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Voltage-probe and imaginary-potential models for dephasing in a chaotic quantum dot
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We compare two widely used models for dephasing in a chaotic quantum dot: the introduction of a fictitious
voltage probe into the scattering matrix and the addition of an imaginary potential to the Hamiltonian. We
identify the limit in which the two models are equivalent and compute the distribution of the conductance in
that limit. Our analysis explains why previous treatments of dephasing gave different results. The distribution
remains non-Gaussian for strong dephasing if the coupling of the quantum dot to the electron reservoirs occurs
via ballistic single-mode point contacts, but becomes Gaussian if the coupling occurs via tunneling contacts.
[80163-1829(97)00808-4]

I. INTRODUCTION

Extensive theoretical work has provided a detailed de-
scription of the universal features of phase-coherent transport
in classically chaotic Systems, such äs universal conductance
fluctuations, weak localization, and a non-Gaussian conduc-
tance distribution.'~12 The advances of submicrometer tech-
nology in the past decade have made these raanifestations of
quantum chaos in electronic transport accessible to
experiment.13"20 Although experiments on semiconductor
quantum dots confirm the qualitative predictions of the
phase-coherent theory, a quantitative comparison requires
that loss of phase coherence be included in the theory. Two
methods have been used for this purpose.

The first method, originating from Büttiker,21 is to include
a fictitious voltage probe into the scattering matrix. The volt-
age probe breaks phase coherence by removing electrons
from the phase-coherent motion in the quantum dot, and sub-
sequently reinjecting them without any phase relationship.
The conductance G φ of the voltage probe (in units of
2e2lh) is set by the mean level spacing Δ in the quantum dot
and the dephasing time τφ, according to Οψ=2π1ί/ΤφΔ.
This method was used in Refs. 7, 8, 13, and 20. The second
method is to include an (spatially uniform) imaginary poten-
tial in the Hamiltonian, equal to — ίή/2τψ. This method was
used in Refs. 9 and 11.

The two methods have given very different results for the
distribution of the conductance G, in particular, in the case
that the current through the quantum dot flows through
single-mode point contacts. While the distribution P(G) be-
comes a δ peak at the classical conductance for very strong
dephasing (τψ—>0) in the voltage-probe model, P(G) peaks
at zero conductance in the imaginary-potential model. It is
the purpose of the present paper to reconcile the two meth-
ods, and to compute the conductance distribution in the limit
that the two methods are equivalent.

The origin of the differences lies with certain shortcom-
ings of each model. On the one hand, the imaginary-potential
model does not conserve the number of electrons. We will
show how to correct for this, thereby resolving an ambiguity
in the formulation of the model noted by McCann and
Lerner.11 On the other hand, the voltage-probe model de-
scribes spatially localized instead of spatially uniform

dephasing. This is perfectly reasonable for dephasing by a
real voltage probe, but it is not satisfactory if one wants a
fictitious voltage probe to serve äs a model for dephasing by
inelastic processes occurring uniformly in space. A second
deficiency of the voltage-probe model is that inelastic scat-
tering requires a continuous tuning parameter τ φ, while the
number of modes N φ in the voltage probe can take on integer
values only. Although the introduction of a tunnel barrier
(transparency Γ^) in the voltage probe allows the conduc-
tance Οψ=ΝφΤ ψ to interpolate between integer values, the
presence of two model parameters creates an ambiguity: The
conductance distribution depends on N ψ and Γ^ separately,
and not just on the product Λ^Γ^ set by the dephasing time.

In this paper we present a version of the voltage-probe
model that does not suffer from this ambiguity and that can
be applied to dephasing processes occurring uniformly in
space. This version is equivalent to a particle-conserving
imaginary-potential model. We show that the absorbing term
in the Hamiltonian can be replaced by an absorbing lead (the
voltage probe) in the limit Νψ-^°°, Γ^—>0 at fixed
Οψ=ΝφΤφ. This is the "locally weak absorption limit" of
Zirnbauer. Both shortcomings of the voltage-probe model
are cured: The limit 7V,£—>°° together with ergodicity ensures
spatial uniformity of the dephasing, while the conductance
G ψ is the only variable left to parametrize the dephasing rate.

