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Lasing threshold and mode competition in chaotic cavities
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The lasmg threshold of a mulümode chaotic cavity (linear size D S> wavelength λ) coupled to the outside
through a small hole (linear size d<£\) is studied For sufficiently weak absorption by the boundaries, the
statistical distnbuüon of the threshold is wide, its mean value bemg much less than the pumping rate needed
to compensate the average loss The average number {Wnc)> l of noncompetmg excited modes is proportional
to the square root of the pumping rate We use the classical model of spatial hole burnmg to account for mode
competition and find a reduction in the average number of excited modes to (W) = 31/3{yVnc)
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I. INTRODUCTION

Incorporation of quantum optical effects is a necessary
and interestmg extenston of active ongomg research on mul
tiple scattenng of electiomagnetic waves m random media
[1] It becomes particularly important when the medmm is
active, äs is the case in expenmentally reahzed "random
lasers" [2-4] Quantum effects have been largely ignored in
many pubhcations devoted to propagation m disordered am-
phfymg waveguides [5-8], in which only amphfied sttmu-
lated emission of external incoming flux but not of sponta-
neously ermtted internal notse was taken mto account (Ref
[9] bemg a notable exception) Amphfied internal noise can
lead to excitation of low-threshold lasmg modes of the wave-
guide, making practical use of amphfymg waveguides prob-
lematic The difficulty of the waveguide geometry is the on-
set of locahzation In this paper we consider a simpler cavity
geometry, which does not show locahzation, but retams two
essential features of the problem (1) large sample to-sample
fluctuations and (2) mstabihty brought about by spontaneous
emission

A complete descnption of the fluctuations is possible in
the umveisal legime charactenzed by a chaotic pattern of
classical üajectones We assume that the cavity (volume V
— Z)3) is confined by conductmg walls, filled with a lasmg
medmm (cenüal frequency of the gam piofile o>0), and
coupled to external detectors via one or seveial small hol es
It was demonstrated recently that a nonmtegiable shape of
the resonator can significantly affect its lasmg pioperties
[10] Chaoticity of classical trajectones can be achieved ei-
ther by a pecuhar shape of the resonator [11-13], 01 by a
small amount of disorder scattenng We will speak about
"chaotic cavities," meaning either of the two mechamsms
lesponsible for the onset of chaos

We restnct ourselves to the case of well-iesolved cavity
modes, which means that (1) resistive loss γ^ m the cavity
walls is less than the mean modal spacmg δω0=ττ2ο3/ω^ν
and (2) chaiactenstic size of the holes d is smallei than the
wavelength λ0 = 2ττ€/ω0 Mean loss y0 through a small hole
was calculated by Bethe [14],

cdb

(D

so that yQ/Sa>0-(d/\0)
6<6l Note that the loss (1) is not

proportional to the area of the hole It is m fact much smaller
than one rmght guess by extrapolating the dependence y0

~cd2/V vahd for d^>\0 The effect of sample-to sample
fluctuations is pronounced only if J^JQ This regime is
expenmentally accessible, äs was demonstrated by a recent
senes of expenments on miciowave cavities with supercon-
ductmg niobmm walls [12,13]

Each act of spontaneous emission in a pumped cavity is a
source of ladiation mto some cavity mode Classical condi-
tion of the lasmg thieshold m a given cavity mode is satisfied
if the gam due to stimulated emission equals the loss
Thieshold for the cavity is the smallest value of the pumping
late at which threshold is attamed for one of the modes The
questions we ask are, what is the threshold rate of pumping^
How many lasmg modes can coexist foi a given pumping
late above the thieshold7 The problem of spectral content of
outgomg ladiation has been widely studied for mtegrable
cavities of defimte shape Considenng arrays of chaotic cavi
ties of shghtly varymg shape 01 with different configurations
of scatteieis we address the problem statistically and com
pute the probabihty of lasmg, the distnbution of the thiesh
old, and the aveiage number of excited modes

