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Lasing threshold and mode competition in chaotic cavities
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The lasing threshold of a multimode chaotic cavity (linear size D 3 wavelength \) coupled to the outside
through a small hole (linear size d<)\) is studied For sufficiently weak absorption by the boundaries, the
statistical distribution of the threshold 1s wide, 1ts mean value being much less than the pumping rate needed
to compensate the average loss The average number (N,.)® 1 of noncompeting excited modes 1s proportional
to the square root of the pumping rate We use the classical model of spatial hole burning to account for mode

competition and find a reduction m the average number of excited modes to (N)=3"(N,
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PACS number(s)

I. INTRODUCTION

Incorporation of quantum optical effects 1s a necessary
and mteresting extension of active ongoing research on mul
tiple scattering of electiomagnetic waves 1 random media
[1] Tt becomes particularly important when the medium 1s
active, as 1s the case m expermmentally realized ‘‘random
lasers” [2—4] Quantum effects have been largely 1ignored mn
many publications devoted to propagation 1n disordered am-
plifying waveguides [5—8], 1n which only amplified stimu-
lated emussion of external mcoming flux but not of sponta-
neously emutted mternal noise was taken into account (Ref
[9] being a notable exception) Amplified internal noise can
lead to excitation of low-threshold lasing modes of the wave-
guide, making practical use of amplifymg waveguides prob-
lematic The difficulty of the waveguide geometry 1s the on-
set of localization In this paper we consider a simpler cavity
geometry, which does not show localization, but retains two
essential features of the problem (1) large sample to-sample
fluctuations and (2) mstability brought about by spontaneous
emission

A complete description of the fluctuations 1s possible m
the umversal 1egime characterized by a chaotic pattern of
classical tiajectories We assume that the cavity (volume V
=D?3) 1s confined by conducting walls, filled with a lasing
medum (cential frequency of the gan piofile wg), and
coupled to external detectors via one or seveial small holes
It was demonstrated recently that a nonintegrable shape of
the resonator can significantly affect its lasing properties
[10] Chaoticity of classical trajectories can be achieved ei-
ther by a peculiar shape of the resonator [11-13], o1 by a
small amount of disorder scattering We will speak about
‘“‘chaotic cavities,”” meaning erther of the two mechanisms
1esponsible for the onset of chaos

We restiict ourselves to the case of well-iesolved cavity
modes, which means that (1) resistive loss 7y, n the cavity
walls 1s less than the mean modal spacing Swy= m>c3/wV
and (2) chatacteristic size of the holes d is smaller than the
wavelength Ag=2m¢/wg Mean loss 7y, through a small hole

was calculated by Bethe [14],
d6
Yo=——, d<€l\g, (1)
0 N 0
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so that yy/S8wy=(d/\y)®<1 Note that the loss (1) 15 not
proportional to the area of the hole It 1s i fact much smaller
than one might guess by extrapolating the dependence 7y,
=cd*/V valid for d>\, The effect of sample-to sample
fluctuations 1s pronounced only if y, <<y, This regime 1s
experimentally accessible, as was demonstrated by a recent
series of experiments on miciowave cavities with supercon-
ducting mobum walls [12,13]

Each act of spontaneous emission 1n a pumped cavity 1s a
source of 1adiation mto some cavity mode Classical condi-
tion of the lasing thieshold 1n a given cavity mode 1s satisfied
if the gamn due to stimulated emission equals the loss
Thieshold for the cavity 1s the smallest value of the pumping
1ate at which threshold 1s attained for one of the modes The
questions we ask are, what 1s the threshold rate of pumping?
How many lasmg modes can coexist for a given pumping
1ate above the thieshold? The problem of spectral content of
outgomg 1adiation has been widely studied for mtegrable
cavities of definite shape Considering arrays of chaotic cavi
ties of slightly varying shape o1 with different configurations
of scatterers we address the problem statistically and com
pute the probability of lasing, the distribution of the thiesh
old, and the average number of excited modes

Tuvially, gain greater than mean loss 7y, will be on the
average sufficient to ensure lasing, while gain smaller than
¥s Will never suffice The mean loss fiom a tiny hole 1s
small We aigue that the actual average threshold can still be
many orders of magnitude smaller Each individual cavity
exlibits a well-defined threshold but its statistical distribu-
tion 15 wide In Sec I we compute this distribution for the
idealized case y, =0 Effects of nonzero resistivity of the
walls are discussed m Sec III Section IV 1s devoted to the
computation of the average number of excited modes above
the threshold We conclude in Sec V