The outline of the paper is äs follows. In See. II we recall
the voltage-probe model and derive the limit Νψ—κ*>,
Γ0—>0 at fixed ΝφΓψ from the particle-conserving
imaginary-potential model. We then calculate the effect of
dephasing on the conductance distribution in the case of
single-mode point contacts (See. III). The distribution nar-
rows around the classical series conductance of the two point
contacts when the dimensionless dephasing rate
γ=2π1ί/ΤφΔ becomes S>1, but not precisely in the way
which was computed in Refs. 7 and 8. In See. IV we briefly
consider the case of multiple-mode point contacts (number
of modes S> l), which is less interesting. We conclude in
See. V.

II. TWO MODELS FOR DEPHASING

The System under consideration is shown in Fig. 1. It
consists of a chaotic cavity, coupled by two point contacts
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FIG. 1. Chaotic cavity, connected to current source and drain
reservoirs (l and 2), and to a voltage probe ( φ ) . The voltage probe
contains a tunnel barrier (dotted line). The voltage Υφ is adjusted
such that Ιφ=0.

(with N! and N2 propagating modes at the Fermi energy
Ep) to source and drain reservoirs at voltages Vl and V2. A
current 7= 7t = — 72 flows from the source to the drain. In the
voltage-probe model,21 a fictitious third lead (Nφ modes)
connects the cavity to a reservoir at voltage V φ. Particle
conservation is enforced by adjusting V ψ in such a way that
no current is drawn (7^=0). The third lead contains a tunnel
barrier, with a transmission probability Γ φ which we assume
to be the same for each mode. The scattering matrix S has
dimension Μ = Ν1+Ν2 + ΝΦ and can be written äs

S12

S 22 (D

in terms of N/XN/ reflection and transmission matrices
99

S y . Application of the relations

2e2

= - G k l V t , *= 1,2,0, (2a)

(2b)

yields the (dimensionless) conductance G = (/i/2e2)7/(V1

G
x~t

= -G12-
Φ2

(3)

Using unitarity of S we may eliminate the conductance
coefficients Gki which involve the voltage probe,

- Γ |-~G12+
(Gn+G12)(G22+G12)

G i l + G17+ GTI + G
(4)

r22

The remaining conductance coefficients are constructed from
the matrix,

- Ml l * 12
~

\ i 21 ^22
(5)

which formally represents the scattering matrix of an absorb-
ing System. The first term in Eq. (4) would be the conduc-
tance if the voltage probe would truly absorb the electrons
which enter it. The second term accounts for the electrons

that are reinjected from the phase-breaking reservoir, thereby
ensuring particle conservation in the voltage-probe model.

The imaginary-potential model relates S to a Hamiltonian
H with a spatially uniform, negative imaginary potential
— ί'γΔ/4ττ. As used in Refs. 9 and 11, it retains only the first
term in Eq. (4), and therefore does not conserve particles.
We correct this by including the second term. We will now
show that this particle-conserving imaginary-potential model
is equivalent to the voltage-probe model in the limit
Νφ^™,Τφ->0,ΝφΓφ^γ.

Our equivalence proof is based on the general
relationship,23'24

S= (6)

between the NXN scattering matrix S (N=Ni + N2) and the
N'XN' Hamiltonian H (the limit N'—>°° is taken later on).
The Hamiltonian contains an imaginary potential,
Ημν=Ημν—ίδμνγΔ/4π, with H a Hermitian matrix. For a
chaotic cavity, H is taken from the Gaussian ensemble of
random matrix theory.25 The N'XN matrix W has
elements24'26

' 1 Ο Γ ~— i —zi „ (7)

Here F„ is the transmission probability of mode n in the
leads and the energy Δ is the mean level spacing of H. We
embed W into an N'XN' matrix by the definition ϊνμη = 0
for N<n^N' , and define

πΨ2

μη=ιτΨ2

μη+δμηγΔ/47Γ. (8)

Substitution into Eq. (6) shows that S is an NXN submatrix
of an N' XN' unitary matrix,

(9)

