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We compute the statistics of thermal emission from systems in which the radiation is scattered
chaotically, by relating the photocount distribution (o the scattering matrix—whose statistical properties
are known from random-matrix theory. We find that the super-Poissonian noise is that of a blackbody
with a reduced number of degrees of freedom. The general theory is applied to a disordered slab
and to a chaotic cavity, and is extended to include amplifying as well as absorbing systems. We
predict an excess noise of amplified spontaneous emission 1n a random laser below the laser threshold.
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The emission of photons by matter in thermal equilib-
rium is not a series of independent events. The textbook
example is blackbody radiation [1,2]: Consider a system
in thermal equilibrium (temperature 7) that fully absorbs
any incident radiation in N (w) propagating modes within a
frequency interval  w around . A photodetector counts
the emission of n photons in this frequency interval dur-
ing a long time ¢ > 1/8w. The probability distribution
P(n) is given by the negative-binomial distribution with
v = NtSw /2 degrees of freedom,

P(n)0<<n+:_

1)exp(—-nﬁw//’cBT). )
The binomial coefficient counts the number of partitions of
n bosons among v states. The mean photocount 7 = v f
is proportional to the Bose-Einstein function

flw,T) = [exp(hw /ksT) — 117" 2

In the limit /v — 0, Eq. (1) approaches the Poisson
distribution P(n) « /" /n! of independent photocounts.
The Poisson distribution has variance Var(n = i) equal
to its mean. The negative-binomial distribution describes
photocounts that occur in “bunches,” leading to an increase
of the variance by a factor 1 + 7/v. These basic facts
have been known since the beginning of this century [3].

Thermal radiation is also referred to as “chaotic radia-
tion” [1,2]. In recent years the word ““chaotic” has entered
optics in a different context, to describe systems that scatter
radiation in an irregular, random way [4]. Such systems,
typically, have weak absorption, so they are far from being
blackbodies. Two recent papers have studied deviations
from blackbody radiation in the case of one-dimensional
scattering [5,6], but chaotic systems are intrinsically not
one dimensional. What, then, is the statistics of the chaotic
radiation resulting from chaotic scattering? That is the
problem addressed in this paper.

This problem is significant for more than one reason.
First, thermal emission is a fundamental property of a sys-
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tem. Deviations from the blackbody limit contain infor-
mation on chaotic scattering that cannot be obtained from
classical scattering experiments. Most studies of the op-
tical properties of random media have been restricted to
classical optics [7]. The similarity between the classical
wave equation and the Schrédinger equation has permitted
the transfer to classical optics of powerful theoretical tech-
niques from condensed matter physics [8]. Our solution
of the thermal-radiation problem demonstrates how one of
these techniques, the method of random-matrix theory [9],
can be applied to quantum optics. That is the second rea-
son for the significance of this problem. The third reason is
the recent interest in amplifying random media, motivated
by possible applications as a “random laser” [10,11]. A
linear amplifier can be thought of as being in thermal equi-
librium at a negative temperature [12], so that our theory
of thermal radiation can also deal with amplified sponta-
neous emission.

We start with the formulation and solution of the
problem in a general form, and then turn to specific
applications. We consider a random medium coupled to
a photodetector via a waveguide (in vacuum) with N(w)
propagating modes (counting polarizations) at frequency
w (see Fig. 1). We assume that any Brownian motion
of the scattering centra in the random medium can be
disregarded on the time scale of the measurements. The
scattering rate is denoted by 1/7,, and the absorption or

~(_ =

FIG. 1. Schematic diagram of a random medium (dotted) con-
nected to a photodetector (shaded) via an N-mode waveguide.

© 1998 The American Physical Society 1829



VOLUME 81, NUMBER 9

PHYSICAL REVIEW LETTERS

31 AUGUST 1998

amplification rate by 1/7, To quantize the electromag-
netic field we use the method of input-output relations
developed by Gruner and Welsch [5] and by Loudon and
co-workers {6,12,13] The incoming and outgoing modes
in the waveguide are represented by two N-component
vectors of anmhilation operators a™(w), a®*(w) They
satisfy the commutation relations

[an(w), a;(wl)] = 6nm5(w - w/)s
[an(w), an(w")] =0,

The mput-output relations take

(3)

fora = a™ or a = ™™
the form [5,6,12,13]

a® = Sa"™ + Ub + Vc', )
with S(w) the N X N scattering matrix The boson
operators b and c satisfy Eq (3) provided

vUut — vyt =1 - sst (5)

(1 denoting the N X N unit mattix) The matrix 1 — SS t
1s posttive definite 1n an absorbing medium, so we can put
V =0 Conversely, in an amplifymg medium 1 — S 1s
negative definite, so we can put U = 0 This determines
U,V up to a unitary transformation All of ow final
expressions depend only on the combmation UUt — vy,
so that any freedom 1n the choice of U, V 1s wrrelevant once
the scattering matiix 1s fixed