Tnvially, gam greater than mean loss γ0

 W1^ be on the
aveiage sufficient to ensure lasmg, while gam smaller than
γ^ will never suffice The mean loss fiom a tmy hole is
small We aigue that the actual average threshold can still be
many Orders of magnitude smaller Each mdividual cavity
exhibits a well-defmed threshold but its statistical distnbu-
tion is wide In See II we compute this distnbution for the
ideahzed case r* = 0 Effects of nonzero resistivity of the
walls are discussed in See III Section IV is devoted to the
computaüon of the average number of excited modes above
the threshold We conclude in See V

II. DISTRIBUTION OF LASING THRESHOLD

We assume that the hne of spontaneous emission is ho
mogeneously bioadened and has Loientzian shape with cen

tral frequency ω0 and width 2fl Let i//,(r) be the amplitude
of a mode of the closed cavity at frequency ω,, noimahzed

accordmg to fdi ψ~(>) = V (For simphcity we neglect polai
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izaüon dependent phenomena and work with real scalar field
amphtudes) In the presence of weak couplmg to the outside
world the modes acqune finite widths γ, We assume two
sets of conditions

(2)

An especially impoitant lole is played by the inequality y0

<i <5&>o, which is imphed by rf<§X0 It ensures that the modes
of the open cavity are well defined and do not differ signifi-
cantly from those of the closed one In this section we con-
sider the ideahzed case m which there is no loss m the walls
of the cavity (y^ = 0)

In a chaotic cavity the modes ψ,(r) can be modeled äs
random superpositions of plane waves [15] (Validity of this
model has been checked expenmentally in microwave cavi-
ties [12,16]) This imphes a Gaussian distnbution for </Ί(/")

at any pomt r The correspondmg distnbution for t/ff (r) is
called the Porter-Thomas distnbution [17] Loss from a small

hole located at r is proportional to [V^O)]2 [with Vn<M r)
the denvative in the direction noimal to the surface of the
hole] and has the same Porter-Thomas distnbution, which
was duectly probed m the expeiiments of Ref [12] More
geneially, the distnbution of noimalized modal widths y
~Ύι/Ύο ιη a cavity with v holes is given by the χ2 distnbu-
tion with v degrees of freedom (noimalized to 1),

" "/2exp( — vy/2) (3)

We assumed that loss from different holes is independent,
which is true provided then Separation is laiger than X0 For
small mtegei v, the distnbution (3) is wide The smgle-hole
case v=l looks especially piomismg from the pomt of view
of low-threshold lasmg because P\(y) =exp(—y/2)/\ ΐ2πγ
grows with decreasmg y

To grasp the picture we first confine ouiselves to a subset
of cavity modes located near ω0 We neglect fluctuations of
their fiequencies and assume that the modes are equidistant,
ωη=ω0+δω0ηι, /n = 0,±l,±2, We denote by Rp a

reference pumping rate necessaiy to provide gain equal to
the mean loss y0 at frequency ω0, and mtroduce the reduced
pumping täte e=Rp!Rp , assumed <l Loss of different
modes is uncorrelated and distnbuted accoidmg to Eq (3)
while gain dimimshes with mcreasing difference |ω—ω0 |
accoidmg to the Lorentzian

) = y0e[l + (ω-ω0)
2/Ω2]2-1-1

(4)

It follows that the probabihty pv(ε) of there being no lasmg
mode at the pumping rate ε is given by

«oK„)'yo

dyPv(y) (5)

For ε <ί l, the upper limit of the integral is also <S l, and we
can replace P v ( y ) by its leading behavior at small y,
P„(y)Ky~l + v'2, which yields

C„e v/2

-1 v 12

~exp -C„s"/2S [1+/Μ2(<5ω0/Ω)2]2l- v/2

C„=(v/2) - l + v/2\ΐΓ(ν/2)]-

(6)

(7)

Because the summand decays äs m v we find that for
v> l the leading behavior of the probabihty of no lasmg is
deteimmed by the modes with m\^£llδωϋ,

(8)

Here C„= 4π€νΤ[(ν- 1)/2]/Γ(ι//2) for v>l (below we
will separately define C\) Modes far from o>0 have negli-
gible chance to get excited and need not be taken into ac-
count On the contiaiy, for v=l all cavity modes, including
those very far fiom ω0, contnbute to the piobabihty

