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Spin stiffness in the frustrated Heisenberg antiferromagnet
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We calculate the spin stiffness of tlﬁ-:c% frustrated Heisenberg antiferromagnet directly from a general
formula which is evaluated in the Schwinger-boson mean-field approximation. BethaNeé collinear order-
ing are considered. For collinear ordering, we take the anisotropy of this phase into account, unlike previous
approaches. For Mtordering, a detailed study is made of the finite-size scaling behavior of the two terms that
make up the spin stiffness. The exponents of the scaling with the system size of the two terms comprising the
spin stiffness turn out to be identical to those of the unfrustrated £86463-182@07)09905-0

[. INTRODUCTION With this approximation we derive the energies and wave
functions of all states of the frustrated Heisenberg model for
The recent interest in the frustrated Heisenberg antiferroboth Neel and collinear order. Our notation below will gen-
magnets is motivated by high; superconductivity; the un- erally follow that of Milaet al?
doped compounds show long-range antiferromagnetic order, The Schwinger-boson transformation is a representation
similar to the Heisenberg model. Upon doping, superconducef the separate spin operators by pairs of boson operators,
tivity occurs. Adding frustration to the Heisenberg model canS™ =a'b, S™=ab', S?=i[a’a—b'b], supplemented by the
be thought of as to mimic the effect of hole doping. local constraina’a+b'b=2S(=1).
We consider the frustrated Heisenberg model on a square To transform the Hamiltonian in a convenient form an
lattice with N=L? sites. It is described by the following appropriate rotation in spin space is applied. Define

Hamiltonian for quantum spin§; on a lattice: Dj; =aiajT+ bib;r andBj;=a;b;+bja; . The Hamiltonian be-
comes
H=32 S-§+3> S-S, (1)
NN NNN

1 + 1) 1 + 3
where NN denotes a paiij() of nearest-neighbor sites and 2AFM 2) 2 2
NNN a pair of next-nearest-neighbor sites. The spin length is 2
S'X%j’ .S_ 2 B”m[]h‘]l ar:_<fjJ2 are takt::_n Ito be nonneggtwg. If where we have insertdd;; for the pairs {j) of spins parallel
2/ 1S SN”,"'aI I"k N Ie:m |Jer/r\(])n‘||agne It(f:1 ong-trangde Order IS rey, the 7 direction andBj; for the antiparallel pairs. For the
coveredNeel-like). ForJ,/J, large, the system decomposes orderings considered this is depicted in Fig. 1. The pa-

in two Neel-ordered sublattices which, however, have therameterJij equalsJ, for nearest neighbors anj for next-
same quantization axis. Alternating strips of up and dow

. X : ! Thearest neighbors. The mean-field decoupling is made using
spins will occur, the so-called collinear ordering. Clearlythe fieIdSKiJ-:%(D”-) and 7ij=%<Bij>- The local constraint

these couplings frustrate each other. If the spins were class‘Jj‘-TaJrbTb:1 is replaced by a global one and enforced by
cal objects, a large number of phases, among which tret Nemeans of a Lagrange multipliar. After a Fourier transform

and collinear phases, would become degenerate f . .
J,/J;=0.5. For the quantum case, a quantum phase tran.g,frrorn (a;,bi) 1o (a,,by) and a Bogoliubov transformation

tion to a spin-liquid phase might occtir’ from (@p,bp) to (ap, Bp),
In this paper, our intention is to employ the spin stiffness

ps to measure magnetic order in the system. We calculate the

spin stiffness in the framework of the Schwinger-boson " ] +

mean-field approximatiofSBMFA) using a general formula b_ ,=apsinhdy+ Bycosty,,

for ps. Previous evaluations of the spin stiffness were

indirect®'112 However, apart from minor adjustments, we 0

confirm their results. Furthermore, the scaling behavior of tanh29p=m, )

ps in this approximation is derived. This is useful to sensibly P

extrapolate results of more exact approaches, like quantutme Hamiltonian becomes

Monte Carlo and exact diagonalization. Also, the typical sys-

tem sizes for which scaling is valid can be estimated in this + +
way 57 HMF=EC+§p: wp(apapt ,Bp,Bp), 4