II. DISTRIBUTION OF LASING THRESHOLD

We assume that the line of spontaneous emission 1s ho
mogeneously bioadened and has Loientzian shape with cen

tral frequency wq and width 2Q Let zﬁ,(?) be the amplitude
of a mode of the closed cavity at frequency ,, noimalized

accordmg to fdr ¢>(:)=V (For simplicity we neglect polar
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1zation dependent phenomena and work with real scalar field
amplitudes ) In the presence of weak couphing to the outside
world the modes acquue finite widths y, We assume two
sets of conditions

’)/0< 50)0<Q<w0, d<)\o<D (2)
An especially impottant 10le 1s played by the mequality v,
< Swy, which 1s implied by d<€ )\ It ensures that the modes
of the open cavity are well defined and do not differ signifi-
cantly from those of the closed one In this section we con-
sider the 1dealized case m which there 1s no loss m the walls
of the cavity (y,=0)

In a chaotic cavity the modes z,b,(;) can be modeled as
random superpositions of plane waves [15] (Validity of this
model has been checked experimentally in microwave cavi-
ties [12,16]) ThlS umplies a Gaussian distribution for tﬂl(r)

at any point r The corresponding distribution for zﬂ, () 18
called the Porter-Thomas disttibution [17] Loss from a small
hole located at 7 1s proportional to [V ;14,(7)]? [with V ;4,(5)
the dervative n the direction noimal to the surface of the
hole] and has the same Porter-Thomas distribution, which
was duectly probed in the expeniments of Ref [12] More
geneially, the distribution of normalized modal widths y
=1,/ 1 a cavity with v holes 1s given by the x? distribu-
tton with v degrees of freedom (normalized to 1),

(V )V/Z
P(y)= T(v2) y

—1+v/2

exp(—vy/2) ©)

We assumed that loss from different holes 1s mdependent,
which 15 true provided then separation 1s laiger than Ny For
small mteger v, the distribution (3) 1s wide The single-hole
case v=1 looks especially ptomising from the point of view
of low-threshold lasing because P,(y)=exp(—y/2)/2my
grows with decreasing y

To grasp the picture we first confine ourselves to a subset
of cavity modes located near wy We neglect fluctuattons of
their fiequencies and assume that the modes are equidistant,
®,=wo+ dwgm, m=0,x1,=2, We denote by Rp0 a
reference pumping rate necessaly to provide gan equal to
the mean loss 7y, at frequency wg, and imtroduce the reduced
pumping iate =R, /RPo’ assumed <1 Loss of different
modes 1s uncorrelated and distributed according to Eq (3)
while gain dimmmshes with increasing difference |w— wy|
according to the Lorentzian

go(@)=yo8[ 1+ (= wg)/ Q]! )

It follows that the probability p (&) of there being no lasing
mode at the pumping rate € 1s given by

0( m)/ 0
p(e)=11 ( fg ’ dy Pu(y)) ®)

m

For £<1, the upper limut of the mtegral 1s also <1, and we
can replace P, (y) by its leading behavior at small y,
P (y)ey 1*¥2 which yields
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p.(e)=~]1 (1—

C,e
[1+m?(Swy/0)?]"?
~exp( —C,e"22, [1+m¥ 5w0/9)2]*w2), (6)

C,=(w2)" AT (w2)]7! ™)

Because the summand decays as m~ " we find that for
v>1 the leading behavior of the probability of no lasing 1s
detetmmed by the modes with [m|<Q/ 8wy,

po(e)~expl — C (Y Swg)e "] (8)

Here C,=\wC,U[(v—1)/2]/T(v/2) for v>1 (below we
will separately define C;) Modes far from wgy have negh-
gible chance to get excited and need not be taken mto ac-
count On the contiaty, for v=1 all cavity modes, including
those very far fiom wg, contribute to the probability