To tieat the contnbution of distant modes foi v—l cor-
rectly, we must account for seveial factors which we could
ignore for v> l (1) The spectral density cannot be replaced
by its value p0 = 1/δω0 at ω=ω0 Instead ρ(ω)

(2) The mean loss is frequency dependent, γ(ω) = ·
cf Eq (1) (3) The Loientzian (4) for the amplification rate is
an approximation vahd only in the vicinity of ω0 Α coiTect
expression for the gain g (ω) must be even in ω to comply
with the symmetry χ(ω) = χ*(-ω} of the dielectnc suscep-
tibility χ It includes contributions of both poles ±ω0+ιΩ
and icads

4ω
(9)

Takmg these three factors mto account and replacmg the
discrete sum by an integral, the piobabihty of no lasmg is
given by

(10)

ί/ωρ(ω)1η _ dyPv(y}
g(<a)/7(<a)

Foi v>l this leads to Eq (8), the ultiaviolet cutoff ωη

being irrelevant For v= l we get

Γ

Jo
άωρ(ω)\Τί l-erf

(Π)

wheie &τϊ(ζ) = (2Ι\{π)$\άχ exp(-x2) is the enor function
The main loganthmic contnbution of type fdai/ω to the
integial in Eq (11) comes fiom large values of ω The ul-
traviolet cutoff wmax==27rc/d appeais because loss of high
fiequency modes with K<d no longer exhibits the stiong
fluctuations of Eq (3) Beyond the cutoff classical lay optics
apphes, leading to a nairowly peaked distnbution of the loss
aiound the value cd2IV9> γ0 Because we are considermg the
case ε < l in which the gain is much smallei than the average
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FIG l Probabihty of lasmg l -ρ,(ε) versus reduced pumping
rate ε with Ρ](ε) given by Eq (11) (ω0/Ω=10, Ω/<5ω0= 10)
Thick hnes are for different ratios D/d corresponding to different
numbers M— (D/d)3 of relevant cavity modes (dot-dashed hne M
= 102, dashed hne M= 103, solid hne M= 104) Left inset shows an
example of chaotic cavity Chaotic behavior of classical trajectones
in this particular "die" shaped cavity was shown in Ref [11]
Radiation is confined inside by means of ideally conducting walls
and can leave the cavity only through a tmy hole Right inset
shows the probabihty distnbution of the lasmg threshold

~ι + "'2βχρ(-χ"'2), with χ related to ε by χ

)2/', for different number of holes v= 1,2,3

loss y0, the high frequency modes cannot be excited It fol-
lows that the only relevant cavity modes are those with fie-
quencies smallei than <wmax Their number M
^ω3

πιΆχβωΙδω^(Ο/άγ is >1 From Eq (11) the piob-
abihty of no lasmg /?ι(ε) can be cast in the form of Eq (8)

with the coefficient Ο1 = (8/7τ)1/21η(ωηι,ιχ/Ω) weakly depen-
dent on the fiequency cutoff wmax Figuie l shows that the
piobability of lasmg l -ρι(ε) can be reasonably large even
for extiemely small values of the reduced pumping rate ε

The quantity l —pv(ε) is the fraction of lasmg cavities m
an anay at a given pumping täte ε It is directly related to the
probabihty distnbution Τν(ε) of the lasmg thieshold Obvi-
ously ϊ&ε'Τν(ε')=1-ρν(ε), hence Τν(ε) = -αρν(ε)/
de We find from Eq (8) that

(12)

(Deviations which arise at ε a l are ummportant) The dis-
tribution is wide and in the single-hole case v= l diveiges äs
ε-^+O (see right inset of Fig 1) The average leduced

thieshold reads (ε^ = Γ(1+2/ν)(€νΩ,/δω0Γ
2/ν It is

smallest for v= l and is mdeed much smaller than l

III. EFFECTS OF NONZERO WALL RESISTIVITY

A nonzero loss y^ from the resistivity of the cavity walls
modifies the functions (10)-(l2) by suppressing lasmg for
ε <7ι=/7ο The distubution of the lasmg thieshold lemains
wide, äs long äs y^ly^ l, äs we now show Instead of Eq
(10) we have

