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Thermal Radiation and Amplified Spontaneous Emission from a Random Medium
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We compute the statistics of thermal emission from Systems in which the radiation is scattered
chaotically, by relating the photocount distribution lo the scattering matrix—whose statistical properties
are known from random-matrix theory. We find that the super-Poissonian noise is that of a blackbody
with a reduced number of degrees of freedom. The general theory is applied to a disordered slab
and to a chaotic cavity, and is extended to include amphfying äs well äs absorbing Systems. We
predict an excess noise of amplified spontaneous emission in a random laser below the laser threshold.
[S0031 -9007(98)07001 -X]
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The emission of photons by matter in thermal equilib-
rium is not a series of independent events. The textbook
example is blackbody radiation [1,2]: Consider a System
in thermal equilibrium (temperature T) that fully absorbs
any incident radiation in N (ω) propagating modes within a
frequency interval δ ω around ω. A photodetector counts
the emission of n photons in this frequency interval dur-
ing a long time t » l /δω. The probability distribution
P (n) is given by the negative-binomial distribution with
v = Νίδω/2π degrees of freedom,

P(n)
n + v

n
\

exp(— (1)

The binomial coefficient counts the number of partitions of
n bosons among v states. The mean photocount n — vf
is proportional to the Bose-Einstein function

- 1]" (2)

In the limit n/v —* 0, Eq. (1) approaches the Poisson
distribution P (n) <* n"/n\ of independent photocounts.
The Poisson distribution has variance Var(n = n) equal
to its mean. The negative-binomial distribution describes
photocounts that occur in "bunches," leading to an increase
of the variance by a factor l + h/v. These basic facts
have been known since the beginning of this Century [3].

Thermal radiation is also referred to äs "chaotic radia-
tion" [1,2]. In recent years the word "chaotic" has entered
optics in a different context, to describe Systems that scatter
radiation in an irregulär, random way [4]. Such Systems,
typically, have weak absorption, so they are far from being
blackbodies. Two recent papers have studied deviations
from blackbody radiation in the case of one-dimensional
scattering [5,6], but chaotic Systems are intrinsically not
one dimensional. What, then, is the statistics of the chaotic
radiation resulting from chaotic scattering? That is the
problem addressed in this paper.

This problem is significant for more than one reason.
First, thermal emission is a fundamental property of a sys-

tem. Deviations from the blackbody limit contain Infor-
mation on chaotic scattering that cannot be obtained from
classical scattering experiments. Most studies of the op-
tical properties of random media have been restricted to
classical optics [7]. The similarity between the classical
wave equation and the Schrödinger equation has permitted
the transfer to classical optics of powerful theoretical tech-
niques from Condensed matter physics [8]. Our solution
of the thermal-radiation problem demonstrates how one of
these techniques, the method of random-matrix theory [9],
can be applied to quantum optics. That is the second rea-
son for the significance of this problem. The third reason is
the recent interest in amplifying random media, motivated
by possible applications äs a "random laser" [10,11]. A
linear amplifier can be thought of äs being in thermal equi-
librium at a negative temperature [12], so that our theory
of thermal radiation can also deal with amplified sponta-
neous emission.

We Start with the formulation and solution of the
problem in a general form, and then turn to specific
applications. We consider a random medium coupled to
a photodetector via a waveguide (in vacuum) with Ν(ω)
propagating modes (counting polarizations) at frequency
ω (see Fig. 1). We assume that any Brownian motion
of the scattering centra in the random medium can be
disregarded on the time scale of the measurements. The
scattering rate is denoted by l/r s, and the absorption or

FIG. l. Schematic diagram of a random medium (dotted) con-
nected to a photodetector (shaded) via an N-mode waveguide.
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amplification rate by l/ra To quantize the electromag-
netic field we use the method of mput-output relations
developed by Grüner and Welsch [5] and by Loudon and
co-workers [6,12,13] The mcoming and outgomg modes
in the waveguide are represented by two ./V-component
vectors of anmhilation operators αιη(ω), α°Μ(ω) They
satisfy the commutation relations

[αη(ω),α^(ω')] = δηηιδ(ω - ω1),

[αη(ω),αιη(ω')] — Ο,
(3)

for α = am or α = aout

the form [5,6,12,13]

with S (ω) the N X N scattermg matrix
operators b and c satisfy Eq (3) provided

- W* = l - SS^

The mput-output relations take

The boson

(5)

