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Abstract

We study the coupled complex Ginzburg-Landau (CGL) equations for traveling
wave systems, and show that sources and sinks are the important coherent struc-
tures that organize much of the dynamical properties of traveling wave systems. We
focus on the regime in which sources and sinks separate patches of left and right-
traveling waves, i.e., the case that these modes suppress each other. We present in
detail the framework to analyze these coherent structures, and show that the theory
predicts a number of general properties which can be tested directly in experiments.
Our counting arguments for the multiplicities of these structures show that inde-
pendently of the precise values of the coefficients in the equations, there generally
exists a symmetric stationary source solution, which sends out waves with a unique
frequency and wave number. Sinks, on the other hand, occur in two-parameter fam-
ilies, and play an essentially passive role, being sandwiched between the sources.
These simple but general results imply that sources are important in organizing the
dynamics of the coupled CGL equations. Simulations show that the consequences
of the wavenumber selection by the sources is reminiscent of a similar selection by
spirals in the 2D complex Ginzburg Landau equations; sources can send out stable
waves, convectively unstable waves, or absolutely unstable waves. We show that
there exists an additional dynamical regime where both single- and bimodal states
are unstable; the ensuing chaotic states have no counterpart in single amplitude
equations. A third dynamical mechanism is associated with the fact that the width
of the sources does not show simple scaling with the growth rate ε. This is related
to the fact that the standard coupled CGL equations are not uniform in ε. In par-
ticular, when the group velocity term dominates over the linear growth term, no
stationary source can exist; however, sources displaying nontrivial dynamics can
often survive here. Our results for the existence, multiplicity, wavelength selection,
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dynamics and scaling of sources and sinks and the patterns they generate are easily
accessible by experiments. We therefore advocate a study of the sources and sinks
as a means to probe traveling wave systems and compare theory and experiment. In
addition, they bring up a large number of new research issues and open problems,
which are listed explicitly in the concluding section.

PACS: 47.54.+r; 03.40.Kf; 47.20.Bp; 47.20.Ky
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1 Introduction

Many spatially extended systems display the formation of patterns when
driven sufficiently far from equilibrium [1–5]. Examples include convection
[2], interfacial growth phenomena [6,7] like directional solidification [8] and
eutectic growth [9], chemical Turing patterns [2,5,10], the printer instability
[11–13], patterns in liquid crystals [14], and even biophysical systems [15]. In
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the typical setup, the homogeneous equilibrium state turns unstable when a
control parameter R (such as the temperature difference between top and bot-
tom in Rayleigh-Bénard convection) is increased beyond a critical value Rc. If
the amplitude of the patterns grows continuously when R is increased beyond
Rc, the bifurcation is called supercritical (forward), and a weakly nonlinear
analysis can be performed around the bifurcation point. A systematic expan-
sion in the small dimensionless control parameter ε := (R − Rc)/Rc yields
amplitude equations that describe the slow, large-scale deformations of the
basic patterns.

Because near threshold the form of the amplitude or envelope equation de-
pends mainly on the symmetries and on the nature of the primary bifurcation
(stationary or Hopf, finite wavelength or not, etc.), the amplitude description
has become an important organizing principle of the theory of non-equilibrium
pattern formation. Many qualitative and quantitative predictions have been
successfully confronted with experiments [2–5]. Even outside their range of
strict applicability, i.e., for finite values of ε, the amplitude equations are of-
ten the simplest nontrivial models satisfying the symmetries of the underlying
physical system. As such, they can be studied as general models of nonequi-
librium pattern formation.

The most detailed comparison between the predictions of an amplitude de-
scription and experiments has been made [2] for the type of systems for which
the theory was originally developed [1], hydrodynamic systems that bifurcate
to a stationary periodic pattern (critical wavenumber qc 6= 0 and critical fre-
quency ωc = 0). The corresponding amplitude equation has real coefficients
and takes the form of a Ginzburg Landau equation; it is often referred to as
the real Ginzburg-Landau equation. The coefficients occurring in this equa-
tion set length and time scales only, and for a theoretical analysis of an infinite
system, they can be scaled away. Hence one equation describes a variety of
experimental situations and the theoretical predictions have been compared
in detail with the experimental observations in a number of cases [2–5].

For traveling wave systems (critical wavenumber qc 6= 0 and critical fre-
quency ωc 6= 0), there are, however, few examples of a direct confrontation
between theory and experiment, since the qualitative dynamical behavior de-
pends strongly on the various coefficients that enter the resulting amplitude
equations 2 . The calculations of these coefficients from the underlying equa-
tions of motion are rather involved and have only been carried out for a limited
number of systems [20–24], and in many experimental cases the values of these
coefficients are not known. A different problem generally arises when dealing
with systems of counter-propagating waves, where in many cases the standard

2 In practice complications may also arise due to the presence of additional impor-
tant slow variables [16–19].
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coupled amplitude equations (2,3) are not uniformly valid in ε. Therefore one
has to be cautious about the interpretation of results based on these equations
[25–28]. We return to this issue in section 1.2.2.

It is the main goal of this paper to show that the theory, based on the standard
coupled amplitude equations (2,3), does predict a number of generic properties
of sources and sinks which can be directly tested experimentally. In fact, as
the results of [29] for traveling waves near a heated wire also show, sources
and sink type solutions are the ideal coherent structures to probe the ap-
plicability of the coupled amplitude equations to experimental systems. The
reason is that these coherent structures are, by their very nature, based on
a competition between left and right-traveling waves in the bulk, and, unlike
wall or end effects, they do not depend sensitively on the experimental details.
Moreover, a study of their scaling properties not only yields experimentally
testable predictions, but also bears on the relation between the averaged am-
plitude equations and the standard amplitude equations (see section 1.2.2 and
4 below). Finally, as we shall discuss, one of our main points is consistent with
something which is visible in many experiments, namely that the sources de-
termine the wavelength in the patches between sources and sinks, and hence
organize much of the dynamics.

Sources and sinks have been observed in a wide variety of experimental systems
where oppositely traveling waves suppress each other, especially in convection
[25,29–38]. An example of a one-dimensional source in a chemical system is
given in [39]. To our knowledge, however, they have not been explored system-
atically in most of these systems. In fact, many experimentalists who study
traveling wave systems focus on the single-mode case — by perturbing the sys-
tem or quenching the control parameter ε it is in general possible to eliminate
the sources and sinks.

Theoretically, some properties of sources and sinks in coupled amplitude equa-
tions have been analyzed by many workers [25–29,40–51]. We shall briefly re-
view some of these results in section 1.2 below. To our knowledge, however,
there have been very little systematic studies comparing theory and exper-
iment, and we therefore advocate a study of these coherent structures as a
means to probe traveling wave systems. The two main objectives of this paper
are to expand the detailed analysis and reasoning underlying the arguments
of [29], and to stimulate experimental investigations along such lines for other
systems as well.
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1.1 The coupled complex Ginzburg-Landau equations

When both the critical wavenumber qc and the critical frequency ωc are
nonzero at the pattern forming bifurcation, the primary modes are travel-
ing waves and the generic amplitude equations are complex Ginzburg Landau
(CGL) equations. When these primary modes are essentially one-dimensional
and the system possesses left-right reflection symmetry, the weakly nonlinear
patterns are of the form

physical fields ∝ ARe
−i(ωct−qcx) + ALe

−i(ωct+qcx) + c.c. , (1)

where AR and AL are the complex-valued amplitudes of the right and left-
traveling waves. Following arguments from general bifurcation theory, i.e.,
anticipating that these amplitudes are of order ε1/2 and that they vary on
slow temporal and spatial scales, one then finds that the appropriate amplitude
equations for traveling wave systems with left-right symmetry are the coupled
CGL equations [2,5,25–27,52]

∂tAR + s0∂xAR = εAR + (1 + ic1)∂
2
xAR

− (1− ic3)|AR|2AR − g2(1− ic2)|AL|2AR , (2)

∂tAL − s0∂xAL = εAL + (1 + ic1)∂
2
xAL

− (1− ic3)|AL|2AL − g2(1− ic2)|AR|2AL . (3)

In these equations, we have used the freedom to choose appropriate units of
length, time and of the amplitudes to set various prefactors to unity. Our
conventions are those of [2], except that we have, following [25], denoted the
coupling coefficient of the two modes by g2. Apart from the “control parame-
ter” ε, there are five important coefficients occurring in these equations: c1 and
c3 determine the linear and nonlinear dispersion of a single mode, c2 deter-
mines the dispersive effect of one mode on the other, g2 expresses the mutual
suppression of the modes and s0 is the linear group velocity of the traveling
wave modes 3 . As a function of all these different coefficients, many different
types of dynamics are found [2,53,54].