We have neglected the difference between W μμ and W/ifi for
Ι^μ^Ν, which is allowed in the limit N' — >°°. The matrix
S is the scattering matrix of a cavity with three leads: Two
real leads with N\, N2 modes, plus a fictitious lead with
N' -N modes. The transmission probability Γπ of a mode in
the fictitious lead follows from Eqs. (7) and (8),

r =- y_
'N' (10)

where we have used that 7Γψ2

η=γΔ/4τΓ for
We conclude that the particle-conserving imaginary-poten-
tial model and the voltage-probe model are equivalent in
the limit Ν = Ν'-Ν-^™, Τ=γ/Ν'^0, ΝΤ

III. SINGLE-MODE POINT CONTACTS

The effect of quantum interference on the conductance is
maximal if the point contacts which couple the chaotic cavity
to the source and drain reservoirs have only a single propa-
gating mode at the Fermi level. Then the sample-to-sample
fluctuations of the conductance are of the same size äs the
average conductance itself. One thus needs the entire con-
ductance distribution to characterize an ensemble of quantum
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dots. (An ensemble may be generated by small variations in
shape or in Fermi energy.)

In the absence of dephasing, the conductance distribution
P(G) is strongly non-Gaussian.3"6 For ideal point contacts
(transmission probabilities Γ1 = Γ2= 1), one finds4'5

P(G) = kßG(ß~2)l2. (11)

The symmetry parameter ß= 2 (l) in the presence (absence)
of a time-reversal-symmetry breaking magnetic field. For
high tunnel barriers (Γ1;Γ2<ί1), Ρ (G) is maximal for
G = 0, and drops off ocG~3/2 for ΟΓΊΓ2.

3'6 In this section,
we compute the conductance distribution in the presence of
dephasing, using the voltage-probe model in the limit
7V0—s·00, Γ^—>0 at fixed ΝφΓφ, in which it is equivalent to
the current-conserving imaginary-potential model. We focus
on the case of ideal point contacts, and discuss the effect of
tunnel barriers briefly at the end of the section.

The scattering matrix S is distributed according to the
Poisson kernel,2

_
P(S}~V

where V is a normalization constant, M = Nl + Ν2 + Νψ is the
dimension of S, and S is a diagonal matrix with diagonal
elements Snn= V l ~Γη. Here F„ is the transmission prob-
ability of mode n (Γη = Γ^ for Nl + N2<n^M), The mea-
sure dS is the invariant measure on the manifold of unitary
(unitary Symmetrie) matrices for β =2 (1).

We now focus on the case of ideal single-mode point
contacts, Nl=N2=l and Γ l = Γ2 = l . We seek the distribu-
tion of the 2 X 2 submatrix S defined in Eq. (5). We Start
with the polar decomposition of S,

(13)

where u and u' (v and u ' ) are 2X2 (ΝψΧΝψ) unitary
matrices, and i is a ΝψΧ2 matrix with all elements equal to

zero except tnn=^ff~n, n =1,2. In the presence of time-
reversal symmetry, u' = MT and v' = t>T. In terms of the polar
decomposition (13) we have

(14)

The two parameters ΓΙ and T2 govern the strength of the
absorption by the voltage probe. For Tl,T2—>0 the matrix
S is unitary and there is no absorption, whereas for
T i ,T2—»l the matrix S vanishes and the absorption is com-
plete. Substitution of the invariant measure12

α du' dv dv'dTldT2

(15)

and the polar decomposition (13) into the Poisson kernel (12)
yields the distribution of S1 in the form

P(Tl,T2,u,u')

_

V

X l dv \ dv'
det\(l-v'v

(16a)

(16b)

Since Eq. (16) is independent of u and u' , the matrices u and
u' are uniformly distributed in the unitary group, and the
distribution of S is completely determined by the joint dis-
tribution P(Ti,T2) of the absorption probabilities 7Ί and

T2.
We must still perform the integral over v and v ' in Eq.

