View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Leiden University Scholary Publications

Origin of the Quantum-Ciritical Transition in the Bilayer Heisenberg Model
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The bilayer Heisenberg antiferromagnet is known to exhibit a quantum-critical transition at a
particular value of the interlayer coupling. Using a new type of coherent state, appropriate to the
special order parameter structure of the bilayer, we map the problem onto the quantum nonlinear
sigma model. It is found that the bare coupling constant diverges at the classical transition, so that
in any finite dimension the actual transition occurs inside the ordered phase of the classical theory.
[S0031-9007(97)02986-4]

PACS numbers: 75.10.Jm, 64.60.—i, 71.27.+a, 75.45.+]

The study of nonclassical collective quantum states of/; > 0) s = % Heisenberg spins;,, are coupled locally
matter is a central theme of modern condensed mattday J,. Following CM, we first integrate out th& term
physics. Despite the successes it 1 dimensions, ithas [4,5]. Define the sum and the difference of the spin
proven difficult to address these matters in higher dimeneperators,
sions. Either the minus-sign problem intervenes (as in,

e.g., ther-J model and frustrated spin models), or the ten- § =51+ 83 § =515, (2)
dency towards classical order is too strong (e.g., unfrusg,ch that

trated spin models). The class of bilayer Heisenberg models

is special in this regard [1,2]. It is sign-free, and con- H = —J1 Z(S S i § § i)

vincing numerical evidence exists showing that its long- s

wavelength behavior is governed by tlig3) quantum

nonlinear sigma model (QNLS) with tunable bare coupling + ZJZZ(SZ - Sz) ~B- ZS 3

constantu [3]. The relationship between the microscopic

model and its long wavelength behavior is no_ntriVial'Equation (2) amounts to a transformation to a singlet-
.ChUbUkOV and Morr (CM) madg the_ke_y observation that riplet basis. Introducing hard-core bosons creating the
in order to construct the classical limit, the severe Iocat . t 1, t 1t ot

(interplanar) fluctuations have to be integrated out first [4] 08! Singlet statea, ZA(cincior = cmepy), and the
In the resulting singlet-triplet representation, a phase trarfocal triplet b,10_1 (bl, = c;rch;rZT etc.), Eq. (2) can be
sition between a Néel state and an incompressible state ddternatively written as

found already at the classical level. Here it is shown that " "

this transition does not correspond to the quantum criti- = biby = boyboy,

cal transition found in numerical studies. Because of the ST =\2(biby + bib_)),

special structure of the order parameter, the standaf@)SU (4)
generalized spin coherent state does not suffice for the con- 57 = —atpby — b(;ra ,

struction of the path integral. We introduce a novel type . "

of coherent state which allows us to straightforwardly re- §* =V2bia —atby).

cover the QNLS describing the long wavelength behavior. ) . oz )
We find that the bare coupling constant of the field theory> describess =1 spins, whileS is related to fluctuations
diverges at the classical transitionThe quantum phase 1O triplets to singlets. These operators form @)
transition therefore occurs well before the classical trandynamical algebra,

sition can occur, and the latter is therefore in any finite [S9, 8] = teapeS©, (5)

dimension an artifact. Our results are consistent with the

indications of quantum criticality found by CM. [39,5°] = 18,p. ¢ (6)
It is convenient to consider the “bilayer” model in ’ wem s

arbitrary dimensions, with an added magnetic fie#l, ( [59.5] = 1e,pe5¢. @)

H =1 %(S“ CSp S 5p) At the J, = 0 point (two decoupled layers) the problem
Y has an0O(4) global invariance, which is broken for any
+ JZZEH 30 — B - Z(;il + 5»), (1) finite J5, leaving only an invariance under the QU
i i subgroup Eq. (5). The unconventional aspect of this
where (ij) runs over the bonds of twa-dimensional problem is that for positivd, the spontaneous symmetry
hypercubes 1 and 2. The antiferromagnetically coupledreaking involves the generata$s TheJ, > 0 classical
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saddle-point of CM is easily seen to correspond to the |QQ) = @5 05 025" puS| ) | (11)

vacuum amplitudese(= 2d), with the reference state,

N N 2 .
G — %<Z(_1)i5i> N §—22®(le — 1), ly) = (cosya® + sinybd)vad. (12)
i iz Equation (11) looks conventional. It refers to the vari-