It is important to stress, following [25–28], that one has to be cautious about
the range of validity of the coupled amplitude equations (2,3). When the linear
group velocity s0 is of order

√
ε, as happens near a co-dimension two point in

binary mixtures [25] or lasers [55], then ε can be removed from the equations
by an appropriate rescaling of space and time and the amplitude equations are
valid uniformly in ε. However, in most realistic traveling wave systems s0 is of

3 It should be noted that by a rescaling one can either fix ε or s0. Since ε can be
varied experimentally, we usually keep s0 at a fixed value and vary ε.
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order unity, the amplitude equations do not scale uniformly with ε [25], and
their validity is not guaranteed. In practice, the attitude towards this issue
has often been (either implicitly or explicitly [56]) that as they respect the
proper symmetries, the equations may well yield good descriptions of physical
systems outside their proper range of validity.

Note in this regard that in a single patch of a left or right traveling wave a
single amplitude equation for AR or AL suffices; in this case, the linear group
velocity term s0∂xAR or s0∂xAL can be removed by a Galilean transformation.
The issue of validity of the amplitude equations does not arise then (see the
discussion in section 5.3.2), and many theoretical studies have focused on this
single CGL equation [57–59].

1.2 Historical perspective

In this section we will give a brief overview of earlier theoretical work on
sources, sinks and coupled amplitude equations in as far as these pertain to
our work. It should be noted that grain boundaries for 2D traveling waves,
under the assumption of lateral translational symmetry, can be described as 1D
sources and sinks [45,47]; hence some results relevant to the work here can be
found in papers focusing on the 2D case. This explains the frequent references
to early work on grain boundaries in 2D standing wave patterns [51]. Earlier
experimental work will be discussed in the section on experimental relevance.

1.2.1 Earlier work on Sources and Sinks

Early examples of sources and sinks in the literature can be found in the work
by Joets and Ribotta (see [40–42] and references therein), who studied these
structures both in experiments on electroconvection in a nematic liquid crystal,
and in simulations of coupled Ginzburg Landau equations. They focus mainly
on nucleation of sources and sinks, and multiplication processes. Sources and
sinks have also been observed and studied in traveling waves in binary mixtures
[33–35,37,38]. In this system, however, the transition is weakly subcritical. We
will compare some of the results of these experiments with some of our findings
in section 6.2.2.

Theoretically, some properties of sources and sinks in coupled amplitude equa-
tions have also been analyzed by Cross [25,26], Coullet et al. [43,44], Malomed
[45,46], Aranson and Tsimring [47] and others [29,48,49].

Coullet et al. [43] consider sources and sinks occurring in one and two-dimen-
sional coupled CGL equations from both a topological and numerical point of
view. In particular, they observe numerically that patterns in which sources
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and sinks are present typically select a unique wavenumber, a feature which
plays a central role in our discussion.

A particular important prediction of Coullet et al. [44] was that sources typi-
cally exist only a finite distance above threshold, for ε > εsoc > 0. The authors
remark that below this threshold, the sources become very sensitive to noise,
and an addition of noise to the coupled CGL equations was found to inhibit
the divergence of sources in this case. Moreover, they predict that the width
of sinks diverges as 1/ε in contrast to what was asserted in [25,26] or what
was found perturbatively in the limit s0 → 0, ε finite [45]. There appears
to have been neither a systematic numerical check of these predictions nor a
comparison with experiments. In this paper we shall recover the existence of a
critical value εsoc from a slightly different angle, and show that εsoc is only the
critical value above which stationary source solutions exist. Below εsoc source-
type structures can exist, but they are intrinsically dynamical and very large.
We will refer to these structures as non-stationary sources, as opposed to the
stationary ones we encounter above εsoc . As we will discuss below in section
1.2.2, the prediction of a finite critical value εsoc for sources from the lowest
order amplitude equations is a priori questionable, but we shall argue that
the existence of such a critical value is quite robust for systems where the
bifurcation to traveling waves is supercritical. For systems where the bifurca-
tion in subcritical, there need not be such a critical value εsoc . This may be
the reason that in experiments on traveling waves in binary fluid convection
[33], there does not appear to be evidence for the nonexistence of stationary
sources below a nonzero value of εsoc .

Malomed [45] studied sources and sinks near the Real Ginzburg-Landau limit
of the coupled CGL equations, and also found wavenumber selection. Aranson
and Tsimring [47] considered domain walls occurring in a 2D version of the
complex Swift-Hohenberg model. Assuming a translational invariance along
this domain wall, one obtains as amplitude equations the coupled 1D CGL
equations (2,3) with s0 = 1, c1 → ∞, c2 = c3 = 0 and g2 = 2. For that case,
a unique source was found as well as a continuum of sinks. For the full 2D
problem, a transverse instability typically renders these solutions unstable.
Finally, Rovinsky et al. [48] studied the effects of boundaries and pinning on
sinks and sources occurring in coupled CGL equations, and finally we note
that some examples of sources in periodically forced systems are discussed by
Lega and Vince [50].

1.2.2 Validity of the coupled CGL equations

There is quite some discussion about under what conditions the standard cou-
pled amplitude equations (2,3) are valid for counter-propagating wave systems
[27,28]. The essential observation is that when s0 is finite, ε can not be scaled
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out from the coupled amplitude equations (2,3).

Knobloch and De Luca [27] and Vega and Martel [28] found that under some
conditions the amplitude equations for finite s0 reduce to

∂tAR + s0∂xAR = εAR + (1 + ic1)∂
2
xAR

− (1− ic3)|AR|2AR − g2(1− ic2) < |AL|2 > AR , (4)

∂tAL − s0∂xAL = εAL + (1 + ic1)∂
2
xAL

− (1− ic3)|AL|2AL − g2(1− ic2) < |AR|2 > AL . (5)

in the limit ε → 0, where < |AL|2 > and < |AR|2 > denote averages in the
co-moving frames of the amplitudes AR and AL. Intuitively, the occurrence of
the averages stems from the fact that the group velocity s0 becomes infinite
after scaling ε out of the equations; in other words, when we follow one mode
in the frame moving with the group velocity, the other mode is swept by so
quickly, that only its average value affects the slow dynamics. These equations
have been used in particular to study the effect of boundary conditions and
finite size effects [27,28], but for the study of sources and sinks they appear less
appropriate since they are effectively decoupled single-mode equations with a
renormalized linear growth term. Nevertheless, we shall see in section 4 that
in the small ε limit sources and sinks often disappear from the dynamics, and
if so, these equations may yield an appropriate description of the late-stage
regime.

1.2.3 Complex dynamics in coupled amplitude equations.

In section 5 we will discuss chaotic behavior that results from the source-
induced wavenumber selection. Complex and chaotic behavior in the coupled
amplitude equations has, to the best of our knowledge, received very little
attention; notable exceptions are the papers by Sakaguchi [53], Amengual et
al. [54] and van Hecke and Malomed [60].

In the papers of Sakaguchi [53], the coupled CGL equations (2,3) were studied
in the regime where the cross-coupling coefficient g2 is close to 1. It was pointed
out that the transition between single and bimodal states in general shifts
away from g2 = 1 when the nonlinear waves show phase or defect chaos; in
some cases this transition can become hysteretic. Furthermore, periodic states
and tightly bound sink/source pairs that we will encounter in section 5.2 below
were already obtained here.