(16). This is a nontrivial calculation, which we describe in
the Appendix. The final result in the limit N φ— >°°, Γ^— >0 at
fixed γ=ΝφΓφ is

+ rir2(24-24e?+18y+6ye r+6y2+y3)]

(17a)

for ß=l (presence of time-reversal symmetry), and

(17b)
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In order to find the average and variance of the conductance
in the presence of dephasing, we substitute Eqs. (24) and
(25) into Eq. (4). The result is

N
1-

N+yj'

varG =
2N\N\

ßN2(N+ γ)2'

(26a)

(26b)

with γ=ΝφΤφ.
Equation (26a) was previously obtained by Aleiner and

Larkin.10 Equation (26b) for varG agrees with the interpola-
tion formula of Baranger and Mello . The present derivation
shows that this Interpolation formula is in fact a rigorous
result of perturbation theory. [However, the Interpolation for-
mula of Ref. 7 for (G) differs from Eq. (26a).] In the final
expression for (G) and varG only the product ΝφΓψ ap-
pears, although the moments of the conductance coefficients
Gtj depend on Tv"^ and Γ^ separately. Apparently, in large-
N perturbation theory the precise choice of N ψ and Γ^ in the
voltage-probe model is irrelevant, the conductance distribu-
tion being determined by the product ΝφΓφ only. For small
dephasing rates γ-^N, Eq. (26) agrees with Efetov's result,9

which used the imaginary-potential model without enforcing
particle conservation. However, for γ^Ν, our result differs
from that of Ref. 9, indicating the importance of particle
conservation once the dephasing rate γ and the dimension-
less escape rate 7V through the point contacts become com-
parable.

We have carried out the same calculation for the case of
nonideal point contacts. The transmission probability of
mode n is denoted by F„ (n = l , . . . ,/V) corresponding to the
first point contact, « = 7νΊ + l , . . . ,Λ^+Τν^ to the second
point contact). The result is

SiSi „ §281 +§182
(27a)

varG =

(27b)

[ . (27c)

ßg\g+r)2

One can check that Eq. (27) reduces to Eq. (26) for ideal
point contacts (when gp = Nl, g'p = N2). As in the case of
single-mode point contacts, varG<xy~2 for y>l without
tunnel barriers, while varG κ γ"1 otherwise.

V. CONCLUSION

In summary, we have demonstrated the equivalence of
two models for dephasing, the voltage-probe model and the
imaginary-potential model. In doing so we have corrected a
number of shortcomings of each model, notably the nonuni-
formity of the dephasing in the voltage-probe model of Refs.
7 and 8 and the lack of particle conservation in the

imaginary-potential model of Refs. 9 and 11. We have cal-
culated the distribution of the conductance and shown that it
peaks at the classical conductance for strong dephasing once
particle conservation is enforced, thereby reconciling the
contradictory results of Refs. 7 and 8, on the one hand, and
Refs. 9 and 11, on the other hand. We find that for ideal
single-mode point contacts (no tunnel barriers), conductance
fluctuations are non-Gaussian and α τψ for strong dephasing
(τφ—>0). In the case of nonideal point contacts (with tunnel
barriers), fluctuations are larger (αντ0) and Gaussian for
1>->0.

The effect of dephasing becomes appreciable when the
dimensionless dephasing rate γ=2ττίι/Τφ^ is of the same
order äs the dimensionless escape rate £ = ΣηΓπ through the
two point contacts. For y^g, the weak-localization correc-
tion <SG = (G}(/3=2)-<(G}(yß=l) and the conductance
fluctuations are given by30

(28a)

(28b)

where a1; bi, and b2 are numerical coefficients determined
by Eqs. (20), (23), (26), and (27). For the special case of two
single-mode point contacts, we have

4Γ l1 2

, + Γ2)
4 > (29a)

(29b)

The coefficient b2 is only relevant if Γ1,Γ2

Α ί1, when
and b2~(l+2Sßl)/16. At finite

temperatures, in addition to dephasing, the effect of thermal
smearing becomes important.9 Since thermal smearing has
no effect on the average conductance, the weak-localization
correction <5G provides an unambiguous way to find the
dephasing rate γ.

The fact that dephasing was not entirely uniform in phase
space in the model of Refs. 7 and 8 leads to small but no-
ticeable differences with the completely uniform description
used here, in particular, for the case of single-mode point
contacts. The differences may result in a discrepancy
Δ γ«* l in the estimated value of the dimensionless dephas-
ing rate γ, if the ideal voltage-probe model of Refs. 7 and 8
is used instead of the model presented here. A difference
Δ y*=> l is relevant, äs experiments on semiconductor quan-
tum dots can have dephasing rates äs low äs y«=2.