_ o
ap= apCcoshyy+ Bpsinhg,,

Il. SCHWINGER-BOSON MEAN-FIELD APPROXIMATION where we have introduced the quasiparticle energies

The SBMFA improves upon standard mean-field theory ——
by incorporating correlations between neighboring spirs. wp=V(hp+N)"= A ®)
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0.6 h,=2J;kCO9y,
| k\\y Ap=2J; y,c09y+4J,7,C0P,c0Py , (13
KN —
oaldt 1 Ec=2N[Ji(¥i— k2= D+3(: +299)—-A], (19
i (@) _
« 1
SN - = —2 cospx, (15
L N*p wp
=—Z cospy, (16)
L 1 1 I 1 L 1
0.6 0.8 1 =—E —COSPXCOSOy, (17
Jz/Jl pr
FIG. 1. The spin stiffnesg, in units of J; (solid lines. For the h +)\
collinear ordering the spin stiffnesses in the direction of the parallel = —E P (18
spins,»=0 (lower solid curve, and in the direction of the antipar- P ""p

allel SpInS¢ w2 (uppel’ solid CUrVE are drawn. The dotted line is The Condensaw andwp are deﬂned ina Slmllar manner as
the result found by Ivanov and IvandRef. 3. Inset : The mean pefore in Eqs(12) and (5).

fields for the Nel (8 and the collinear ordetb). x~D;; and The discussion above has given us the ground stﬂbes

¥~ By with energy Eo=E.+Z,0, for both orderings. These
. ' ground states are characterized by the absence of quasiparti-

Below the quantities,, A, andE. will be defined for the . _ _ ; ;
Neel and collinear ordenngs separately. The fields and cles; «|0)=|0)=0. Excited states are given by
i and the Lagrange multipliex are obtained through con- lay=alx ... xalxpIx...xal0), (19
sistency equations.

We consider two types of order. Huela)=E,a)=[Eq+ w1+ - + st o+ - +wy]a).

Neel order. The specific forms oh,, A,, E; and the wrl2)=Edl2) o o " |(2>0)

three consistency equations are
Il. SPIN STIFFNESS IN THE SBMFA

hp=4J,kcop,copy, (6)
The spin stiffnesgg is nonzero if there exists magnetic
Ap=2J; y(cop,+cop,), (7) " order in the system and is, @=0, associated with an in-
1 3 crease in energy upon twisting the order parameter of the
_1 2 :
E.=2N|J;| > +242| =3, > +242| -\, 8 system QAE=3Npq|* with g the wave vector of the
[ ! v g " } ® twist.)*>*In line with Einarsson and Schdlzve introduce
this twist through a replacement bf; andB;; in Eq. (2) by
1w hptA
K= sz: 2wp COP,COy, (9 D”(q) a;a] fela: r5/2+b bT —ig- r5/2 (22)
1 Ap Bij(q)zaibjeiq‘r5/2+biajefiq'rﬁlz, (22)
Ye N% 4—%(cospx+cospy), 19 yith rs=rj—r;. The resulting HamiltoniarH(q) is now

evaluated within the SBMFA.

Defining «i;(q)=3(D;;(q)) and v;;(q)=3(B;;(q)), the
(1)  mean-field Hamiltonian becomes

-3

gg:\;‘;’;:,ry?nag()gg?atignts)yn is also useful to define the “con- Hye(q) = 2 J.J%J(Q)(B”(Q)‘*‘BU(Q) 27.,(q)]
N .

ho+\ 1 hp+ X +
= =1—— + 2, Jiikii D{ (q)+D;i(q) — 2«;;
mg Nog 1 Np:ﬁ(o%(’ﬁ”ﬁ) pr . (12 ;A I]Klj(q)( |](q) U(CI) KU(Q)]
This is the combination of the equivalept=(0,0) and + +
= (r, ) terms in Egs(9) and(11), which both diverge for H\Z (ajaj+bibj—1)+ constants. (23
N—oo. In the same limitN—c, mg also equals the corre-
sponding terms in Eq10). Since within the SBMFA we know what the excited states