In the recent work by Amengual et al. [54], two coupled CGL equations with
group velocity s0 equal to zero where studied. The dispersion coefficients c1 and
c3 were chosen such that the uncoupled equations are in the spatio-temporal
intermittent regime [57–59,61]. Upon increasing the coupling coefficient g2,
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sink/source patterns where observed for g2 > 1; in these patterns, no inter-
mittency was observed. We will comment on this work in section 5.3.2, and in
particular give a simple explanation of the disappearance of the intermittency.

1.3 Outline

After discussing the definition of sources and sinks of related coherent struc-
tures in section 2, we turn to the counting analysis in section 3. We focus in
our presentation on the ingredients of the analysis and on the main results,
relegating all technical details of the analysis to appendices A and B. The
essential result is that one typically finds a unique symmetric source solution
with zero velocity.

We discuss the scaling of the width of sources and sinks with ε in section 4.
The main result is that beyond the critical value εsoc sources are intrinsically
non-stationary.

In section 5, we discuss the stability of the waves sent out by the source
solutions, and identify three different mechanisms that may lead to chaotic
behavior. Furthermore we explore numerically some of the richness found in
the coupled amplitude equations. We find a pletora of structures and possible
dynamical regimes.

Finally, in section 6, we close our paper by putting some of our results in
perspective, also in relation to the experiments, and by discussing some open
problems.

2 Definition of sources and sinks

Sources and sinks arise when the coupling coefficient g2 is sufficiently large
that one mode suppresses the other. Then the system tends to form domains of
either left-moving or right-moving waves, separated by domain walls or shocks.
The distinction between sources or sinks according to whether the nonlinear
group velocity points s of the asymptotic plane waves points outwards or
inwards— see Fig. 1 — is crucial here. From a physical point of view, the group
velocity determines the propagation of small perturbations. In our definition,
a source is an “active” coherent structure which sends out waves to both
sides, while a sink is sandwiched between traveling wave states with the group
velocity pointing inwards; perturbations travel away from sources and into
sinks. Mathematically, it will turn out that the distinction between sources
and sinks in terms of the group velocity s is also precisely the one that is
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natural in the context of the counting arguments.

In an actual experiment concerning traveling waves, when one measures an
order parameter and produces space-time plots of its time evolution, lines of
constant intensity indicate lines of constant phase of the traveling waves (see
for example [29,33–35]). The direction of the phase velocity vph of the waves
in each single-mode domain is then immediately clear. Since s and vph do not
have to have the same sign, one can not distinguish sources and sinks based
on this data alone. In passing, we note that it was found by Alvarez et al.
[29], and it is also clear from Fig. 11 of [32], that vph and s are parallel in
these heated wire experiments, so that the structures which to the eye look
like sources, are indeed sources according to our definition.

In the coupled CGL equations (2,3), s0 is the linear group velocity, i.e., the
group velocity of the fast modes 4 . It is important to realize [62] that for
positive ε, the group velocity s is different from s0. To see this, note that the
coupled CGL equations admit single mode traveling waves of the form

AR = ae−i(ωRt−qx) , AL = 0 , (6)

or

AL = ae−i(ωLt−qx) , AR = 0 . (7)

Substitution of these wave solutions in the amplitude equations (2,3) yields
the nonlinear dispersion relation

ωR,L = ±s0q + (c1 + c3)q
2 , (8)

so that the group velocity s = ∂ω/∂q of these traveling waves becomes

sR = s0,R + 2(c1 + c3)q , with s0,R = s0 , (9)

sL= s0,L + 2(c1 + c3)q , with s0,R = −s0 . (10)

When ε ↓ 0, the band of the allowed q values shrinks to zero, and s approaches
the linear group velocity ±s0, as it should. The term 2(c1 + c3)q accounts for
the change in the group velocity away from threshold where the total wave
number may differ from the critical value qc. This term involves both the
linear and the nonlinear dispersion coefficient, and its importance increases

4 We stress that the indices R and L of the amplitudes AR and AL are associated
with the sign of the linear group velocity s0. In writing Eq. (1) with qc and ωc

positive, we have also associated a wave whose phase velocity vph is to the right
with AR, and one whose vph is to the left with AL, but this choice is completely
arbitrary: At the level of the amplitude equations, the sign of the phase velocity of
the critical mode plays no role.
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with increasing ε. We will therefore sometimes refer to s as the nonlinear or
total group velocity, to emphasize the difference between s0 and s.

Clearly it is possible, that s0 and s have opposite signs. Since the labels R and
L of AR and AL refer to the signs of linear group velocity s0, if this occurs,
the mode AR corresponds to a wave whose total group velocity s is to the left!
The various possibilities concerning sources and sinks are illustrated in Fig. 1.

It is important to stress that our analysis focuses on sources and sinks near
the primary supercritical Hopf bifurcation from a homogeneous state to trav-
eling waves. Experimentally, sources and sinks have been studied in detail by
Kolodner [33] in his experiments on traveling waves in binary mixtures. Unfor-
tunately, for this system a direct comparison between theory and experiments
is hindered by the fact that the transition to traveling waves is subcritical, not
supercritical.

3 Coherent structures; counting arguments for sources and sinks

3.1 Counting arguments: general formulations and summary of results

Many patterns that occur in experiments on traveling wave systems or nu-
merical simulations of the single and coupled CGL equations (2,3) exhibit
local structures that have an essentially time-independent shape and propa-
gate with a constant velocity v. For these so-called coherent structures, the
spatial and temporal degrees of freedom are not independent: apart from a
phase factor, they are stationary in the co-moving frame ξ = x − vt. Since
the appropriate functions that describe the profiles of these coherent struc-
tures depend only on the single variable ξ, these functions can be determined
by ordinary differential equations (ODE’s). These are obtained by substitu-
tion of the appropriate Ansatz in the original CGL equations, which of course
are partial differential equations. Since the ODE’s can themselves be written
as a set of first order flow equations in a simple phase space, the coherent
structures of the amplitude equations correspond to certain orbits of these
ODE’s. Please note that plane waves, since they have constant profiles, are
trivial examples of coherent structures; in the flow equations they correspond
to fixed points. Sources and sinks connect, asymptotically, plane waves, and
so the corresponding orbits in the ODE’s connect fixed points. Many different
coherent structures have been identified within this framework [61–64].

The counting arguments that give the multiplicity of such solutions are essen-
tially based on determining the dimensions of the stable and unstable mani-
folds near the fixed points. These dimensions, together with the parameters of
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the Ansatz such as v, determine for a certain orbit the number of constraints
and the number of free parameters that can be varied to fullfill these con-
straints. We may illustrate the theoretical importance of counting arguments
by recalling that for the single CGL equation a continuous family of hole so-
lutions has been known to exist for some time [63]. Later, however, counting
arguments showed that these source type solutions were on general grounds
expected to come as discrete sets, not as a continuous one-parameter family
[62]. This suggested that there is some accidental degeneracy or hidden sym-
metry in the single CGL equation, so that by adding a seemingly innocuous
perturbation to the CGL equation, the family of hole solutions should collapse
to a discrete set. This was indeed found to be the case [65,66]. For further de-
tails of the results and implications of these counting arguments for coherent
structures in the single CGL equation, we refer to [62].

It should be stressed that counting arguments can not prove the existence of
certain coherent structures, nor can they establish the dynamical relevance
of the solutions. They can only establish the multiplicity of the solutions, as-
suming that the equations have no hidden symmetries. Imagine that we know
— either by an explicit construction or from numerical experiments — that a
certain type of coherent structure solution does exist. The counting arguments
then establish whether this should be an isolated or discrete solution (at most
a member of a discrete set of them), or a member of a one-parameter family of
solutions, etc. In the case of an isolated solution, there are no nearby solutions
if we change one of the parameters (like the velocity v) somewhat. For a one-
parameter family, the counting argument implies that when we start from a
known solution and change the velocity, we have enough other free parameters
available to make sure that there is a perturbed trajectory that flows into the
proper fixed point as ξ → ∞.

