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We present an analytical solution of the delocalization transition that 1s induced by an 1maginary vector
potential 1n a disordered chain [N Hatano and D R Nelson, Phys Rev Lett 77, 570 (1996)] We compute the
1elation between the real and imaginary parts of the energy 1n the thermodynamic limit, as well as finite-size
effects The results are in good agreement with numerical simulations for weak disorder (in which the mean

free path 1s laige compared to the wavelength) [S0163-1829(97)51032 0]

In a recent paper,' Hatano and Nelson have demonstrated
the existence of a mobility edge 1n a disordered ring with an
imaginary vector potential A non-Hermitian Hamuiltonian
contamning an 1maginary vector potential arises from the
study of the pinning of vortices by columnar defects n a
superconducting cylinder 2 Their discovery of a delocahiza-
tion transition 1n one- and two-dimensional systems has gen-
erated considerable mterest,3 3 since all states are localized
by disorder 1n one and two dimensions 1f the vector potential
1s real Localization m this specific kind of non-Hermitian
quantum mechanics 15 referred to as  ‘‘directed
localization,””® because the 1maginary vector potential breaks
the symmetry between left-moving and right-moving par-
ticles, without breaking time-reversal symmetry

The analytical results of Ref 1 consist of expressions for
the mobility edge and for the stretched-exponential relax-
ation of delocalized states, and a solution of the one-
dimensional problem with a single impurity Here we go
further, by solving the many-impurity case in one dimension
Most of the technical results which we will need were de-
rived previously 1n connection with the problem of localiza-
tion 1n the presence of an imaginary scalar potential Physi-
cally, these two problems are entirely different an imaginary
vector potential singles out a direction in space, while an
imagnary scalar potential singles out a direction 1n time A
negative imaginary part of the scalar potential corresponds to
absorption and a positive imagmary part to amplification
One mught surmise that amplification could cause a delocal-
1zation transition, but in fact all states remain localized n
one dimension i the piesence of an mmagmary scalar
potential ¢”

Following Ref 1 we consider a disordered chamn with the
single-particle Hamiltonian
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The operators ¢, and ¢, are creation and anmiulation opera-
tors, a 1s the lattice constant, and w the hopping parameter
The random potential V, 1s chosen independently for each
site, from a distribution with zero mean and variance u? For
weak disorder (mean free path much larger than the wave-
length), higher moments of the distribution of V, are not
relevant The Hamiltonian 1s non-Hermitian because of the
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real parameter A, corresponding to the 1maginary vector po-
tential The chain of length L 1s closed mnto a ring, and the
problem 1s to determune the eigenvalues ¢ of H If € 1s an
eigenvalue of 7, then also £* 15 one — because H 1s real
Real & corresponds to localized states, while complex e cor-
responds to extended states !

To solve this problem, we reformulate it in terms of the
2 X2 transfer matrix M, (&) of the chain, which relates wave
amplitudes at both ends § The energy € 15 an eigenvalue of H
if and only if M,(e) has an eigenvalue of 1 The use of the
transfer matrix 1s advantageous, because the effect of the
1maginary vector potential 1s just to multiply M waith a scalar,

M (s)=e""M(e) 2

The energy spectrum 1s therefore determined by
det[ 1 —e"My()]=0 (3)

Time-reversal symmetry implies detM y=1 Hence the deter-
mmantal Bq (3) 1s equivalent to'!

trtM y(g) =2coshh L 4)

We seek the solution 1n the limit L—

Smce M, 1s the transfer matrix n the absence of the
imaginary vector potential (2=0), we can use the results 1n
the Iiterature on localization 1n conventional one-
dimensional systems (having an Hermitian Hamultoman) ?
The four matrix elements of M, ate given 1n terms of the
reflection amplitudes », r’ and the transmission amplitude ¢
by

(Mo) =—(1/t)detS, (My)p=1'lt,

(Mo)y=—rlt, (Mg)p=1/, (5)

where detS=rr' —1? 1s the determinant of the scattering ma-
trix (There 1s only a single transmission amphtude because
of time-reversal symmetry, so that transmission from left to
right 1s equivalent to transmussion from right to left) The
transmission probability T=]¢|? decays exponentially in the
large-L limit, with decay length &

—ggrgoL"llnT= ! (6)
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The energy dependence of £ is known for weak disorder,
such that |k|£>1, where the complex wave number k is
related to & by the dispersion relation

&= —wcoska. 7

For real k, the decay length is the localization length &,
given by'?