To tieat the contribution of distant modes fo1 v=1 cor-
rectly, we must account for seveial factors which we could
1gnore for v>1 (1) The spectral density cannot be replaced
by 1ts value py=1/6wq at w=w, Instead p(w)=pyw?/ w}
(2) The mean loss 1s frequency dependent, y(w) = yyw*/ wg,
cf Eq (1) (3) The Loientzian (4) for the amplification rate 1s
an approximation valid only 1n the vicinity of wy A correct
expression for the gain g(w) must be even 1n w to comply
with the symmetry y(w)= y*(— ) of the dielectiic suscep-
tibility x It includes contributions of both poles * wqy+:£)
and reads

4awlyyeQ?
(0= W) +2(w?+ wd) Q?+ Q4

glw)= )

Taking these three factors mto account and replacing the
discrete sum by an integral, the piobability of no lasing 1s
given by

py<e)=exp( fo‘”“’“‘dwp(w)m f _dy P,,<y))

glw)! y(w)

(10)

Foir v>1 this leads to Eq (8), the ultiaviolet cutoff w,,
being irrelevant For v=1 we get
g(w )D
2¥(w)])’

(11)

whete erf(z)=(2/\Jm) ¢dx exp(—x%) 1s the enor function
The main logaiithmic contribution of type fdw/w to the
mtegial m Eq (11) comes fiom large values of @ The ul-
traviolet cutoff w,=2mc/d appears because loss of high
fiequency modes with A<<d no longer exhibits the stiong
fluctuations of Eq (3) Beyond the cutoff classical 1ay optics
applies, leading to a nairowly peaked distribution of the loss
atound the value cd?/V> v, Because we are considering the
case £<€1 1n which the gain 1s much smaller than the average

p1(8)=exp( _[wn da)p(w)ln[1~elf
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FIG 1 Probability of lasing 1 —p;(e) versus reduced pumping
rate & with p;(e) grven by Eq (11) (wg/2=10, Q/Swy=10)
Thick lines are for different ratios D/d corresponding to different
numbers M= (D/d)* of relevant cavity modes (dot-dashed Iine M
=107, dashed ine M = 10%, solid line M = 10*) Left inset shows an
example of chaotic cavity Chaotic behavior of classical trajectories
in this particular ‘‘die’ shaped cavity was shown m Ref [11]
Radiation 1s confined inside by means of 1deally conducting walls
and can leave the cavity only through a tiny hole Right inset
shows the probability distribution of the lasing threshold
T,(x0)=(w/2)x """ 2exp(—x"?, with x related to & by x
=a(5yQ/5w0)”’ , for different number of holes v=1,2,3

loss g, the high frequency modes cannot be excited It fol-
lows that the only relevant cavity modes are those with fie-
quencies smaller  than wg,,  Therr number M
~wl Bwidwy=(D/d)> 1s >1 From Eq (11) the piob-
ability of no lasing p(g) can be cast in the form of Eq (8)
with the coefficient C,=(8/7)In(w,y /) weakly depen-
dent on the fiequency cutoff w,,, Figuie 1 shows that the
probability of lasing 1 —p;(e) can be reasonably large even
for extiemely small values of the reduced pumping rate &

The quantity 1 —p (&) 15 the fraction of lasing cavities in
an ariay at a given pumping 1ate € It 1s directly related to the
probability distribution 7,(e) of the lasing thieshold Obvi-
ously [§de'T (e')=1—p,(g), hence T, (e)=—dp &)/
de We find from Eq (8) that

T,(e)=1vC (QSwy)e™ T exp[ — C (Q/ Swq) e
(12)

(Deviations which arise at e=1 are unimportant ) The dis-
tribution 1s wide and n the single-hole case v=1 diveiges as
e— 10 (see right mset of Fig 1) The average 1educed
thieshold reads (e,)=T(1+2/v)(C,Q/8wy)™ 2" Tt 1s
smallest for »=1 and 1s indeed much smaller than 1

III. EFFECTS OF NONZERO WALL RESISTIVITY

A nonzero loss vy, from the resistivity of the cavity walls
modifies the functions (10)—(12) by suppressing lasing for
e<vy,./v, The disuibution of the lasing thieshold 1emains
wide, as long as vy, /yo<1, as we now show Instead of Eq
(10) we have

T T | i 1 '
4 r a .
1 — ¥, /\(O=1O_2
~3 L -, /yo=10_3 ]
i’; i ===y, My=10
227 1
2o | |
\/1 [ ]
O N h?"* TEmsotog
0 3 4