For the two coupled CGL equations (2,3) the counting can be performed by
a straightforward extension of the counting for the single CGL equation [62].
The Ansatz for coherent structures of the coupled CGL equations (2,3) is the
following generalization of the Ansatz for the single CGL equation:

AL(x, t) = e−iωLtÂL(x− vt) , AR(x, t) = e−iωRtÂR(x− vt) . (11)

Note that we take the velocities of the structures in the left and right mode
equal, while the frequencies ω are allowed to be different. This is due to the
form of the coupling of the left- and right-traveling modes, which is through
the moduli of the amplitudes. It obviously does not make sense to choose
the velocities of the AL and AR differently: for large times the cores of the
structures in AL and AR would then get arbitrarily far apart, and at the
technical level, this would be reflected by the fact that with different velocities
we would not obtain simple ODE’s for ÂL and ÂR. Since the phases of AL and
AR are not directly coupled, there is no a priori reason to take the frequencies
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ωL and ωR equal; in fact we will see that in numerical experiments they are not
always equal (see for instance the simulations presented in Fig. 3). Allowing
ωL 6= ωR, the Ansatz (11) clearly has three free parameters, ωL, ωR and v.

Substitution of the Ansatz (11) into the coupled CGL equations (2,3) yields
the following set of ODE’s:

∂ξaL =κLaL , (12)

∂ξzL =−z2L +
1

1 + ic1

[

−ε− iωL + (1− ic3)a
2
L

+g2(1− ic2)a
2
R − (v + s0)zL

]

, (13)

∂ξaR =κRaR , (14)

∂ξzR =−z2R +
1

1 + ic1

[

−ε − iωR + (1− ic3)a
2
R

+g2(1− ic2)a
2
L − (v − s0)zR

]

, (15)

where we have written

ÂL = aLe
iφL , ÂR = aRe

iφR . (16)

and where q, κ and z are defined as

q := ∂ξφ, κ := (1/a)∂ξa , z := ∂ξ ln(Â) = κ+ iq . (17)

Compared to the flow equations for the single CGL equation (see appendix
A), there are two important differences that should be noted: (i) Instead of the
velocity v we now have velocities v±s0; this is simply due to the fact that the
linear group velocity terms can not be transformed away. (ii) The nonlinear
coupling term in the CGL equations shows up only in the flow equations for
the z’s.

The fixed points of these flow equations, the points in phase space at which
the right hand sides of Eqs. (12)-(15) vanish, describe the asymptotic states
for ξ → ±∞ of the coherent structures. What are these fixed points? From
Eq. (12) we find that either aL or κL is equal to zero at a fixed point, and
similarly, from Eq. (14) it follows that either aR or κR vanishes. For the sources
and sinks of (2,3) that we wish to study, the asymptotic states are left- and
right-traveling waves. Therefore the fixed points of interest to us have either
both aL and κR or both aR and κL equal to zero, and we search for heteroclinic
orbits connecting these two fixed points.

As explained before, with counting arguments one determines the multiplicity
of the coherent stuctures from (i) the dimension D−

out of the outgoing (“unsta-
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ble”) manifold of the fixed point describing the state on the left (ξ = −∞),
(ii) the dimension D+

out of the outgoing manifold at the fixed point charac-
terizing the state on the right (ξ = ∞) and (iii) the number Nfree of free
parameters in the flow equations. Note that every flowline of the ODE’s cor-
responds to a particular coherent solution, with a fully determined spatial
profile but with an arbitrary position; if we would also specify the point ξ = 0
on the flowline, the position of the coherent structure would be fixed. When
we refer to the multiplicity of the coherent solutions, however, we only care
about the profile and not the position. We therefore need to count the multi-
plicity of the orbits. In terms of the quantities given above, one thus expects
a (D−

out − 1 − D+
out + Nfree)–parameter family of solutions; the factor −1 is

associated with the invariance of the ODE’s with respect to a shift in the
pseudo-time ξ which leaves the flowelines invariant. In terms of the coher-
ent structures, this symmetry is the translational invariance of the amplitude
equations.

When the number (D−

out−1−D+
out+Nfree) is zero, one expects a discrete set of

solutions, while if this number is negative, one expects there to be no solutions
at all, generically. Proving the existence of solutions, within the context of an
analysis of this type, amounts to proving that the outgoing manifold at the
ξ = −∞ fixed point and the incoming manifold at the ξ = ∞ fixed point
intersect. Such proofs are in practice far from trivial — if at all possible —
and will not be attempted here.

Conceptually, counting arguments are simple, since the dimensions D−

out and
D+

out are just determined by studying the linear flow in the neighborhood
of the fixed points. Technically, the analysis of the coupled equations is a
straightforward but somewhat involved extension of the earlier findings for
the single CGL. We therefore prefer to only quote the main result of the
analysis, and to relegate all technicalities to appendix B.

For sources and sinks, always one of the two modes vanishes at the relevant
fixed points. We are especially interested in the case in which the effective
value of ε, defined as

εLeff := ε− g2|aR|2 , εReff := ε− g2|aL|2 . (18)

is negative for the mode which is suppressed. In this case small perturbations of
the suppressed mode decay to zero in each of the single-amplitude domains, so
this situation is then stable. E.g., for a stable source configuration as sketched
in Fig. 6.3, εReff should be negative on the left, and εLeff should be negative on
the right of the source. We will focus below on the results for this regime of
full suppression of one mode by the other.

The basic result of our counting analysis for the multiplicity of source and sink
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solutions is that when εeff < 0 the counting arguments for “normal” sources
and sinks (the linear group velocity s0 and the nonlinear group velocity s of
the same sign), is simply that

• Sources occur in discrete sets. Within these sets, as a result of the left-right
symmetry for v = 0, we expect a stationary, symmetric source to occur.

• Sinks occur in a two parameter family.

Notice that apart from the conditions formulated above, these findings are
completely independent of the precise values of the coefficients of the equa-
tions. This gives these results their predictive power. Essentially all of the re-
sults of the remainder of this paper are based on the first finding that sources
come in discrete sets, so that they fix the properties of the states in the do-
mains they separate.

As discussed in Appendix B the multiplicity of anomalous sources is the same
as for normal sources and sinks in large parts of parameter space, but larger
multiplicities can occur. Likewise, sources with εeff > 0 may occur as a two-
parameter family, although most of these are expected to be unstable (Ap-
pendix B.7). We shall see in Section 5 that in this case, which happens es-
pecially when g2 is only slightly larger than 1, new nontrivial dynamics can
occur.

3.2 Comparison between shooting and direct simulations

Clearly, the coherent structure solutions are by construction special solu-
tions of the original partial differential equations. The question then arises
whether these solutions are also dynamically relevant, in other words, whether
they emerge naturally in the long time dynamics of the CGL equation or as
“nearby” transient solutions in nontrivial dynamical regimes. For the single
CGL equation, this has indeed been found to be the case [61,62,67–70]. To
check that this is also the case here, we have performed simulations of the
coupled CGL equations and compared the sinks and sources that are found
there to the ones obtained from the ODE’s (12-15). Direct integration of the
coupled CGL equations was done using a pseudo-spectral code. The profiles
of uniformly translating coherent structures where obtained by direct integra-
tion of the ODE’s (12-15), shooting from both the ξ=+∞ and ξ=−∞ fixed
points and matching in the middle.

In Fig. 2a, we show a space-time plot of the evolution towards sources and
sinks, starting from random initial conditions. The grey shading is such that
patches of AR mode are light and AL mode are dark. Clearly, after a quite
short transient regime, a stationary sink/source pattern emerges. In Fig. 2b
we show the amplitude profiles of |AR| (thin curve) and |AL| (thick curve) in
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the final state of the simulations that are shown in Fig. 2a. In Fig. 2c and d we
compare the amplitude and wavenumber profile of the source obtained from
the CGL equations around x = 440 (boxes) to the source that is obtained
from the ODE’s (12-15) (full lines). The fit is excellent, which illustrates our
finding that sources are stable and stationary in large regions of parameter
space and that their profile is completely determined by the ODE’s associated
with the Ansatz (11).