(l denotmg the ./V X TV umtmatiix) The matrix l —
is positive defimte in an absorbing medmm, so we can put
V — 0 Conversely, m an amplifymg medmm l — SS' is
negative defimte, so we can put U = 0 This determmes
U, V up to a umtary transfoimation All of oui final
expressions depend only on the combmation UU^ — W ^ ,
so that any freedom m the choice of U, V is irrelevant once
the scattermg matnx is fixed

Equation (5) can be understood äs a fluctuation-
dissipation relation The left-hand side accounts for
quantum fluctuations m the electromagnetic field due to
spontaneous emission or absorption of photons, and the
nght-hand side accounts for dissipation due to absorption
(or stimulated emission m the case of an amplifymg
medium) Equation (5) also represents a link between
classical optics (the scattermg matnx S) and quantum
optics (the quantum fluctuation matnces U, V)

In an absorbing medium, the operator b accounts for
thermal emission with expectation value

= δηη,δ(ω - (6)

The mverted oscillator c accounts for spontaneous emis-
sion in an amplifymg medium We consider the regime of
linear amplification, below the laser threshold Formally,
this regime can be descnbed by a thermal distribution at
negative temperature - T,

<c„(u>)4(<w')> = -δηιηδ(ω - ω')/(ω,~Τ), (7)

the zero-temperature hmit corresponding to a complete
population Inversion [12] Higher order expectation val-
ues are obtamed by pairwise averagmg, äs one would do
for Gaussian variables, after having brought the operators
mto normal order

The mcommg ladiation is in the vacuum state, while
the outgomg radiation is collected by a photodetector

[14] The probability that n photons are counted in a time
i is given by [15,16]

P(n) = = r<fc'aoutV)aout(f'),
Jo

aout(t) =
,
/

Jo

(The colons denote normal ordermg ) It is convement to
work with the generating function Ρ(ξ) = Xp κρξ

ρ/ρ]

of the factonal cumulants κρ [17],

= In (1 + ξΥΡ(η) =
n=0

(9)

To evaluate Ρ(ξ) we substitute Eq (4) mto Eq (8) and
perform the Gaussian aveiages

A simple expression results in the long-time regime,

Ρ(ξ] = -' Γ ^ In I I I - (l - SS*Kf\\, (10)
Jo 2.TT

where || || mdicates the determmant Equation (10)
is vahd when a>ct » l, with wc the frequency mterval
withm which SS^ does not vary appieciably We have
also found a simple expression in the shoit-time regime,

Ρ(ξ) = - In (H)

vahd when ilci <§: l, with Ω0 the frequency ränge over
which 55'1' differs appieciably from the unit matrix (The
reciprocal of Hc is the coheience time of the thermal
ermssions ) The two equations (10) and (11) are the key
results of this paper They leduce the quantum optical
pioblem of the photon statistics to a computation of the
scattermg matrix of the classical wave equation That is
a majoi simplification, because the statistical properties of
the scattermg matrix of a landom medium are known from
landom-matnx theory [18,19]

The long-time hmit (10) is particulaily simple, äs it
depends only on the set of eigenvalues σ\,σ2, ,σΝ

of SS t We call the an's "scattermg strengths " An
additional simplification of the long-time legime is that
one can do a frequency-iesolved measurement, countmg
only photons withm a narrow frequency mterval δω
(with <yc » δω » l//) The factonal cumulants are
then given by

= (p- 1)' (12)

where v = Νίδω/2ττ was defined m the mtroduction
For companson with blackbody radiation, we parametnze
the vanance in terms of the effective number ν^ς of
degrees of freedom [2],

Var[« = n(l + n/Veff)L (13)
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with i>eff = v for a blackbody Equation (12) imphes

ZOff [ΣΒ(1 - σ

ΝΣη(1-
< l (14)

We conclude that the super-Poissonian noise of a random
medium corresponds to a blackbody with a reduced num-
ber of degiees of fieedom Note that the reduction occurs
only for W > l

We now turn to applications of our general formulas
to specific landom media We concentrate on the long-
time, frequency-resolved regime with N » l, leavmg
the short-time and smgle-mode regimes, and the case of
broadband detection, for future pubhcation [20] An en-
semble of random media has a certam scattermg-strength
density p (σ) For N » l, sample-to-sample fluctua-
tions are small, so the ensemble average is representa-
tive of a smgle System We may theiefoie leplace X„ by
fdap(a)mEqs (12) and (14)

As a first example, we compute the triermal radia-
tion from a disoidered absorbing slab The slab is suf-
ficiently thick so that there is no transmission through it,
lepiesenting a semi-mfinite landom medium We defrne
the normahzed absorption late [21] γ = yr s/Ta The
scattermg-strength density p (σ) in the regime γ N2 » l
is known [22,23] It is nonzero m the mterval 0 < σ <
(l + 57)"', where it equals

