P. Stevenhagen

Theorem. Lei p be a prime number, and suppose that x, y, z are pairwise coprime

integers not divisible by p for which xp + yp + zp = 0. Then we have

(a) 2p + l is composite,

(b) 2*-1 = l mod p2,

(c) 3P-1 EElmodp2,

(d) qp~1 = l mod p2 for each prime number q dividing xyz.

The assertions of the theorem are due to Sophie Germain (1823), Wieferich (1909), Miri-

manov (1910), and Furtwängler (1912), respectively. Hasse [2, sec. 22] derived these results

from the explicit reciprocity laws of class field theory. Below we give a simplified version

of his proof. It depends only on general properties of power and norm residue symbols, äs

can be found in [l, pp. 348-353].

Let p, χ, y, z be äs in the theorem. Clearly, p is odd. We denote by ζ a primitive pth

root of unity in an extension field of the field Q of rational numbers, by (-) the pth power

residue symbol for the cyclotomic field Q((), and by p = (ζ — 1) the unique prime of the

same field lying over p.

We have Π?=Γο (* + Ϊ/C') = χΡ + ̂ = ~zP, and fr°m gcd(z, y) = gcd(p, z) = l it follows

that the p factors χ + yC are pairwise coprime. Hence each factor generates an ideal that

is a pth ideal power.

Lemma. For any prime number q not dividing pz we have (£±ä£) = (i\~y'z} where the

exponent —y/z is computed modulo p.

Proof. With α = (x + y(}(y/z, the lemma asserts that (|) =1. Note that (a) is a pth ideal

power that is coprime to 5, so the definition of the power residue symbol gives (-1) = 1.

The general power reciprocity law (see [l, p. 352, Exercise 2.10]) asserts in this case that

(f)(a)~ ecluals the p-adic pth power norm residue symbol (g,a)p. Hence it suffices to

show that the latter symbol equals 1. We do this by a computation in the ring of integers

of the local field at p. The units of that ring taken modulo p2 are of the form α + 6(C — ^ )>

where α, δ e Z/pZ, a ̂  0. They form a group of order (p - l)p, which is the direct

product of a group of order p — l, consisting of the elements with 6 = 0, and a group of

order p, consisting of the elements with α = 1; the latter group is generated by ζ, since

C6 Ξ l + 6(C - 1) mod (( - l)2. A general element α + &(C - 1) is decomposed äs α · (6/α·

Applying this to χ + y( (mod p2), which has α = χ + y Ξ -z mod p, b = y, we find that

the (C)-component of χ + y( (mod p2) equals ζ~ν/Ζ. The other component must then be



(x + yC)/C y/z = a· Therefore the Order of a (mod p2) divides p — l, and ap l = 1 — β

with β 6 p2. Also, qp~l is of the form 1-7, with 7 e (p) = pp~1. From ̂ 7 G pp+1 it follows

that l — /?7 = δρ for some non-zero δ in the p-adic field (cf. [l, p. 353, Exercise 2.12]).

Using the bimultiplicativity of the norm residue symbol and the fact that (l — 7,7)p — l

we find that

(i,«)p = (e~\of-l)9 = (l -7,1 - ß\ = (l -7, (l -ßW, = l,

the last step because (l - 7) + (l - ß}̂  = 8P (see [l, p. 351, Exercise 2.5]). This proves

the lemma.

We prove part (d) of the theorem. Let q be a prime number dividing y. From the lemma

we find that (j) = (̂±ϊί) = (|)~y/*· But (|) is a Galois-invariant pth root of unity, so it

equals 1. Also -y/z φ 0 mod p, so we find that (£) = 1. From [l, p. 349, Exercise 1.6] we

see that (|) = ζ(ιΡ~ι-̂ /Ρ. Therefore we have qp~l = l mod p2, which implies (d).

Clearly xyz is even, so with q = 2 we obtain (b).

To prove (a), suppose that q = 2p + l is prime. Then p = (q - l)/2, so each of xp, yp',

zp is congruent to 0, l, or -l modulo q. Since their sum is 0 modulo q, and q > 3, at least

one is 0 mod q. Hence by (d) we have qp~l = l mod p2, so qp = q mod p2. However, one

has qp — (l + 2p)p = l mod p2 and q = l + 2p φ l mod p2. This contradiction proves (a).

Finally, we prove (c). By (b), we have p ̂  3. By (d), we may assume that xyz is not

divisible by 3. Considering the equation modulo 3, we find that χ = y ~ z φ 0 mod 3. Then

we have (ϊ±ϊ£) = p̂ ), so from the lemma we obtain (ξ)~ν/* = (f)~X/*. This implies

that (Qy = (£)*, and by symmetry we have (£f = (!)" = (£)*'· From 3xp φ 0 mod p we

see that x, y, and z do not lie in a single residue class modulo p, and therefore we have

(|) = 1. As in the proof of (d), this implies (c).
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