However, the CGL equations posses a large number of coefficients that can be
varied, and it will turn out that there are several mechanisms that can render
sources and source/sink patterns unstable. We will encounter these scenarios
in sections 4 and 5.

3.3 Multiple discrete sources

As we already pointed out before, the fact that sources come in a discrete
set does not imply that there exists only one unique source solution. There
could in principle be more solutions, since the counting only tells us that
infinitesimally close to any given solution, there will not be another one.

Fig. 3 shows an example of the occurrence of two different isolated source
solutions. The figure is a space-time plot of a simulation where we obtained two
different sources, one of which is an anomalous one (s and s0 of opposite sign).
One clearly sees the different wavenumbers emitted by the two structures, and
sandwiched in between these two sources is a single amplitude sink, whose
velocity is determined by the difference in incoming wavenumbers. We have
checked that the wavenumber selected by the anomalous source is such that the
counting still yields a discrete set. If we follow the spatio-temporal evolution
of this particular configuration, we find highly nontrivial behavior which we
do not fully understand as of yet (not shown in Fig. 3).

These findings illustrate our belief that the ”normal” sources and sinks are
the most relevant structures one expects to encounter. It therefore appears
to be safe to ignore the possible dynamical consequences of the more esoteric
structures, which one a priori cannot rule out. The main complication of the
possible occurrence of multiple discrete sources, as in Fig. 3, is that single
amplitude sinks can arise in the patches separating them. The motion of these
sinks can dominate the dynamics for an appreciable time.
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4 Scaling properties of sources and sinks for small ε

In this section we study the scaling properties and dynamical behavior of
sources and sinks in the limit where ε is small. This is a nontrivial issue, since
due to the presence of the linear group velocity s0, the coupled CGL equa-
tions do not scale uniformly with ε. We focus in particular on the width of the
sources and sinks. The results we obtain are open for experimental testing,
since the control parameter ε can usually be varied quite easily. The behavior
of the sources is the most interesting, and we will discuss this in sections 4.1
and 4.2. Using arguments from the theory of front propagation, we recover
the result from Coullet et al. [44] that there is a finite threshold value for ε,
below which no coherent sources exist (section 4.1). For ε below this critical
value, there are, depending on the initial conditions, roughly two different
possibilities. For well-separated sink/source patterns, we find non-stationary
sources whose average width scales as 1/ε (in possible agreement with the ex-
periments of Vince and Dubois [31]; see section 6.2.1). These sources can exist
for arbitrarily small values of ε. For patterns with less-well separated sources
and sinks, we typically find that the sources and sinks annihilate each other
and disappear altogether. The system evolves then to a single mode state, as
described by the averaged amplitude equations equations (4-5). These scenar-
ios are discussed in section 4.2 below. By some simple analytical arguments
we obtain that the width of coherent sinks diverges as 1/ε; typically these
structures remain stationary (see section 4.3).

4.1 Coherent sources: analytical arguments

By balancing the linear group velocity term with the second order spatial
derivate terms, we see that the coupled amplitude equations (2-3) may contain
solutions whose widths approach a finite value of order 1/s0 as ε → 0. As
pointed out in particular by Cross [25,26], this behavior might be expected
near end walls in finite systems; in principle, it could also occur for coherent
structures such as sources and sinks which connect two oppositely traveling
waves. Solutions of this type are not consistent with the usual assumption of
separation of scales (length scale ∼ ε−1/2) which underlies the derivation of
amplitude equations. One should interpret the results for such solutions with
caution.

As we shall discuss below, the existence of stationary, coherent sources is
governed by a finite critical value εsoc , first identified by Coullet et al. [44].
Since the coupled amplitude equations (2-3) are only valid to lowest order in
ε, the question then arises whether the existence of this finite critical values εsoc
is a peculiarity of the lowest order amplitude equations. Since this threshold is
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determined by the interplay of the linear group velocity and a front velocity,
which are both defined for arbitrary ε, we will argue that the existence of a
threshold is a robust property indeed.

We now proceed by deriving this critical value εsoc from a slightly different
perspective than the one that underlies the analysis of Coullet et al. [44], by
viewing wide sources as weakly bound states of two widely separated fronts.
Indeed, consider a sufficiently wide source like the one sketched in Fig. 4a in
which there is quite a large interval where both amplitudes are close to zero 5 .
Intuitively, we can view such a source as a weakly bound state of two fronts,
since in the region where one of the amplitudes crosses over from nearly zero
to some value of order unity, the other mode is nearly zero. Hence as a first
approximation in describing the fronts that build up the wide source of the
type sketched in Fig. 4a, we can neglect the coupling term proportional to g2
in the core-region. The resulting fronts will now be analyzed in the context of
the single CGL equation.

Let us look at the motion of the AR front on the right (by symmetry the
AL front travels in the opposite direction). As argued above, its motion is
governed by the single CGL equation in a frame moving with velocity s0

(∂t + s0∂x)AR = εAR + (1 + ic1)∂
2
xAR − (1− ic3)|AR|2AR . (19)

The front that we are interested in here corresponds to a front propagating
”upstream”, i.e., to the left, into the unstable AR =0 state. Such fronts have
been studied in detail [62], both in general and for the single CGL equation
specifically.

Fronts propagating into unstable states come in two classes, depending on the
nonlinearities involved. Typically, when the nonlinearities are saturating, as
in the cubic CGL equation (19), the asymptotic front velocity vfront equals the
linear spreading velocity v∗. This v∗ is the velocity at which a small perturba-
tion around the unstable state grows and spreads according to the linearized
equations. For Eq. (19), the velocity v∗ of the front, propagating into the
unstable A = 0 state, is given by [62]

v∗ = s0 − 2
√

ε(1 + c21) . (20)

The parameter regime in which the selected front velocity is v∗ is often referred
to as the “linear marginal stability” [71,72] or “pulled fronts” [73–75] regime,

5 It is not completely obvious that wide sources necessarily have such a large zero
patch, but this is what we have found from numerical simulations. Wide sinks
actually will turn out not to have this property.
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as in this regime the front is ”pulled along” by the growing and spreading of
linear perturbations in the tip of the front.

For small ε, the velocity v∗= vfront is positive, implying that the front moves
to the right, while for large ε, v∗ is negative so that the front moves to the
left. Intuitively, it is quite clear that the value of ε where v∗ = 0 will be an
important critical value for the dynamics, since for larger ε the two fronts
sketched in Fig. 4a will move towards each other, and some kind of source
structure is bound to emerge. For ε < εsoc , however, there is a possibility that
a source splits up into two retracting fronts. Hence the critical value of ε is
defined through v∗(εsoc ) = 0, which, according to Eq. (20) yields

εsoc = s20/(4 + 4c21) . (21)

We will indeed find that the width of coherent sources diverges for this value
of ε; however, the sources will not disappear altogether, but are replaced by
non-stationary sources which can not be described by the coherent structures
Ansatz (11).

4.2 Sources: numerical simulations

By using the shooting method, i.e., numerical integration of the ODE’s (12-
15), to obtain coherent sources, we have studied the width of the coherent
sources as a function of ε. The width is defined here as the distance between
the two points where the left- and right traveling amplitudes reach 50 % of
their respective asymptotic values. In Fig. 4b, we show how the width of
coherent sources varies with ε. For the particular choice of coefficients here
(c1 = c3 = 0.5, c2 = 0, g2 = 2 and s0 = 1), εsoc = 0.2, and it is clear from this
figure, that the width of stationary source solutions of Eqs. (19) diverges at
this critical value 6 .