0
0 1

FIG 2 Probabihty distnbution of the lasmg threshold in a cav-
ity with small absorption in the boundary and a single hole (v
= 1), computed äs —dp{(s)lds from Eq (14) We chose Ω/δω0

= 10 and took three values of y^/yo such tliat y*/yo ls much
smaller than, equal to, or much greater than (δω0/Ω)21' = 10~2

Γω+ Γ

β?ωρ(ω)1η
Jw J(

(13)

where ω_<ω+ are the two positive frequencies such that
#(ω±)=γ^ Α nonzero value of y.^ reduces the relevant
fiequency ränge to a narrow wmdow around ω0 Therefore
the modificaüons (l)-(3) of the piecedmg section become
unnecessary even for the case v= l Usmg the simple
Lorentzian (4) for g((a), instead of the more comphcated
expiession (9), we find ω± = ω0±Ω(εγ0/γ.). — 1 ) ι / 2 Ne-

glectmg the ω dependence of ρ(ω), y(o>) and usmg the
small-argument behavior of the probabihty function P„(y),
we reduce Eq (13) to

(14)

where Cv is the numencal coefficient introduced m Eq (7)
and

4-77v-+l/z

Ί \ "12

(15)

can be expressed m terms of a hypergeometnc function In
Fig 2 we have plotted the distnbution of the lasmg thresh-
old, r„(e)= — αρν(ε)/αε, for v=l and different values of
ΎΙ Ijo We will analyze two hmitmg legimes

In the legime εγ0/γ^.>1 and for v>l we recover the

expression (12) with the same constant C„ The value of

C[ = €[1η(εγ0/γ^) is diffeient because of the different cutoff
mechamsm Instead of havmg a weak loganthmic depen-
dence on ωηιίιχ it exhibits a weak loganthmic dependence on
the pumping rate ε This hmitmg case is statistically domi-
nant if γ^./γ0<(δω0/Ω)2Ιν, because then the conections to
Eq (12) at ε£γ ψ /γ 0 have neghgible statistical weight

In the opposite regime, ε γ0 Ιγ^ — K l, the thieshold dis-
tnbution differs significantly from Eq (12),
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(16)

[with a numerical coefficient Αν

+ v/2)]. This regime is statistically dominant if y^/yo
ί>(<5ω0/Ω)2/". The mean value of threshold is now close to
y#/yo> but there are large fluctuations towards larger ε.

IV. AVERAGE NUMBER OF EXCITED MODES

In this section we focus on the number of lasing modes
beyond the lasing threshold for v=l assuming y.^ = 0· We
assume that the parameters are such that many modes are
above the threshold. This requires, in particular, εγο/y*
> l . In this case a nonzero value of y^ only leads to a

redefinition of C\ because of the different cutoff mechanism.
If the modes did not compete we could compute the average
number of excited modes (Nnc) äs

<^nc> = (17)

For ε<1 it is given by (Nnc) = Cl(Ü,/ δω0)ε1'2. However,
the modes do compete for a homogeneously broadened line
because one of the modes can deplete the Inversion, prevent-
ing another mode from being excited [18]. Multimode Opera-
tion is still possible if different excited modes deplete the
Inversion in different spatial regions of the cavity [19,20].
We assume this mechanism of multimode generation, called
spatial hole burning [21].

Let H, , Λ/"Ο) denote the number of photons in the mode i
and the density of population Inversion between the lasing
levels. Semiclassical rate equations read

dn.
—

f

J
(18)

Nonexcited modes typically contain only few photons and
can be omitted from the sum. We assume that we are not far

beyond threshold, so that w^>~ElWJnJi/^(r'), and we may ex-
pand the denominator in Eq. (20). We arrive at the following
system of linear equations (k=l,... ,N):

l

subject to a constraint n, >0.