(8)  ous rotations related to the(4) symmetry. The novelty
is Eqg. (12): instead of the usual maximum weight state,
<Z aid t> - < + J—>®(112 = J2) this nonexact state underlies the order parameter structure
b O, — Ji2) ©) Egs. (8) and (9), witlf) chosen along theaxis, whiley is
2 127 fixed by the explicit symmetry breaking interactien/,.
wherei is a vector on the unit sphere. The condensatiorrhe freedom implied by Eq. (11) might at first instance
of S [Eqg. (8)] and the existence of a mean singlet densityappear as redundant. However, it turns out that the stiff-
[Eq. (9)] is a direct ramification of the explicit symmetry ness in the temporal direction is caused entirely by the

breaking due to the interplanar coupling) is still a  fluctuations from¢} into the Q direction, and the four

vector order parameter, becau$éransforms as a vector angles appearing in Eq. (12) take care of the independent
undersS. Itis therefore a Néel order state, albeit one withrotations on andQ Epr|C|tIy i parametrizes a rota-

a variable local moment size, which implies that its longtion from O to Q 1L O (5 5 = 0). The rotation of(} in
wavelength behavior should be described by the QNLS. the plane perpendicular @ is parametrized by,. This
On the classical level it is found thal, is nonzero for

all positiveJ,, while Q) vanishes continuously @& = J,z,
wheren, becomes equal to one. This is the lowest orde
result found by CM. Regarding its formal status, it is easily
seen that this classical theobecomes exact in infinite
dimension$5,6]. The energy fluctuations disappear in this ny = cos y cos i, (13)

limit: AE/E o« 1/+/Nd. In addition, we note thaf) also
exists in2 + 1)D, at least in the vicinity of the quantum
critical point: the correlation functions in termsgfands, (14)
?Ooé(;?((eé;)[zt].the transition with their ratios fixed according & = sin2y cosyp[costad(9. b) — sindrd(e)]. (15)

What is wrong with the assertion that this transitionwhere & and ¢ are the local unit vectors in the
and the quantum-critical transition 2 + 1)D are the and¢ directions,d = (siné cos¢,sind sin¢, cosh) and
same? The transition in infinite dimensions islassical ¢ = (sin¢g, — cos¢,0). The identity becomes
transition. In terms of the singlet-triplet basis, the quan- L = _ _
tum fluctuations disappear at the lattice cutoff and thermal 1= f du(Q, Q) [20)(QQ|
fluctuations dominate at any finite temperature. The nu-

. e . /2 /2 2
merical study shows quantum criticality [3]: at zero tem- _ 2 f d f d
, ; X ¥ do, (16)

perature, the quantum fluctuations are scale independent.
In the remainder we will show that this classical theory 27 7/2 _ _
becomes pathological in the neighborhood of the classical X ] do ] df cosf|QO)Y{(QO].
transition. 0 —m/2 )

Coherent state path integrals offer a convenient frame- By taking expectation values with regard {62())
work to study quantum order parameter fluctuations [7](classical limit), we find theJ(3) invariant version of the
Because of the special status of the order parametemean-field theory of Chubukov and Morr. Minimization
Eq. (8), the usual generalized spin coherent states do nof the classical energy with regard to the coherent state
suffice. Our key result is the discovery of a special coherangles yields
ent state for this type of order parameter structure. Next

is the only free rotation left td) in a magnetic field. 6

fa\nd¢ fix the direction of().
We obtain the following expressions for the vacuum
amplitudes with respect to this coherent state

Q= sin2y siny(— cosH cos¢, — cosh sing, sing),

J
to the general requirements of normalizability and the ex- Cos2yo = J—2 + 0B, (17)
istence of the identity, it should be demanded from coher- 1z
ent states that they reproduce all properties of the classical : _ B Jha= 2
sector. Besides reproducing Egs. (8) and (9), they should singo Jiz \ Jiz + J2 O(B), (18)

also allow for anS derived vacuum expectation value, i . . . . .
P with 6 and ¢ fixed such thatQ) points in the direction

- l<z §i>_ (10) of the magnetic field. We recover the classical order-
i disorder transition at/, = J;z, where both{) and the
We find that the following coherent state satisfies all thesénduced magnetizatiof) vanish according to Egs. (14)
requirements: and (15).
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The derivation of the path integral .iS standard [7'].because of the Constramﬁi . 5i = 0. As we already
Using the Trotter formula, the evolution operator inindicated, despite the fact that the order-parameter part
imaginary time is written asN is the number of time of ¢ is zero in the absence of a magnetic field, the

slices, s, the imaginary time intervaly, 6, = B),

N,
Z = lim Tr, [[e @27,

N =1

(19)

8t—0

fluctuations in this quantity are actually producing the
stiffness in the time direction and should be carefully
integrated out. We expand to second order in the lattice
constanta, which will be taken to zero at the end of

. . . . . . : ; : =2
Inserting the identity (16) at every intermediary time andthe calculation. Using the constraiof + 07 = 1, the

expandingZ to lowest order in;,

N,
z=tm [ Dul]TIK0OG01 006, )
810 =1 i

= 84Q0 (1, DI H QO (11, 1))]. (20)
where the integration measuré)u is given by

]‘[ﬁv;ldy({ﬁ,},{(),}), while {r;} is the set of interme-
diary times in the imaginary time interval,[3]. The

kinetic term in the action follows from the first term

inside the square brackets,

[ 1«00 0100@ 1.0 = 1+ 08,D(1) + O(5).