Both the voltage-probe model and the imaginary-potential
model only provide an effective description of dephasing.
They cannot compete with a microscopic theory of inelastic
scattering in quantum dots (see, e.g., Refs. 33 and 34). At
this time, a microscopic theory for the effect of inelastic
scattering on the conductance distribution does not yet exist.
For the time being, the model presented here may well be the
most realistic description available.

ACKNOWLEDGMENTS

We have benefitted from discussions with I. V. Lerner, C.
M. Marcus, and T. Sh. Misirpashaev. This work was sup-



55 VOLTAGE-PROBE AND IMAGINARY-POTENTIAL . .. 4701

ported by the ' 'Stichting voor Fundamenteel Onderzoek der
Materie" (FOM) and by the "Nederlandse organisatie voor
Wetenschappelijk Onderzoek" (NWO).

APPENDIX: CALCULATION OF P(Tl,T2)

We statt the calculation of P(T:,T2) from the integral
expression (16), in which we may replace the double integral
of v and v' by a single integral of the matrix v' v over the
unitary group (for /3=2) or over the manifold of unitary
Symmetrie matrices (for β = l). We make a Substitution of
variables v'v—>w via

νν = (AI)

The matrix τ was defined in Eq. (16b). One verifies that the
matrix w is unitary (unitary Symmetrie for β = l). The Jaco-
bian of this transformation is26""28

det
dv'v

dw

V

V7 det(l-72)"w*+2-«/2 '
(A2)

where V and V are normalization constants. This change of
variables is a key step in the calculation, since the Jacobian
(A2) cancels the denominator of the integrand of Eq. (16a)
almost completely,

χ Π (ΐ+τφτ-ι-ΓφΓ(βΝ*+6-β)Ι2

7 = U ψ ]

Χ Π T-2ß-2\det(l-rw)\2ß. (A3)
J

We now consider separately the integral

= dw

= dw

Here we have used that τ is a positive diagonal matrix. We
now change variables ^[τw~l \[r—>-w~'. If the matrix τ were
unitary, we could write

(A6)

After some algebraic manipulations, we arrive at

X l dU detAß,

where the 2 X 2 matrix A is given by

(A7a)

(A7b)

The determinant of A is computed by a direct expansion.
Since Νφί> l, we may consider the matrix elements UM äs
independent real (complex) Gaussian distributed variables
with zero mean and variance 1/Νφ for ß= l (2). We write
the result of the Gaussian integrations in terms of derivatives
of a generating function F ß ,

Π 'W
J

(A8)

The generating function Fß depends on the variables xk ,
yk, and zk, where fc= l for ß= l and k= 1,2 for ß—2,

Νφ β

U Π
7=1 *=1

(A4) The differential operator D β reads

(A9a)

(A9b)

(AlOa)

= \ dw (A5)

in view of the invariance of the measure dw = dw. However,
τ is not unitary. A theorem due to Weyl allows us to con-
tinue Eq. (A5) analytically to arbitrary τ.35

To evaluate I ß , we decompose w in eigenvectors and
eigenphases, w=i/e'0t/ t, where U is an orthogonal (uni-
tary) matrix for ß= l (2), and Θι; = <Jy0;, 0=s 07<2τΓ. The
invariant measure dw reads25

(A l Ob)

The derivatives in Eq. (A8) should be evaluated at
V — Λ, — 1 Π (l· 1 Ί\Λk — yfc — i,k—\J \κ*— JL,**J.

We are left with an integral over the phases θ} which is of
the type
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r'ß= t de, i
J J

rföJI \e>
'<]

XU
k=l

(ak-e'<>j) (All)

The integrand is a product of secular determinants
det(\ — [/) of a umtary matnx U Integrals of this form were
considered by Haake et al 36 For ß= l we can directly apply
the results m their paper, for ß=2 we need to extend their
method to include a product of four secular determinants
Wefind

i + 3 i + l -i)

(A12a)

/? —-

(A12b)

The desired integral /^ is obtamed from /^ by the substitu-
tion of Eq (A12) with η = Νψ, ak=f(xk,yk,zk) into Eqs
(A7)-(A10) The Substitution of lß into Eq (A3) then leads
to the final result (17)
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