In dynamical simulations of the full coupled CGL equations however, this
divergence is cut off by a crossover to the dynamical regime characteristic of
the ε < εsoc behavior. Fig. 4c is a space-time plot of |AL|+ |AR| that illustrates
the incoherent dynamics we observe for ε < εsoc . The initial condition here is
source-like, albeit with a very small width. In the simulation shown, we see the
initial source flank diverge as we would expect since s0>v∗. As time progresses,
right ahead of the front a small ’bump’ appears: as we mentioned before, both
amplitudes are to a very good approximation zero in that region, so the state
there is unstable (remember that though small, ε is still nonzero). This bump

6 Note that by a rescaling of the CGL equations, one can set s0=1 without loss
of generality.
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will therefore start to grow, and will be advected in the direction of the flank.
The flank and bump merge then and the flank jumps forward. The average
front velocity is thus enhanced. The front then slowly retracts again, and
the process is repeated, resulting in a “breathing” type of motion. For longer
times these oscillations become very, very small. For this particular choice
of parameters, they become almost invisible after times of the order 3000;
however, a close inspection of the data yields that the sources never become
stationary but keep performing irregular oscillations. Since these fluctuations
are so small, it is very likely that to an experimentalist such sources appear
to be completely stationary.

From the point of view of the stability of sources, we can think of the change
of behavior of the sources as a core-instability. This instability is basically
triggered by the fact that wide sources have a large core where both AL and
AR are small, and since the neutral state is unstable, this renders the sources
unstable. The difference between the critical value of ε where the instability
sets in and εsoc is minute, and we will not dwell on the distinction between
the two. 7 Although all our numerical results are in accord with this scenario,
one should be aware, however, that it is not excluded that other types of core-
instabilities exist is some regions of parameter space 8 . Furthermore, it should
be pointed out that when ε is below εsoc , there is no stationary albeit unstable
source! The dynamical sources can than not be viewed as oscillating around
an unstable stationary source.

The weak fluctuations of the source flanks are very similar to the fluctuations
of domain walls between single and bimodal states in inhomogeneously coupled
CGL equations as studied in [60]. Completely analogous to what is found here,
there is a threshold given in terms of ε and s0 for the existence of stationary
domain walls, which we understand now to result from a similar competition
between fronts and linear group velocities. Beyond the threshold, dynamical
behavior was shown to set in, which, depending on the coefficients, can take
qualitatively different forms; similar scenarios can be obtained for the sources
here.

The main ingredient that generates the dynamics seems to be the following.

7 For a similar scenario in the context of non-homogeneously coupled CGL equa-
tions, see [60].
8 An example of a similar scenario is provided by pulses in the single quintic CGL
equation. Pulses are structures consisting of localized regions where |A| 6= 0. The
existence and stability of pulse solutions can, to a large extent, be understood by
thinking of a pulse as a bound state of two fronts [62]. However, recent perturbative
calculations near the non-dissipative (Schrödinger-like) limit [76] have shown that
in some parameter regimes a pulse can become unstable against a localized mode.
This particular instability can not simply be understood by viewing a pulse as a
bound state of two fronts.
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For a very wide source, we can think of the flank of the source as an isolated
front. However, the tip of this front will always feel the other mode, and it is
precisely this tip which plays an essential role in the propagation of “pulled”
fronts [71–75]! Close inspection of the numerics shows that near the crossover
between the front regime and the interaction regime, oscillations, phase slips
or kinks are generated, which are subsequently advected in the direction of the
flank. These perturbations are a deterministic source of perturbations, and it
is these perturbations that make the flank jump forward, effectively narrowing
down the source.

The jumping forward of the flank of the source for ε just below εsoc is reminis-
cent to the mechanism through which traveling pulses were found to acquire
incoherent dynamical behavior, if their velocity was different from the linear
group velocity [77]. In extensions of the CGL equation, it was found that if
a pulse would travel slower than the linear spreading speed v∗, fluctuations
in the region just ahead of the pulse could grow out and make the pulse at
one point ”jump ahead”. In much the same way the fronts can be viewed to
”jump ahead” in the wide source-type structures below εsoc when the fluctua-
tions ahead of it grow sufficiently large.

In passing, we point out that we believe these various types of “breathing
dynamics” to be a general feature of the interaction between local structures
and fronts. Apart from the examples mentioned above, a well known example
of incoherent local structures are the oscillating pulses observed by Brand and
Deissler in the quintic CGL [78]. Also in this case we have found that these
oscillations are due to the interaction with a front, but instead of a pulled
front it is a pushed front that drives the oscillations here [79].

Returning to the discussion of the behavior of the wide non-stationary sources,
we show in Fig. 4d the (inverse) average width of the dynamical sources for
small ε. These simulations where done in a large system (size 2048), with just
one source and, due to the periodic boundary conditions, one sink. If one slowly
decreases ε, one finds that the average width of the sources diverges roughly as
ε−1 (see the inset of Fig. 4d). However, if one does not take such a large system,
i.e., sources and sinks are not so well separated, we often observed that, after
a few oscillations of the sources, they interact with the sinks and annihilate.
In many case, especially for small enough ε, all sources and sinks disappear
from the system, and one ends up with a state of only right or left traveling
wave. Since no sources or sinks can occur in the average equations (4,5), this
behavior seems precisely to be what these average equations predict. In a
sense, this regime without sources and sinks follows nicely from the ordinary
CGL equations when ε ↓ 0.

In conclusion, we arrive at the following scenario.
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• For ε > εsoc , sources are stationary and stable, provided that the waves they
send out are stable. The structure of these stationary source solutions is
given by the ODE’s (12-15), and their multiplicity is determined by the
counting arguments.

• When ε ↓ εsoc , the source width rapidly increases, and for ε = εsoc , the size of
the coherent sources (i.e., solutions of the ODE’s (12-15)) diverges, in agree-
ment with the picture of a source consisting of two weakly bound fronts.
For a value of ε just above εsoc , the sources have a wide core where both
AR and AR are close to zero, and these sources turn unstable. Our scenario
is that in this regime a source consists essentially of two of the “nonlinear
global modes” of Couairon and Chomaz [80]. Possibly, their analysis can be
extended to study the divergence of the source width as ε ↓ εsoc .

• For ε < εsoc , wide, non-stationary sources can exist. Their dynamical be-
havior is governed by the continuous emergence and growth of fluctuations
in the region where both amplitudes are small, resulting in an incoherent
“breathing” appearance of the source. For long times, these oscillations may
become very mild, especially when ε is not very far below εsoc .

• In the limit for ε ↓ 0, there are, depending on the initial conditions, two pos-
sibilities. For random initial conditions, pairs of sources and sinks annihilate
and the system often ends up in a single mode state, which is consistent
with the ’averaged equation’ picture discussed in section 1.2.2. This happens
in particular in sufficiently small systems. Alternatively, in large systems,
one may generate well-separated sources and sinks. In this case the aver-
age width of the incoherent sources diverges as 1/ε, in apparent agreement
with the experiments of Vince and Dubois [31] (see section 6.2.1 for further
discussion of this point).

We finally note that our discussion above was based on the fact that near a
supercritical bifurcation, fronts propagating into an unstable state are ”pulled”
[73–75] or ”linear marginal stability” [71,72] fronts: vfront =v∗. It is well-known
that when some of the nonlinear terms tend to enhance the growth of the
amplitude, the front velocity can be higher: vfront > v∗ [71–75]. These fronts,
which occur in particular near a subcritical bifurcation, are sometimes called
”pushed” [73–75] or ”nonlinearly marginal stability” [62,72] fronts. In this case
it can happen that the front velocity remains large enough for stable stationary
sources to exist all the way down to ε= 0. We believe that this is probably
the reason that Kolodner [34] does not appear to have seen any evidence for
the existence of a critical εsoc in his experiments on traveling waves in binary
mixtures, as in this system the transition is weakly subcritical [20,81].
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4.3 Sinks

As we have seen in section B.2, counting arguments show that there generically
exists a two-parameter family of uniformly translating sink solutions. The
scaling of their width as a function of ε is not completely obvious, since the
figures of Cross [25] 9 indicate that their width approaches a finite value as
ε ↓ 0, while Coullet et al. found a class of sink solutions whose width diverges
as ε−1 for ε ↓ 0.

In appendix C we demonstrate, by examining the ODE’s (12-15) in the ε ↓ 0
limit, that the asymptotic scaling of the width of sinks as ε−1 follows naturally.