Equation (5) can be understood as a fluctuation-
dissipation refation  The left-hand side accounts for
quantum fluctuations 1n the electromagnetic field due to
spontaneous emission or absorption of photons, and the
right-hand side accounts for dissipation due to absorption
(or stimulated emission 1 the case of an amplifying
medium) Equation (5) also represents a Ik between
classical optics (the scattering matirx §) and quantum
optics (the quantum fluctuation matrices U, V)

In an absorbing medium, the operator » accounts for
thermal emission with expectation value

(b} (@0)bp(0)) = 8amd(w — &")f(w,T)  (6)

The mverted oscillator ¢ accounts for spontaneous emis-
ston 1n an amphfymg medium We consider the regime of
linear amplification, below the laser threshold Formally,
this regime can be described by a thermal distribution at
negative temperature — 7,

(cn(w)c:ﬁl(w’)) = —8mb(w — o")f(0w,=T), (7)

the zero-temperature Itmit corresponding to a complete
population mversion [12} Higher order expectation val-
ues are obtained by pairwise averaging, as one would do
for Gaussian variables, after having brought the operators
into normal order

The incoming 1adiation 1s n the vacuum state, while
the outgoing radiation 1s collected by a photodetector

1830

[14] The probability that n photons are counted 1n a time
t 18 given by [15,16]

t
Py = ~( 1"e7 ), 1= f dr' @ (1)a*" (1),
n 0
w (8
aout(t) — (277_)—1/2[ dw e—xwtaout(w)
0

(The colons denote normal ordering ) It 1s convenient to
work with the generating function F(£) = >, k,£7/p!
of the factorial cumulants «, [17],

F) =l 1+ &"Pm)=In( ) (9
n=0

To evaluate F(&) we substitute Eq (4) mto Eq (8) and
perform the Gaussian avelages
A simple expression results in the long-time regime,

F(§) = —rfow %“;— Inflt = (1 — SSHEfN,  (10)

where || || indicates the determinant Equation (10)
18 valid when w.t > 1, with w. the frequency interval
within which SS* does not vary appieciably We have
also found a sumple expression 1n the shoit-tume regime,

F(§)=—1In , (1I1)

_ L (Tde o oot
1 zfo oo (1 = sshes

valid when Q.7 < 1, with . the frequency range over
which SS1 differs appieciably from the unit matrix  (The
reciprocal of (). 18 the coheience tume of the thermal
emissions ) The two equations (10) and (11) are the key
results of this paper They i1educe the quantum optical
problem of the photon statistics to a computation of the
scattering matrix of the classical wave equation That 1s
a major sumplification, because the statistical properties of
the scattering matrix of a tandom medium are known from
1andom-matrix theory [18,19]

The long-time Iumit (10) 1s particulaily simple, as 1t
depends only on the set of eigenvalues o,09, ,on
of S§T  We call the o,’s “scattering strengths 7 An
additional simplification of the long-time 1egime 1s that
one can do a frequency-iesolved measurement, counting
only photons within a narrow frequency interval dw
(with w. > 8w > 1/t) The factorial cumulants are
then given by

N
kp=(p = D'wfPN'> (1 =a), (12

n=1

where v = NtSw /27 was defined 1 the introduction
For comparison with blackbody radiation, we parametrize
the variance 1n terms of the effective number ves of
degrees of freedom [2],

Var[n = p(1 + fl/Veff)], (13)
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with v = v for a blackbody Equation (12) implies

Vetf — [zn(l — o'n)]z <1 (14)

v N Zn(l - U'n)z
We conclude that the super-Poissonian noise of a random
medmum corresponds to a blackbody with a reduced num-
ber of degiees of fieedom Note that the reduction occurs
only for N > 1

We now turn to applications of our general formulas
to specific 1andom media We concentrate on the long-
time, frequency-resolved regime with N > 1, leaving
the short-time and single-mode regimes, and the case of
broadband detection, for future publication [20] An en-
semble of random media has a certain scattering-strength
density p(o) For N > 1, sample-to-sample fluctua-
tions are small, so the ensemble average 1s representa-
tive of a single system We may theiefore 1eplace >, by
[do p(c) m Eqgs (12) and (14)

As a first example, we compute the thermal radia-
tion from a disotdered absorbing slab The slab 13 suf-
ficiently thick so that there 1s no transmission through 1t,
tepresenting a semi-infinite 1tandom medium We define
the normalized absorption 1ate [21] y = 1—36-75 /7. The
scattering-strength density p(o) m the regime yN? > 1
1s known [22,23] It 1s nonzero in the mterval 0 < o <
(1 + 3v)~L, where 1t equals

plo) = WN/my7 (1 — o) o™l =1 - 1 9)?
(15)

This leads to the effective number of degrees of freedom,
veir/v = 4[(1 + 4/y) + (1 + 4/%) 7472, 6

plotted in Fig 2, with a mean photocount of

A= 3rfyN1+4/y = 1) (17

For strong absorption, y > 1, we recover the blackbody
result vesr = v, as expected For weak absorption, y <«
1, we find vesf = 2v,/y In the weak-absorption regime,
we can compute the entire distitbution P(n) analytically
The 1esult