Yo /Y,

FIG 2 Probabulity distribution of the lasing threshold m a cav-
ity with small absorption n the boundary and a single hole (v
= 1), computed as —dp((e)/de from Eq (14) We chose )/ dw,
=10 and took three values of y, /vy, such that vy, /vy, 1s much
smaller than, equal to, or much greater than (Sw, 1Y =10"2

dy P,(y)],
(13)

py<s>=exp( j“’*dwp(w)lnf(“

@ g(w) =y ()

where w_<w, are the two positive frequencies such that
glw+)=1vy, A nonzero value of vy, reduces the relevant
fiequency range to a narrow window around g Therefore
the modifications (1)-(3) of the pieceding section become
unnecessary even for the case v=1 Using the simple
Lorentzian (4) for g(w), mstead of the more complicated
expiession (9), we find wt=w0iQ(sy0/'y*—1)”2 Ne-
glecting the w dependence of p(w), y(w) and using the
small-argument behavior of the probability function P (y),
we reduce Eq (13) to

pv(s):exp[_CV(Q/awO)(y*/YO)V/ZfV(EYO/Y*_ 1)2:7[4)

where C, 1s the numerical coefficient mtroduced in Eq (7)

and

v/2

I—y?
y2+1/z

1
fu=ve | ay (15)

can be expressed in terms of a hypergeometric function In
Fig 2 we have plotted the distribution of the lasing thresh-
old, T,(g)=—dp (e)/de, for v=1 and different values of
v, vo We will analyze two limiting 1egimes

In the 1egime ey,/y,.>1 and for v>1 we recover the
expresston (12) with the same constant C,, The value of
C,=C,In(eyy/ v,) 18 different because of the different cutoff
mechanism Instead of having a weak logarithmic depen-
dence on w,,, 1t exhibits a weak logarithmic dependence on
the pumping rate £ This limiting case 15 statistically domi-
nant if v, /o< (Swy/Q)*”, because then the coriections to
Eq (12) at e<y, /vy, have neglgible statistical weight

In the opposite regime, € v,/ 7y, — 1 <€1, the thieshold dis-
tribution differs significantly from Eq (12),
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T, (e)=3(1+ 1)A (Y Swp) (7o 7,) >
X (&= vy 1 70)" ™V %expl — A (O Swg) (vo ! v:)
X(e— v,/ vo) 1TV (16)

[with a numerical coefficient A,=wC,I'(1+ v/2)/T'(3/2
+»/2)]. This regime is statistically dominant if 7y, /vy,
> (8w /Q)¥". The mean value of threshold is now close to
v+ Yo, but there are large fluctuations towards larger €.

IV. AVERAGE NUMBER OF EXCITED MODES

In this section we focus on the number of lasing modes
beyond the lasing threshold for »=1 assuming vy, =0. We
assume that the parameters are such that many modes are
above the threshold. This requires, in particular, £v,/7y,
>1. In this case a nonzero value of vy, only leads to a
redefinition of C; because of the different cutoff mechanism.
If the modes did not compete we could compute the average
number of excited modes (N ) as

g(w)
y(w)

(N = fomnmdwp((u)erf (17)

For <1 it is given by (Np.)=C;(/Swy)e"?. However,
the modes do compete for a homogeneously broadened line
because one of the modes can deplete the inversion, prevent-
ing another mode from being excited [18]. Multimode opera-
tion is still possible if different excited modes deplete the
inverston in different spatial regions of the cavity [19,20].
We assume this mechanism of multimode generation, called
spatial hole burning [21].

Letn,, Af(F) denote the number of photons in the mode i
and the density of population inversion between the lasing
levels. Semiclassical rate equations read

dn, -y .

‘E:‘%”IJFWK”:H)]drw,(r)/\f(r), (18)
d . -, -, -
J:zfir)“Rpo/V—wf\f(r)—/\f(r)E W.n, g2 (r). (19)

Here w is the nonradiative decay rate and W, is the rate of
stimulated emission into mode . The constant W, is related
to the gain (9) in the corresponding mode, W,
=wg(wl)/eli’p0

We restrict ourselves to a steady state solution. Let there
be N excited modes, i{,i,, ...,iy. Because the number of
photons in an excited mode is very large, we can approxi-
mate n, +1=~n, in the right-hand side of Eq. (18). Elimi-

nating the equilibrium population inversion density M), we
get the following set of equations for the equilibrium mode
populations ny

d; gl (r)
Y +eR, W - n, =0.
2,7 k
w+2 Wn, ¢ (r)
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Nonexcited modes typically contain only few photons and
can be omitted from the sum. We assume that we are not far
beyond threshold, so that w23 W n, ¢j2(;), and we may ex-
pand the denominator in Eq. (20). We arrive at the following

system of linear equations (k=1, ... ,N):
1 Z Vi ’1
SR Alk,g(wzl) 1, #g(wlk)’ ( )

subject to a constraint n,>0.