If we now focus again on uniformly translating sink structures of the form

AR,L = e−iωR,LtÂR,L(ξ) , (22)

and explicitly carry out this scaling by introducing the scaled variables

ξ̄ = εξ , ω̄R,L =
ωR,L

ε
, ĀR,L =

ÂR,L√
ε

, (23)

We find that, if the limit ε → 0 is regular we can (to lowest order in ε),
approximate the ODE’s (12-15) by the following reduced set of equations

(−iω̄ + s0∂ξ̄)ĀR = ĀR − (1− ic3)|ĀR|2ĀR − g2(1− ic2)|ĀL|2ĀR (24)

(−iω̄ − s0∂ξ̄)ĀL= ĀL − (1− ic3)|ĀL|2ĀL − g2(1− ic2)|ĀR|2ĀL , (25)

where we have set ω̄R = ω̄L = ω and v = 0, to study symmetric, stationary
sinks. As one can see by comparing Eqs. (24-25) with the original equations
(12-15), the taking of the ε → 0 limit effectively amounts to the removal of
the diffusive term ∝ ∂2

ξ . One could a priori wonder whether this procedure is
justified, since we are removing the highest order derivative from the equations,
which could very well constitute a singular perturbation. This matter will be
resolved below with the aid of our counting argument.

Equations (24-25) admit an exact solution for the sink profile, first obtained
by Coullet et al. When we substitute

ĀR,L = āLe
iφ̄R,L , q̄R,L = ∂ξ̄φ̄R,L , (26)

9 The work of Cross was motivated by experiments on traveling waves in binary
mixtures. In such systems, the bifurcation is weakly subcritical; experimentally, the
sinks width is then expected to be finite for small ε.
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the explicit solution is given by

aR(x) =

√

ε

1 + e(2(g2−1)εx)/s0
=

√

ε− a2L . (27)

The width of these solutions is easily seen to indeed diverge as ε−1. Since
we can still vary ω̄ continuously to give various values for the asymptotic
wavenumber, which is for solutions of the type (27) given by

q̄R =
1

s0
(ω̄ + c3) for ξ̄ = −∞ and q̄L =

−1

s0
(ω̄ + c3) for ξ̄ = ∞ , (28)

we see that we still have a 1-parameter family of v=0 sinks. Since this is in
accord with the full counting argument, the limit ε ↓ 0 is indeed regular.

In passing we note that source solutions of finite width are completely absent
in the scaled Eqs. (24-25). This is because the only orbit that starts from the
AR = 0 single mode fixed point and flows to the AL = 0 single mode fixed
point passes through the AL = AR = 0 fixed point, and therefore takes an
infinite pseudo-time ξ; such a source has an infinitely wide core regime where
AL and AR are both zero. This also agrees with our earlier observations, since
the coherent sources already diverge at finite εsoc .

In Fig. 5 we plot the sink width versus ε for the full set of ODE’s, as obtained
from our shooting. It is clear that the sink indeed diverges at ε=0, and that it
asymptotically approaches the theoretical prediction from the above analysis.

4.4 The limit s0 → 0

In this paper, we focus mainly on the experimentally most relevant limit s0
finite, ε small. For completeness, we also mention that Malomed [45] has also
investigated the limit where ε is nonzero and s0 → 0, ci → 0, perturbatively.
In this limit, which is relevant for some laser systems [55], sinks are found to
be wider than sources. This finding can easily be recovered from the results
of our appendix: From (A.12) it follows that to first order in s0 the change in
the exponential growth rate κ of the suppressed mode away from zero is

δκ±

L = −s0/2 , δκ±

R = s0/2 . (29)

where according to our convention of the appendices, κ− corresponds to the
negative root of (A.12), and κ+ to the positive one. For a sink, the left trav-
eling mode is suppressed on the left of the structure, and so this mode grows
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as exp(κ+
Lξ), while on the right of the sink the right-traveling mode decays

to zero as exp(κ−

Lξ). For the sources, the right and left traveling modes are
interchanged. According to (29), upon increasing s0 the relevant rate of spa-
tial growth and decay decreases for sinks and increases for sources. Hence in
this limit, somewhat counter-intuitively, sinks are wider than sources. For a
further discussion of the limit s0 → 0, we refer to the paper by Malomed [45].

5 Dynamical properties of source/sink patterns

Apart from the instability of the sources that occurs when ε < εsoc , there are
at least two other mechanisms that lead to nontrivial dynamics of source/sink
patterns, and this section is devoted to a description of such states. Due to the
high dimensionality of the parameter space (one has to consider, in principle,
the coefficients c1, c2, c3, g2 and ε or s0), we aim at presenting some typical
examples and uncovering general mechanisms, rather than aiming at a com-
plete overview. Several of the scenario’s we lay out deserve further detailed
investigation in the future.

The starting point of our analysis here is the discrete nature of the sources
(see section B.2) which implies that the wavenumber of the laminar patches is
often uniquely determined [43,45,47]. A stability analysis of these waves yields
the two following instability mechanisms:

• Benjamin-Feir instability. When the waves emitted by the sources are unsta-
ble to long wavelength modes, it is the nature of this instability, i.e., whether
it is convective or absolute, that determines the global dynamical behavior.
The dynamical states that occur in this case are discussed in section 5.1.

• Bimodal instabilities. The selected wavenumber can also lead to an insta-
bility resulting from the competition between the left and right traveling
modes. The essential observation is that for a selected wavenumber qsel
there exists a range 1<g2 < ε/(ε− q2sel) for which both single and bimodal
states are unstable. Provided that there are sources in the system, we find
then a regime of source-induced bimodal chaos (see section 5.2).

Furthermore, both of these instabilities can occur simultaneously, as seems
to be the case in experiments of the Saclay group [36], and can be combined
with the small-ε instability of the sources, discussed in section 4. This leads
to quite a rich palette of dynamical and chaotic states (section 5.3). We have
summarized the various disordered states that are typical for the coupled
amplitude equations in table 1 above. The first three types of dynamics are
source-driven. Sources are not essential for the last three types of dynamics,
which are driven by the coupling between the AL and AR modes.
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Table 1
Overview of disordered and chaotic states.

Type Section Fig. Parameters

Core-instabilities 4.1,4.2 4 ε < εsoc = s20/(4 + 4c21)

Absolute instabilities 5.1 7,8 v∗BF > 0

Bimodal chaos 5.2 9 1 < g2 < ε/(ε − qsel)

Defects + Bimodal 5.3.2 10 g2 just above 1

Intermittent + Bimodal 5.3.3 11 g2 just above 1

Periodic patterns 5.3.4 7,8,12 c2,c3: opposite signs and not small

5.1 Convective and absolute sideband-instabilities

Plane waves in the single CGL equation with wavenumber q exhibit sideband
instabilities when [2] 10

q2 >
ε(1− c1c3)

3− c1c3 + 2c23
, (30)

and when the curve c1c3=1 is crossed, all plane waves become unstable, and
one encounters various types of spatio-temporal chaos [2,57–59]. For the cou-
pled CGL equations under consideration here, the condition for linear stability
of a single mode is still given by Eq. (30), since the mode which is suppressed is
coupled quadratically to the one which is nonzero. Since the sources in general
select a wavenumber unequal to zero, the relevant stability boundary for the
plane waves in source/sink patterns typically lies below the c1c3 = 1 curve.

Consider now a linearly unstable plane wave. Perturbations of this wave grow,
spread and are advected by the group velocity. The instability of the wave is
called convective when the perturbations are advected away faster than they
grow and spread; when monitored at a fixed position, all perturbations even-
tually decay. In the case of absolute instability, the perturbations spread faster
than they are advected; such an instability often results in persistent dynam-
ics. To distinguish between these two cases one has to compare, therefore,
the group velocity and the spreading velocity of perturbations. For a general
introduction to the concepts of convective and absolute instabilities, see e.g.