ρ(σ) =

(15)

This leads to the effective number of degrees of freedom,

v^lv = 4[(1 + 4/y)1/4 + (l + 4/y)-1/4r2, (16)

plotted m Fig 2, with a mean photocount of

n = 2 "/r(Vl + 4/7 - 1) (17)

For strong absorption, 7 » l, we recover the blackbody
result veff = v, äs expected For weak absorption, γ «
l, we find vef{ = 2v^fy In the weak-absoφtlon regime,
we can compute the entire distubution P (n) analytically
The lesult

P(n)

with n = vf^/y and K a Bessel function, is Glauber's
distnbution [15] with a reduced number of degrees of
freedom

Our second example is an optical cavity connected to
a photodetector via an N-mode waveguide The cavity
modes near frequency ω are broadened over a frequency
ränge Λ^Δω, much gieater than their spacing Δω if N »
l The cavity should have an irregulai shape, 01 it should
contam random scatterers—to ensuie chaotic scattenng
of the ladiation For this System we defme the normal-
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FIG 2 Effective numbei of degiees of freedom äs a function
of noimahzed absorption or amphfication rate The dashed
curve is foi the disoidered slab, the solid cuives aie foi the
chaotic cavity The amphfymg slab would be above the lasei
threshold for any γ, so we only plot the case of absorption
Foi the cavity, both cases of absorption and amphfication are
shown The blackbody hmit for absorbing Systems and the
lasei thieshold foi amphfymg Systems aie mdicated by arrows

ized absorption rate äs 7 = Tdwen/T&, where Tdweii =
2π/ΝΔω — 1/ω0 is the mean dwell time of a photon
in the cavity without absorption The scatteimg-strength
density foi ./V » l follows from the general formulas of
Ref [24] The result has a simple form in the hmit 7 <3C l
of weak absorption,

ρ(σ) = (Ν/2ττ)(1 - - σ ) 1 / 2 ,

(19)

foi σ~ < σ < σ+ with σ± = 1 — 3γ ± 2yV2 In the
opposite hmit 7 :» l of strong absorption, ρ (σ) is given
by the same Eq (15) äs for the disoidered slab We find
the effective numbei of degiees of freedom,

= (i + r)2(r2 + 27 + 2)- (20)

plotted also in Fig 2, with a mean photocount of

h = vfy(\ + 7Γ' (21)

Agam, ν^ί = v for 7 » l For 7 <SC l we now find
z'eff = 2V ^ 1S remarkable that the ratio v^lv foi the
chaotic cavity remams finite no matter how weak the
absoiption, while this latio goes to zero when 7 — * 0 in
the case of the disordered slab

These two examples concern theimal emission from
absorbing Systems As we discussed, our geneial formulas
can also be apphed to amplified spontaneous emission,
by evaluating the Böse Einstein function (2) at a negative
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temperature Complete population Inversion corresponds
to / = — l A duahty reladon [25] between absorbing
and amphfymg Systems greatly simplifies the calculation
The dielectnc constants ε' ± ιέ" of dual Systems are each
other's complex conjugates, so dual Systems have the same
value of ra and γ Their scattenng matnces are related by

S+ = SI1, hence the scattermg strengths σι,σ2, , σγ/
of an amphfymg system aie the reciprocal of those of the
dual absorbing system

We need to stay below the laser threshold, in order
to be in the regime of linear amplification The semi-
mfinite medium is above the laser threshold no matter
how weak the amplification [22], but the cavity is below
threshold äs long äs γ < l We find that h and v^i/v
are given by Eqs (20) and (21) upon Substitution of y
by — 7 In Fig 2 we compare v^jv for amphfymg and
absorbing cavities In the hmit γ —> 0 the two results
comcide, but the y dependence is strikmgly different
While t'etf l v mcreases with y in the case of absorption, it
decreases in the case of amplification—vamshmg at the
laser threshold Of course, close to the laser threshold
[when y S: l — (flc'''dweii)~1/'2] the approximation of a
linear amplifier breaks down

In summary, we have denved a relation between the
photocount distiibution P (n), m the long-time hmit, and
the eigenvalues σ\,σι, , στ/ of the scattenng-matrix
product SS^ The super-Poissoman noise Var[n = rä(l +
n/Ve.it)"] is that of a blackbody with a reduced number
ν&^ of degrees of freedom We have computed v^t for
seveial types of random media, in the large-/V regime,
usmg results fiom random-matnx theory In a weakly
absorbing or amphfymg chaotic cavity, the ratio veff/v
is a universal factor of 1/2—mdependent of microscopic
Parameters In a disordered slab, v^f/v vamshes ^l/^fr^
for small absorption rates l /ra We have found that v^jv
also vamshes on approachmg the laser threshold in an
amphfymg chaotic cavity

