
PHYSICAL REVIEW B VOLUME 56, NUMBER 8 15 AUGUST 1997-11

Theory of directed localization in one dimension
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We present an analytical solution of the delocalization transition that is mduced by an imagmary vector
potential m a disoidered cham [N Hatano and D R Nelson, Phys Rev Lett 77,570(1996)] We compute the
lelation between the real and imagmary parts of the energy in the thermodynamic hmit, äs well äs fimte-size
effects The results are in good agreement with numencal simulations for weak disorder (m which the mean
free path is laige compared to the wavelength) [80163-1829(97)51032 0]

In a recent paper,1 Hatano and Nelson have demonstrated
the existence of a mobility edge in a disordered ring with an
imagmary vector potential A non-Hermitian Hamiltoman
contammg an imagmary vector potential anses from the
study of the pinnmg of vortices by columnar defects in a
superconductmg cyhnder2 Their discovery of a delocahza-
tion transition in one- and two-dimensional Systems has gen-
erated considerable interest,3 5 smce all states are locahzed
by disorder in one and two dimensions if the vector potential
is real Localization m this specific kmd of non-Hermitian
quantum mechamcs is referred to äs "directed
localization,"3 because the imagmary vector potential breaks
the symmetry between left-movmg and nght-moving par-
ticles, without breaking time-reversal symmetry

The analytical results of Ref l consist of expressions for
the mobility edge and for the stretched-exponential relax -
ation of delocalized states, and a solution of the one-
dimensional problem with a smgle impunty Here we go
further, by solving the many-impurity case m one dimension
Most of the techmcal results which we will need were de-
nved previously m connection with the problem of localiza-
tion m the presence of an imagmary scalar potential Physi-
cally, these two problems are entirely different an imagmary
vector potential smgles out a direction in space, whüe an
imagmary scalar potential smgles out a direction in time A
negative imagmary part of the scalar potential corresponds to
absorption and a positive imagmary part to amplification
One might surmise that amplification could cause a delocal-
ization transition, but m fact all states remam locahzed m
one dimension m the piesence of an imagmary scalar
potential 6 7

Followmg Ref l we consider a disordered cham with the
smgle-particle Hamiltoman

2 j J j
(D

The operators cj and c} are creation and anmhilation opera-
tors, a is the lattice constant, and w the hoppmg parameter
The random potential V} is chosen independently for each
site, from a distnbution with zero mean and vanance u1 For
weak disorder (mean free path much larger than the wave-
length), higher moments of the distnbution of V} are not
relevant The Hamiltoman is non-Herrmtian because of the

real parameter h, corresponding to the imagmary vector po-
tential The cham of length L is closed mto a ring, and the
problem is to determme the eigenvalues ε of H If ε is an
eigenvalue of H, then also ε * is one — because Ή is real
Real E corresponds to locahzed states, while complex ε cor-
responds to extended states '

To solve this problem, we reformulate it m terms of the
2 X 2 transfer matrix ΜΛ(ε) of the cham, which relates wave
amphtudes at both ends 8 The energy ε is an eigenvalue of Ή
if and only if Μ/,(ε) has an eigenvalue of l The use of the
transfer matnx is advantageous, because the effect of the
imagmary vector potential is just to multiply M with a scalar,

(2)

(3)

The energy spectrum is therefore determmed by

det[l-e/!i-M0(e)] = 0

Time-reversal symmetry imphes detM0 = l Hence the deter-
minantal Eq (3) is equivalent to11

(4)

We seek the solution m the hmit L^°°
Smce MO is the transfer matnx m the absence of the

imagmary vector potential (/z = 0), we can use the results in
the literature on localization in conventional one-
dimensional Systems (havmg an Hermitian Hamiltoman) 9

The four matnx elements of M0 aie given in terms of the
reflection amphtudes r, r' and the transmission amphtude t
by

(M„) 1 2 =»'/ f ,

(M 0) 2 1=-r/f, (M 0) 2 2=l/f, (5)

where detS = r r' -12 is the determmant of the scattermg ma-
trix (There is only a smgle transmission amphtude because
of time-reversal symmetry, so that transmission from left to
nght is equivalent to transmission from right to left) The
transmission probabihty T=\t 2 decays exponentially in the
large-L limit, with decay length ξ