(21)
with
® = sin2y;sinyi(singd,¢; + 9,6:)
= —lz sin2y; 0; - at% X g—: (22)
vyf;ere 0 = Q/sin2y and o= (2)/5"12/\4 so 0% +
¢ T;e lr;otential energy isB(= 0),
VYV = % <Z:> sin2y; Sin2)(j(5i : 5,;‘ + 51‘ : 5i)
L]
+ % 1Y (1 = 40} cos xi). (23)

1

Taking the time continuum limit, the path integral

becomesZ = [ D we S», with the real-time action
T
Su= [ dnl-00) + Vool (29

To derive the long wavelength theorg?), and 5 are

separated into a slowly varying order-parameter part an
a rapidly fluctuating part which will be integrated out.
The fluctuations iny are massive because of the explicit
symmetry breaking, and can be neglected. We are le

with
Oi = ‘l’]i(l’?’li + CIZ,”,) + af,l,-, (25)

>

O; = i; + al; . (26)

The (staggered) fluctuation; is parallel to the order
parameteri; (; = =1 depending on the sublattice)L
has a component along:, but is perpendicular ton

fluctuation Zy; is eliminated from the action. Different
from the single-layer system, two canting fields result,

L, andZ,», which have to be integrated out. The former
does not influence the long wavelength behavior, while
the latter is responsible for the kinetic term in the effective
action. .

After expanding ina and eliminatingZ;, the kinetic
term becomes

d = - sin2y; %Zi - dom; X i; + stagg. terms
i m;
(27)
Using m; — m; = ad;—;m;, it can be seen that the

staggered terms give contributions which are of third
order ina. The expression fofb is identical to that for
the single-layer system, apart from the factor2sinand
the absence of a topological termWithin the limitations
of the semiclassical expansion, the above derivation is in
principle valid for any dimension, including the + 1
dimensional two leg spin ladder systems. The usual
argument for the irrelevance of topological terms in these
systems are based on the proximity of Néel order on both
chains separately: the topological terms in the two rows
cancel each other. Here we find that this holds regardless
of the strength of the local fluctuations. We notice that,
according to Haldane’s conjecture [8], the spectrum of the
two leg ladder has to be gapped for ahy+ 0.

The potential term is written in the form

V=1 Z sin2y; sin2y;
{i.7)
a? > -
X [Z(ai_,.,-ﬁai)z + aZ(LiZ + Lii) - 2i|
J
+ JZZaleZCO§X,~ — Zz Z(l — 4¢08 y;).

(28)
In the continuum limit § — 0), the summations over sites
re replaced by integrations over spaee,— a = [d?x.
The O(1) term in Eq. (28), corresponding with the mean-

ﬂeld energy for the bilayer model, acquires a large

refactora—? and can be integrated by steepest descent.
This yields the mean-field expression fer Eq. (17).

After integrating over the fluctuations and L, we
recover the effective action responsible for the long
wavelength fluctuations, which is th@(3) QNLS,

d
Su= g [ xeoi? = o Y ui? .
a=1 (29)
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Although the form of Eq. (29) is dictated by symmetry, ance of the problem. This kind of order parameter struc-

the parameters appearing in the effective theory have tre arises naturally in the present context and we expect
quite different meaning in terms of the microscopic modelit to be quite common in the general context of quantum

than is the case in single layer problems. Taking thenagnetism [10]. Our main result is the discovery of a new

saddle-point values, the perpendicular susceptibility andype of spin coherent state which allows for the requanti-

the spin stiffness become, respectively, zation of such order parameter structures. As applied to
the bilayer problem, the novelty is that in any finite di-

x.=a¢ J1Z2 2J2 , (30) mension the classical theory becomes highly pathological:
Jiz the bare coupling constant of the field theory diverges at
7 72 the classical transition, explaining why the quantum tran-
ps = az‘d—1<1 - 2—2> (31) sition obeysO(3) QNLS universality.
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classical transition ag ~ 1/J3, whereJ; is the reduced [1] T. Matsuda and K. Hida, J. Phys. Soc. Ji§8, 2223
interlayer coupling/, = (J1z — J2)/J>. In any finite (1990); A.J. Millis and H. Monien, Phys. Rev. Left0,

dimension, theO(3) QNLS quantum critical transition 2810 (1993); Phys. Rev. B0, 167 606 (1994).
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) type Néel order before the classical critical point is 2777 (1994).

reached. Accordingly, the quantum critical transition of [4] A.V. Chubukov and D.K. Morr, Phys. Rev. B2, 3521
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the saddle-point values for the spin stiffness and suscep-  ansition discussed by Gros et al. occurs actually in the
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