So far we have followed the reasoning of Refs. [19,20].
Now we need to take into account randomness of coefficients
in Eq. (21). Coefficients A, , are given by

1
A= 3| FRPU). (22)

They are self-averaging quantities with negligibly small fluc-
tuations around their mean <A'U/> =1+24,,, which follows

from the independent Gaussian distributions for 1//1(17) [22].
Because the correlations between A's and Y,,’s are also
negligibly small, we may substitute A= 1+26,, in Eq.
(21). Without loss of generality we can assume that

Yy l8(w, )<y, lg(w )< <y, /g(w,). Inverting the
matrix A,kl, we find
glon, 1, L] % Y,
eR,, N+2 2g(w,) 2(N+2)i= g(o,)’

(23)

The number of excited modes N is restricted by the require-
ment that all n,k’s should be positive. A necessary and suf-

ficient condition is

(2+N)

N
e ( Z ) 2. (24)

Equation (24) can be used to determine the probability dis-
tribution of the number of excited modes, using the Porter-
Thomas distribution (3) for the statistics of decay rates 7y, . In
the region of parameters where (N)> 1 this mean value can
be found analytically from the continuous approximation of
the condition (24),

Zmax @max
2+f da(r(a))amdx—f da ac(a)=2, (25)
0 0

with (N)=[™*da o(a). The density o(a) of the variables
a,=v,/g(w,) is given by

o(a) = fo“’"‘“dw p(@) Pl ag(w) 7()]g (@) 7(w)

=LC,(Q/ Swg)a™ VA (26)

It follows from Eq. (25) that {(N)=C,(}/Swy)z, where z
satisfies a cubic equation
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FIG 3 Average number of excited modes (N) versus dimen-
sionless pumping rate £ (same parameters as m Fig 1) The solid
lines are the analytical result (27), the data points are a Monte Carlo
average The man plot corresponds to v=1, M= 10? (circles), M
=10° (squares), M =10* (diamonds) Dashed lines represent the
average number (N, ) of noncompeting modes The inset shows the
case v=2 for M>1 Note a drastic reduction in the number of
excited modes

2?+3C(Q/ bwy)d=¢ 27)

To leading order m 1AN) the tetm z? can be neglected,
which yields a simple answer

<N>:31/3(61\()/50)0)2/381”:31/3<Nnc>2/3 (28)

The general foim of this result for any v can be derived mn a
similar way, leading to (N,.)=C,(Q/Swg)e™?, (N)y=(v
+2)VFDN HHPHD These results are mdependent of vy,
as long as y, <,

2045

To test numerically the analytical results for (N), we did
a Monte Carlo average over the Poiter-Thomas distribution
For each of 2000 realizations, we ordered the modes m 1n
creasing order of the ratio loss over gam and found maximal
N satisfyng Eq (24) Results tor (N(g)) aie m excellent
agieement with the continuous appioximation down to
MN)~1 (Fig 3)

V. CONCLUSION

To summarnize, we have consideied lasing of a chaotic
cavity coupled to the outside world via ¥ small holes We
assumed that the broadenmng of the cavity modes (due to
leakage through the holes and absorption by the cavity walls)
1s less than their spacing and used a simple ciiterton ““modal
gam = modal loss’’ as the condition for a given mode to be
excited Natural unit of the pumpig 1ate R pe 18 defined such

that ‘“maximal gain = mean loss ** Because of strong fluc-
tuations of modal widths, the probability of lasing can be
significantly laige for much weaker pumping rates than R 2o
The distiibution of the lasing threshold turns out to be wide,
with the mean much less than R p, e have described the
multimode operation as a result of spatial hole burning and
found that the aveiage number of excited modes 1s piopoi-
tional to the power v/(v+2) of the pumping rate
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