(6)
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The energy dependence of ξ is known for weak disorder,
such that |&|£5>1, where the complex wave number k is
related to ε by the dispersion relation

ε=-vvcos&a. (7)

For real k, the decay length is the localization length ξο,
given by10

ξQ = a(w/u)2sm2(Reka). (8)

(Since ξ0 is of the order of the mean free path /, the condi-
tion of weak disorder requires / large compared to the
wavelength.) For complex k, the decay length is shorter than
fo> regardless of the sign of Imk, according to6'7

(9)

We use these results to simplify Eq. (4). Upon taking the
logarithm of both sides of Eq. (4), dividing by L and taking
the limit L—>°°, one finds

\h\ — j£~' = limL~'ln| l — det.S|, (10)

where we have used L~ 'in/—>L~'ln|/1 äs L—><» for any com-
plex function /(L). For complex k, the absolute value of
detS is either <1 (for Im&>0) or >1 (for Im/t<0). As a
consequence, In|l-det5| remains bounded for L-*°°, so that
the right-hand side of Eq. (10) vanishes. Substituting Eq. (9),
we find that complex wave numbers k satisfy

Together with the expression (8) for the localization length
£o, this is a relation between the real and imaginary parts of
the wave number. Using the dispersion relation (7), and no-
ticing that the condition |fc|£l>l for weak disorder implies
| ImÄ:|<§| Rek\, we can transform Eq. (11) into a relation
between the real and imaginary parts of the energy,

Res)2- (12)

The support of the density of states in the complex plane
consists of the closed curve (12) plus two line segments on
the real axis,12 extending from the band edge ±w to the
mobility edge ±ec. The real eigenvalues are identical to the
eigenvalues at /z = 0, up to exponentially small corrections.
The energy ec is obtained by putting Ιηιε = 0 in Eq. (12), or
equivalently be equating1 2ξ0 to \l\h\, hence

\m (13)

exists forThe delocalization transition at t

\h\>hc=^u2/w2a.
In Fig. l (a), the analytical theory is compared with a nu-

merical diagonalization of the Hamiltonian (1). The numeri-
cal finite-L results are consistent with the large-L limit
(dashed curve). To leading order in l /L, fluctuations of
Ims around the large-L limit (12) are governed by fluctua-

tions of the transmission probability T. [Fluctuations of
L~ ΊηΓ are of order L~1/2, while the other fluctuating contri-
butions to Eq. (4) are of order L~'.] The variance of ΙηΓ for
large L is known,13
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FIG. 1. (a) Data points: eigenvalues of the Hamiltonian (1), for
parameter values ha = 0.l, w/w = 0.3, and for five values of L/a.
Dashed curves: analytical large-L limit, given by Eq. (12). (Except
for the case L = 4000α, spectra are offset vertically and only eigen-
values with ImsSäQ are shown.) (b) Variance of the imaginary part
of the eigenvalues äs a function of the sample length, for Res^O
and for the same parameter values äs in (a). The data points are the
numerical results for 1000 samples. The solid line is the analytical
result (15).

2L
varlnT= — + 8L|

so
Ei(-4£0|

(14)

where Ei is the exponential integral. Equating

| Imk\ = \h\ + $;L~llnT,wefiTid var| Imit| = jL~2 varlnTand
thus

var -( Ree)2],

(15)

where γ=2|/ζ|£0- l. In Fig. l(b) we see that Eq. (15) agrees
well with the results of the numerical diagonalization. The
fluctuations Δ Ιηιε are correlated over a ränge Δ Res which
is large compared to Δ Ιηιε itself, their ratio Δ Ιιηε/Δ Res
decreasing ^L~y2. This explains why the complex eigenval-
ues for a specific sample appear to lie on a smooth curve [see
Fig. l (a)]. This curve is sample specific and fluctuates
around the large-L limit (12).

In conclusion, we have presented an analytical theory for
the delocalization transition in a single-channel disordered
wire with an imaginary vector potential. We find good agree-
ment with numerical diagonalizations, both for the relation
between the real and imaginary parts of the energy in the