The reduction of veff amounts to an excess noise of
amphfied spontaneous emission Its ongm is the presence
of a large number ./V of overlappmg cavity modes, and
a broad distnbution ρ(σ) of the correspondmg scattenng
strengths Overlap of cavity modes is avoided m the
usual laser geometry, but it is genenc in a random laser
This fundamental difference was pointed out thirty years
ago by Letokhov [26], m the paper that pioneered the
notion of a "stochastic resonator " Letokhov concludes
his paper by surmising that the statistical properties of
spontaneous emission would be distmctly different from
the usual case The reduction of the number of degrees of
freedom predicted here forms an expenmentally accessible
signature of this difference

I have benefited from discussions with P W Brouwei,
M P van Exter, and J P Woerdman This woik was
supported by the Dutch Science Foundation NWO/FOM

[1] R Loudon, The Quantum Theory of Light (Clarendon,
Oxford, 1983)

[2] L Mandel and E Wolf, Optical Coherence and Quantum
Optics (Cambridge Umversity Press, Cambridge, England,
1995)

[3] A Einstein, Phys Z 10, 185 (1909)
[4] J U Nockel and A D Stone, Nature (London) 385, 45

(1997)
[5] T Grüner and D-G Welsch, Phys Rev A 54, 1661

(1996)
[6] M Artom and R Loudon, Phys Rev A 55, 1347 (1997)
[7] Scattenng and Locahzation ofClassical Waves m Random

Media edited by P Sheng (World Scientific, Smgapore,
1990)

[8] K Efetov, Supersymmetry m Disorder and Chaos (Cam-
bridge Umversity Press, Cambridge, England, 1997)

[9] M L Mehta, Random Matnces (Academic, New Yoik,
1991)

[10] N M Lawandy, R M Balachandran, A S L Gomes, and
E Sauvam, Nature (London) 368, 436 (1994)

[11] D WiersmaandA Lagendijk, Phys Woild 10, 33 (1997)
[12] J R Jeffers, N Imoto, and R Loudon, Phys Rev A 47,

3346 (1993), R Matloob, R Loudon, M Artom, S M
Barnett, and J Jeffers, Phys Rev A 55, 1623 (1997)

[13] R Matloob, R Loudon, S M Barnett, and J Jeffers, Phys
Rev A 52, 4823 (1995)

[14] The formulas in the text are for the case of detection
efficiency a = l photoelectron per photon If a < l,
one should replace / by af

[15] R J Glauber, Phys Rev Lett 10, 84 (1963), in Quantum
Optics and Electronics, edited by C DeWitt, A Blandin,
and C Cohen-Tannoudji (Gordon and Breach, New York,
1965)

[16] P L Kelley and W H Kleiner, Phys Rev 136, A316
(1964)

[17] The factonal cumulants κρ are the cumulants of the fac-
tonal moments n(n - 1) (n — p + l) For example,
KI = n(n - 1) - n2

[18] C W J Beenakker, Rev Mod Phys 69, 731 (1997)
[19] T Guhr, A Muller-Groehng, and H A Weidenmuller,

Phys Rep 299, 189 (1998)
[20] C W J Beenakker, m "Diffuse Waves m Complex

Media," edited by J P Fouque, NATO ASI Senes
(Kluwer, Dordrecht, to be pubhshed)

[21] The coefficient m the defimtion of γ is chosen to facihtate
the companson between slab and cavity

[22] C W J Beenakker, J C J Paasschens, and P W Brou-
wer, Phys Rev Lett 76, 1368 (1996)

[23] N A Bruce and J T Chalker, J Phys A 29, 3761 (1996)
[24] P W Brouwer and C W J Beenakkei, J Math Phys

37, 4904 (1996) This refeience deals with nonabsoibing
cavities To use its results, we make the mapping between
an absorbing cavity with one opening and a nonabsorbing
cavity with two openmgs descnbed by P W Brouwei and
C W J Beenakker [Phys Rev B 55, 4695 (1997)]

[25] J C J Paasschens, T Sh Misirpashaev, and C W J
Beenakker, Phys Rev B 54, 11 887 (1996)

[26] V S Letokhov, Zh Eksp Teor Fiz 53, 1442(1967) [Sov
Phys JETP 26, 835 (1968)]

1832