Collinear order. For this phase we introduce quantities are[see Eqs(19) and(20)], the spin stiffness can be directly
with a bar where confusion might arise: evaluated from second-order perturbation theory:



1 2 [(0lj|a)[?
=——=(0[t|0)+ = —=T+J, (24
Ps N< || > N\a;m Eo—E, (24
with the quantities andj defined by
d? . d
t:_d_quMF(Q) q=0> J:d_qHMF(q) (25

q=0
In Eq. (24), we have also defined the abbreviatidhandJ
for the two terms irpg.

IV. RESULTS FOR THE SPIN STIFFNESS

From this point on, we se=q(cosp,sing). Of the two
terms for pg in Eq. (24), T is evaluated more easily. We

obtain after straightforward manipulations with Brillouin

zone summations,

T=J19%—2J,k2, (26)

T=2J,72+J,(y2sirtp— k202 ). 27)

These simple equations hold for all system sikles

The quantityd requires more effort; the operatpihas to
be expressed in the operatars and 8, defined in Eq(3).
For the wave functionka) and energie&, of the excitations
we use Eqs(19) and (20). The resulting values fod are
written as summations over the Brillouin zone:

12 sirep,
-~ p

J= —wg—[le(thr N) =233k A ,c09, 1%,
p

1 1 , _— — —
=— N% —{cospsinp,[J;kAp—2357,(hp+N)copy ]

@p

— singsinp,[ I y1(hy+ \) + 23, y,(hy + \) cop, ]}2.

Only for the infinitely large lattice can these equations bet
simplified by replacing summations by integrals and partiall

integrating. The expression for the spin stiffngas=T+J
then simplifies considerably and becomes
ps=Mg(J1y—2J3k), (28)

Ps=My(2357,—J1Kk)COS P+ (2], y,+ 313’1)5in2¢]t29)

lvanov and IvanoV apply a different method to derive
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TABLE I. The limit (N==) values forT, —J, andpg as func-
tion of the ratioJ,/J; whereJ;=1. The two orderings considered
are Nel (N) and collinear(C) order. For the collinear ordering
there are two directions: along the antiparallel spirs /2 (listed
first) and along the parallel spins=0 (listed seconyd

J,/J; Order T -J Ps

0.0 N  0.3352 0.1596 0.1757

0.1 N  0.2961 0.1596 0.1365

0.2 N  0.2597 0.1597 0.1000

0.3 N 02271 0.1600 0.0672

0.4 N  0.1995 0.1604 0.0391

0.5 N 0.1783 0.1612 0.0171

0.6 N 0.1639 0.1622 0.0017

0.6 C 0.6231 0.0499 0.3841 0.0284 0.2390 0.0214
0.7 C 0.7211 0.1563 0.3327 0.0797 0.3884 0.0766
0.8 C 0.7794 0.2566 0.3232 0.1264 0.4563 0.1302
0.9 C 0.8327 0.3492 0.3292 0.1689 0.5034 0.1803
1.0 C 0.8866 0.4361 0.3434 0.2086 0.5432 0.2275
11 C 0.9420 0.5190 0.3623 0.2465 0.5797 0.2725

itly the anisotropy of this phase into account. Still both ex-
pressions fopg vanish at the same value d5/J;.
Table | and Fig. 1 contain our humerical results.

V. SCALING OF THE SPIN STIFFNESS

It is necessary to know the size dependence of observ-
ables to obtain a good approximation for their limit values.
Neuberger and Zimah derived the scaling behavior for an
unfrustrated Heisenberg antiferromagnet explicitly. Here we
extend this to the case of frustration.

Recently some discussion has arisen about where the scal-
ing behavior ofp, sets in® Our formulas in the last section
lend themselves well to investigate this.

Here we only treat the N# ordering. We want to know
he scaling behavior of the condensaigand the two terms
andT that make upg (ps=T+J). The latter two will turn
out to have different scaling behavior.