£o=a(w/u)?sin®( Reka). (8)

(Since & is of the order of the mean free path /, the condi-
tion of weak disorder requires / large compared to the
wavelength.) For complex k, the decay length is shorter than
&, regardless of the sign of Imk, according to®’

g l=¢;"+2| Imk]|. )

We use these results to simplify Eq. (4). Upon taking the
logarithm of both sides of Eq. (4), dividing by L and taking
the limit L— oo, one finds

b= 3¢ = fiml nli—dess],  (10)

where we have used L™ !Inf—L™!In|f] as L— for any com-
plex function f(L). For complex k, the absolute value of
detS is either <1 (for Imk>0) or >1 (for Imk<0). As a
consequence, In|1—detS| remains bounded for L— o, so that
the right-hand side of Eq. (10) vanishes. Substituting Eq. (9),
we find that complex wave numbers k satisfy

| Imk|=|h|~-3&". (11)

Together with the expression (8) for the localization length
&y, this is a relation between the real and imaginary parts of
the wave number, Using the dispersion relation (7), and no-
ticing that the condition |k|£>1 for weak disorder implies
| Imk|<| Rek|, we can transform Eq. (11) into a relation
between the real and imaginary parts of the energy,

2

| Ime|=|h|ayw?—( Ree)*—

2w?—(Ree)?’ (12)

The support of the density of states in the complex plane
consists of the closed curve (12) plus two line segments on
the real axis,'? extending from the band edge *w to the
mobility edge = e,.. The real eigenvalues are identical to the
eigenvalues at 2=0, up to exponentially small corrections.
The energy e, is obtained by putting Ime=0 in Eq. (12), or
equivalently be equating' 2, to 1/[h|, hence

g.=(w?—u?2|hla)". (13)

The delocalization transition at g, exists for

|h|>h.=tu?wa.

In Fig. 1(a), the analytical theory is compared with a nu-
merical diagonalization of the Hamiltonian (1). The numeri-
cal finite-L results are consistent with the large-L limit
(dashed curve). To leading order in 1/L, fluctuations of
Ime around the large-L limit (12) are governed by fluctua-
tions of the transmission probability 7. [Fluctuations of
L 'InT are of order L™ 2 while the other fluctuating contri-
butions to Eq. (4) are of order L~ '.] The variance of InT for
large L is known, '
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FIG. 1. (a) Data points: eigenvalues of the Hamiltonian (1), for
parameter values ha=0.1, u/w=0.3, and for five values of L/a.
Dashed curves: analytical large-L limit, given by Eq. (12). (Except
for the case L=4000a, spectra are offset vertically and only eigen-
values with Ime=0 are shown.) (b) Variance of the imaginary part
of the eigenvalues as a function of the sample length, for Ree~0
and for the same parameter values as 1n (a). The data ponts are the
numerical results for 1000 samples. The solid line is the analytical
result (15).

2L
varlnT = —§—+8L| Imk|e*é™ Bi( —4£y| Imk|),
0
(14)

where Ei is the exponential integral. Equating
| Imk| = ||+ 5L~ 'InT, we find var| Imk| =L ™2 varlnT and
thus

2

a , 5
var| Imeg|= 2_14—6;)_[1—*_27627 E1(—2y)][w2—( Ree)<],
(15)

where y=2|h|&— 1. In Fig. 1(b) we see that Eq. (15) agrees
well with the results of the numerical diagonalization. The
fluctuations A Ime are correlated over a range A Ree which
is large compared to A Ime itself, their ratio A Ime/A Ree
decreasing « L~ 2. This explains why the complex eigenval-
ues for a specific sample appear to lie on a smooth curve [see
Fig. 1(a)]. This curve is sample specific and fluctuates
around the large-L limit (12).

In conclusion, we have presented an analytical theory for
the delocalization transition in a single-channel disordered
wire with an imaginary vector potential. We find good agree-
ment with numerical diagonalizations, both for the relation
between the real and imaginary parts of the energy in the