P(n) o« (A" /n) (1 + £) K1 p(resed1 + f), (18)

with n = vf JY and K a Bessel function, 1s Glauber’s
distribution [15] with a reduced number of degrees of
freedom

Our second example 1s an optical cavity connected to
a photodetector via an N-mode waveguide The cavity
modes near frequency w are broadened over a frequency
range NAw, much gieater than their spacing Aw 1f N >
1 The cavity should have an wrregulai shape, o1 1t should
contain random scatterers—to ensuie chaotic scattering
of the 1adiation For this system we define the normal-

blackbody limit |

,_.
I

@]
(@)

degrees of freedom vegs/v

; amplification
- laser threshold -
O | I ' | , | I N | ' I
0 05 1 15 2

rate v

FIG 2 Effective numbei of degiees of freedom as a function
of normalized absorption or amplification rate The dashed
curve 18 fo1 the disordered slab, the solid cuives aie for the
chaotic cavity The amplifying slab would be above the laser
threshold for any y, so we only plot the case of absorption
Fo1 the cavity, both cases of absorption and amplification are
shown The blackbody limut for absorbing systems and the
laset thieshold for amplifying systems ate indicated by arrows

1zed absorption rate as y = Tgwel/Ta, Where Tawenn =
27 /NAw = 1/w, 1s the mean dwell time of a photon
mn the cavity without absorption The scattering-strength
density for N >> 1 follows from the general formulas of
Ref {24] The result has a sumple form 1n the hmit y < 1
of weak absorption,

plo) = WN/2m)(1 = ) 2o — 7)o — )2,
(19

fooo_ <o <oywitho: =13y £ 2y\/§ In the
opposite limit ¥ >> 1 of strong absorption, p(c) 1s given
by the same Eq (15) as for the disordered slab We find
the effective numbe: of degiees of freedom,

vear/v = (L+ yP(y? + 2y + 271, (20)
plotted also in Fig 2, with a mean photocount of
i=uvfy(l+ y)! (2D

Again, v = v for y > 1 For y < 1 we now find
Veif = %v It 1s remarkable that the ratio vee/v for the
chaotic cavity remains finite no matter how weak the
absoiption, while this 1atio goes to zero when y — 0 1n
the case of the disordered slab

These two examples concern thermal emission from
absorbing systems As we discussed, our geneial formulas
can also be applied to amplified spontaneous emission,
by evaluating the Bose Einstein function (2) at a negative
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temperature Complete population inversion corresponds
to f = —1 A duality relation [25] between absorbing
and amplifying systems greatly simplifies the calculation
The dielectric constants &/ = 1g” of dual systems are each
other’s complex conjugates, so dual systems have the same
value of 7, and v Their scattering matrices are related by

Si = S hence the scattering strengths o, 00, ,0n
of an amplifying system ate the reciprocal of those of the
dual absorbing system

We need to stay below the laser threshold, in order
to be 1n the regime of linear amplification The semi-
mfinite medium 15 above the laser threshold no matter
how weak the amplification [22], but the cavity 1s below
threshold as long as y <1 We find that # and ve/v
are given by Egs (20) and (21) upon substitution of y
by —y InFig 2 we compare verr /v for amplifying and
absorbing cavities In the hmut vy — O the two results
comncide, but the y dependence 1s strikingly different
While vetr/v mcreases with y mn the case of absorption, 1t
decreases 1n the case of amplification—vanishing at the
laser threshold Of course, close to the laser threshold
[when ¥ = 1 — (Qc7qwen)” /2] the approximation of a
linear amplifier breaks down

In summary, we have derived a relation between the
photocount distiibution P(r), 1n the long-time linmt, and
the eigenvalues 01,09, ,on of the scattering-matrix
product ST The super-Posssoman noise Var[n = 7(1 +
i/ vesr)] 1s that of a blackbody with a reduced number
vers of degrees of freedom We have computed .4 for
several types of random media, in the large-N regime,
using results fiom random-matrix theory In a weakly
absorbing or amplifying chaotic cavity, the ratio veg/v
1s a universal factor of 1/2—independent of microscopic
parameters In a disordered slab, v.g; /v vanishes o1/ JTa
for small absorption rates 1/7, We have found that vg /v
also vamishes on approaching the laser threshold in an
amplifying chaotic cavity

The reduction of .+ amounts to an excess noise of
amplified spontaneous emission Its origin 1s the presence
of a large number N of overlapping cavity modes, and
a broad distribution p (o) of the corresponding scattering
strengths  Overlap of cavity modes 1s avoided in the
usual laser geometry, but it 1s generic 1n a random laser
This fundamental difference was pointed out thirty years
ago by Letokhov [26], mn the paper that pioneered the
notion of a “stochastic resonator ” Letokhov concludes
his paper by surmising that the statistical properties of
spontaneous emission would be distinctly different from
the usual case The reduction of the number of degrees of
freedom predicted here forms an experimentally accessible
signature of this difference
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