So far we have followed the reasoning of Refs. [19,20].
Now we need to take into account randomness of coefficients
in Eq. (21). Coefficients A, , are given by

(22)

They are self-averaging quantities with negligibly small fluc-
tuations around their mean (A, , )= l +2<5, , , which follows

from the independent Gaussian distributions for i//,(r) [22].
Because the correlations between A. , 's and γ, 's are also

'k'l ' 's

negligibly small, we may substitute A , , = l + 2 <?, , in Eq.

(21). Without loss of generality we can assume that
y,l'8(vli)tSy,2/g((al2)^---^y,N/g((ulN). Inverting the

matrix A , , we find

l l

N + 2

N

Σ
(23)

The number of excited modes N is restricted by the require-
ment that all n, 's should be positive. A necessary and suf-

ficient condition is

(2 + ΛΟ-

N

-Σ (24)

dt
(19)

Here w is the nonradiative decay rate and W, is the rate of
stimulated emission into mode /. The constant W, is related
to the gain (9) in the corresponding mode, W,

We restrict ourselves to a steady state solution. Let there
be N excited modes, il ,i'2, . . . ,/#. Because the number of
photons in an excited mode is very large, we can approxi-
mate n, + l xn, in the right-hand side of Eq. (18). Elimi-

nating the equilibrium population Inversion density Af(r), we
get the following set of equations for the equilibrium mode
populations nl :

(20)

Equation (24) can be used to determine the probability dis-
tribution of the number of excited modes, using the Porter-
Thomas distribution (3) for the statistics of decay rates γ, . In
the region of parameters where {N)$> l this mean value can
be found analytically from the continuous approximation of
the condition (24),

Γ «raax \ Γ amax
2+ άασ(α) Uradx- da ασ(ά) = 2, (25)

Jo Jo

with (/V) = /Qmaxfi?acr(a). The density σ(α) of the variables
al=yl/g(co,) is given by

σ(α)= du> ρ(ω)Ρι[α§(ω)/γ(ω)]§(ω)/γ(ω)
Ιο

-1/2 (26)

It follows from Eq. (25) that (Ν) = €ι(Ω/δω0)ζ, where z
satisfies a cubic equation
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FIG 3 Average number of excited modes (N) versus dimen-
sionless pumpmg rate ε (same parameters äs in Fig 1) The solid
Imes are the analytical result (27), the data pomts are a Monte Carlo
average The main plot corresponds to i/= l, M= 102 (circles), M
= 103 (squares), M=104 (diamonds) Dashed Imes represent the
average number {Nnc) of noncompetmg modes The mset shows the
case v—2 for MS>1 Note a drastic reduction in the number of
excited modes

z + yCi(il/<?&>o)z —ε (27)

To leading ordei in l/(N) the teim z2 can be neglected,
which yields a simple answer

\2/3 (28)

The general foim of this result for any v can be denved m a

similar way, leadmg to ωϋ)ε
ν/2

+ 2)"/("+2){/Vnc}
2/("+2) These lesults are mdependent of

äs long äs y^ < γΰ

To lest numencally the analytical results for (N), we did
a Monte Carlo average ovei the Poiter-Thomas distribution
For each of 2000 realizations, we ordered the modes in m
cieasing oider of the ratio loss over gam and found maximal
N satisfymg Eq (24) Results toi ( Ν ( ε ) ) aie in excellent
agieement with the contmuous appioximation down to
<N)~1 (Fig 3)

V. CONCLUSION

To summanze, we have consideied lasmg of a chaotic
cavity coupled to the outside world via v small holes We
assumed that the broadenmg of the cavity modes (due to
leakage through the holes and absorption by the cavity walls)
is less than their spacmg and used a simple cnteiion "modal
gam ^ modal loss" äs the condition foi a given mode to be
excited Natural unit of the pumpmg late Rp is defined such

that ' 'maximal gam = mean loss '' Because of strong fluc-
tuations of modal widths, the probabihty of lasmg can be
significantly laige foi much weakei pumpmg rates than Rp

The distubution of the lasmg threshold turns out to be wide,
with the mean much less than Rp We have descnbed the

multmiode opeiation äs a result of spatial hole burnmg and
found that the aveiage number of excited modes is piopoi-
tional to the powet v/(v+ 2) of the pumpmg rate
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