As can be seen from E¢R6) only the scaling behavior of
kN and yy is required forT. These two are part of the set
(kn» YN sAN) Of mutually dependent quantities. We will now
argue what is the exponent of their scaling behavior and
therefore ofT, without trying to obtain the precise prefactor
(which would be quite tedioys

Name Eqs(9), (10), and (11 I, ll, and Ill, respectively.

ps. They use a modified spin-wave theory which leads to the/ hey contain poles gi=(0,0) andp= (=, ). With help of
same consistency equations as the Schwinger-boson afds-(5). (6), and(7) we rearrange them as I-lll, II-lll, and
proach. p; is then obtained by calculating the correlation 4J26nl—4J1ynll +AylIl. We neglect the p=(0,0) and
length ¢ associated with the spin-spin correlation functionP= (7, 7) terms in the summations. It is easy to show that

(Si- ;) and comparing thig to the expression fof obtained
for the nonlinearr model to two-loop order by Chakravarty
et al*? [where&~ exp(2mps/6), with @ the temperature For
Neel ordering their expression is identical to our resan).

It is gratifying to see that the nonlinear model also is the
effective field theory for the low-energy physics of thas-
trated Heisenberg antiferromagnet.

For the collinear ordering they obtain the geometrical av-

erage of our cds and sif¢ terms, whereas we take explic-

this will give rise to errors of the ordeD(N~2). Next we
expand these equations to first order around their infinite-size
values (,y,\). Define the size dependencégy= xy— k,
SYN=Yn— 7Y, and S y=A\y—\ to obtain the equation

K_l 5KN
y—1 —A+B-| ow |, (30)
N—43,y?+4,k? AN
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whereA andB contain summations over the Brillouin zone 0.5

dependent on the infinite-size parametersy, and\. The -

remaining size dependence Bfcan be neglected as it leads 04 [

to higher-order terms. On the other hand, the summations in C

A will be replaced by integrations plus size-dependent cor- N
rections. Using Neuberger and Zintinve obtain ~ 0.3

(sKN Tz -

3 1 . = 0.2

B-| o | =rak (31 C

S\n C

) i 0.1 |-

The parameterscy, 7y, and Ay thus scale withN~ 32 r

A direct consequence of this is th@y,— T~N"%2 If the B

size dependence of the parameters is neglected ol L L L
[(kn,YNSAN)— (K, 7,\) inside the summationg9)—(11)], JZ/?IA
we also find the prefactor

o
©
N

FIG. 2. The numerical scaling behavior &f (solid lineg for
T-T— 0.7186 1 /)):+232:[>\_8‘]2"]- (32) sizesL=2,4,6,8,10,20,40,100numbering is top-downcompared
—4ad2

NZ72 E with the theoretical formul#&34) (dotted ling.
Up toJ,/J;~0.5 this is in good agreement with the numeri- . . : :
cal solution of Eqs(9)—(11) for various sizes\. In conclusion, we have obtained the scaling behavior of

Next we consider the condensate y andJy, for which T @andJ from an analysis of the formulas in the SBMFA for
we can even derive the prefactors. Replacement othe frustrated Heisenberg antiferromagnet. The qualitative
(kn» YN AN BY (x,7,\) in the summation of Eq(12) leads ~ scaling behaviofi.e., the exponen}ss the same as for the
to errors of the orde®(N~*?). We will neglect these. Neu- unfrustratedcase, which was discussed by Neuberger and
berger and Zima¥ state a lemma applicable to this summa-Ziman® The scaling behavior that was utilized by Einarsson

tion. This leads to and Schul2 does agree with our findings but we confirm the

message of Feiguiat al® that the clusters they used are too
0.6208 IN+4d,k small for the scaling behavior af to have set in. Numeri-
Ms,n—Ms= JN V2 N—4J,k (33 cally we see that the scaling behavior starts around size

N=100 (see Fig. 2 whereas the largest cluster they used is

For Jy we find in a similar fashion N=36.

0.6208\\?—(4J,k)? 349
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