10 When both nominator and denominator are negative, as may occur for large c1,
this equation seems to suggest that one might have a stable band of wavenumbers.
However, when 1 − c1c3 is negative, no waves are stable; the flipping of the sign
of the denominator for large c1 bears no physical relevance, but is due to a long-
wavelength expansion performed to obtain Eq. (30). Note that the denominator is
always positive as long as 1− c1c3 is positive.
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[82].

Numerical simulations of the coupled CGL equations presented below show
that the distinction between the two types of instabilities is important for
the dynamical behavior of the source/sink patterns. When the waves that are
selected by the sources are convectively unstable, we find that, after transients
have died out, the pattern typically “freezes” in an irregular juxtaposition
of stationary sources and sinks. When the waves are absolutely unstable 11 ,
however, persistent chaos occurs.

The wavenumber selection and instability scenario sketched above for the cou-
pled CGL equations is essentially the one-dimensional analogue to the “vortex-
glass” and defect chaos states in the 2D CGL equation [83,84]; in that case
the wavenumber is selected by so-called spiral or vortex solutions. As we shall
discuss, there are, however, also some differences between these cases.

Below we will briefly indicate how the threshold between absolute and convec-
tive instabilities is calculated (see also [84]). The advection of a small pertur-
bation is given by the nonlinear group velocity s = ∂ω/∂q which is the sum
of the linear group velocity s0 and the nonlinear term sq :=2q(c1 + c3):

sL = −s0 + 2qL(c1 + c3) , sR = s0 + 2qR(c1 + c3) . (31)

The spreading velocity of perturbations is conveniently calculated in the lin-
ear marginal stability/pulled front framework [71,75] once one has obtained
a dispersion relation for these perturbations. Since we consider single mode
patches, we are allowed to restrict ourselves to a single CGL equation, in
which the linear group velocity term ±so∂xA is easily incorporated, as it
just gives a constant boost. Considering a perturbed plane wave of the form
A = (a + u) exp i(qx− ωt), where u is a small complex-valued perturbation
∼ exp i(kx− σt) and a2=ε − q2. Upon substituting this Ansatz into a single
CGL equation, linearizing and going to a Fourier representation, one obtains
a dispersion relation σ(k) [85]. From this relation one then finally calculates
the spreading velocity v∗BF of the Benjamin-Feir perturbations in the linear
marginal stability or saddle-point framework [71].

Since in general we can only calculate the selected wavenumber q by a shooting
procedure of the ODE’s (12-15) for a source, obtaining a full overview of

11 It should be noted that the criterion for absolute instability concerns the propaga-
tion of perturbations in an ideal, homogeneous background. For typical source/sink
patterns, one has finite patches; the criterion can also not determine when pertur-
bations are strong enough to really affect the core of the sources. Analogous to the
2D case, we have found that persistent dynamics sets in slightly above the threshold
between convective and absolute instabilities.
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the stability of the plane waves as a function of the coefficients necessarily
involves extensive numerical calculations. Therefore, we will focus now on a
single sweep of c2. For reasons to be made clear below, we choose ε=1, c1=
c3 = 0.9, s0 = 0.1 and g2 = 2. Since we fix all coefficients but c2, the stability
boundary (30) is fixed. By sweeping c2, the selected wavenumber varies over a
range of order 1, and one encounters both convective and absolute instabilities.

We have found that after a transient, patterns in the stable or convectively un-
stable case are indistinguishable 12 . When there is no inherent source of noise
or perturbations, there is nothing that can be amplified, and the convective
instability is rendered powerless (see however, section 5.3).

Although the transition between stable and convectively unstable waves is not
very relevant for the source/sinks patterns here, the transition between con-
vectively and absolutely unstable waves is interesting. To obtain an absolute
instability one needs to carefully choose the parameters; when q increases, the
contribution to the group velocity of the nonlinear term sq increases, and we
have to take c1 and c3 quite close to the c1c3=1 curve to find absolute instabil-
ities. This is the reason for our choice of coefficients. In Fig. 6 we have plotted
the selected frequency (obtained by shooting), corresponding wavenumber and
propagation velocity v∗BF of the mode to the right of the source, as a function
of c2. For this choice of coefficients the single mode waves turn Benjamin-Feir
convectively unstable when, accordingly to Eq. (30) |q| > 0.223 , which is the
case for all values of c2 shown in Fig. 6. The waves turn absolutely unstable
when |q| > 0.553, and this yields that the waves become absolutely unstable
for c2 < −0.25.

When the selected waves becomes absolutely unstable, the sources may be
destroyed since perturbations can no longer be advected away from them; the
system typically ends up in a chaotic state. In Fig. 7 we show what happens
when we choose the coefficients as in Fig. 6, and decrease c2 deeper and deeper
into the absolutely unstable regime. All runs start from random initial con-
ditions, and a transient of t = 104 was deleted. Although the left- and right
traveling waves do not totally suppress each other, it was found that pictures
of |AL| and |AR| are, to within good approximation, each others negative
(see also the final states in Fig. 8). In accordance with this, we choose our
greyscale coding to correspond to |AR|, such that light areas corresponds to
right-traveling waves and dark ones to left-traveling waves.

In Fig. 7a, c2 = −0.3 and the waves have just turned absolutely unstable,
but the only nontrivial dynamics is a very slow drift of some of the sources
and sinks. Note that this does not invalidate our counting results that isolated
sources are typically stationary, because the drifting occurs only for structures

12 Except, of course, when we prepare a very large system with widely separated
sources and sinks
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that are close together. When c2 is lowered to −0.4 (Fig. 7b), one can see now
the Benjamin-Feir perturbations spreading out in the opposite direction of
the group velocity, eventually affecting the sources (for example around x=
230, t=2700). Some of the sinks become very irregular. When c2 is decreased
even further to −0.6 (Fig. 7c), the sources and sinks show a tendency to form
periodic states [53] (see also Fig. 8). These states seem at most weakly unstable
since only some very mild oscillations are observed. The two sinks with the
largest patches around them show most dynamics, and one sees the irregular
creation and annihilation of small source/sink pairs here (around x=320 and
440). Finally, when c2 is decreased to −0.8 (Fig. 7d) the state becomes more
and more disordered; the irregular “jumping” sink at x ≈ 230 is worth noting
here.

It is interesting to note that, in particular for large negative c2 closely bound,
uniformly drifting sink-source pairs are formed (see for instance around x=
430, t = 700 in Fig. 7d). Another frequently occurring type of solution are
periodic states, corresponding to an array of alternating patches of AL and
AR mode (see also Fig. 8). The source/sink pairs and in particular the periodic
states occur over a quite wide range of coefficients; their existence has been
reported before by Sakaguchi [53]. In a coherent structures framework, periodic
states correspond to limit cycles of the ODE’s (12-15). In many cases they can
be seen as strongly nonlinear standing waves, and they show an interesting
destabilization route to chaos (see section 5.3.4).

Apart from the similarities between the mechanisms here and the spiral chaos
of the 2D CGL equation, it is also enlightening to notice the differences. The
first difference is that our sources, in contrast to the spirals in 2D, are not
topologically stable. In the states we have shown so far this does not play a
role; in the following section we will see examples where instabilities of the
sources themselves play a role. While in the 2D case the spiral cores that
play the role of a source are created and annihilated in pairs, it is here only
the sources and sinks that are created or annihilated in pairs. Furthermore,
in the spiral case, the linear analysis that determines whether the waves are
absolutely of convectively unstable is performed for plane waves. This means
one neglects curvature corrections of the order 1/r, where r is the distance to
the core of the source. Here, the only correction comes from the asymptotic,
exponential approach of the wave to a plane wave; this exponential decay rate
is given by the decay rate κ (see the appendix). Finally, in the spiral case, for
fixed c1 and c3, both the group velocity and the selected wavenumber are fixed,
while here the selected wavenumber can be tuned by c2, without influencing
the stability boundaries of the single mode state. The group velocity can be
tuned by s0. Although the selected wavenumber influences the group velocity,
cf. Eqs. (31), and s0 influences the selected wavenumber, this large number of
coefficients gives us more freedom to tune the instabilities.
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5.2 Instability to bimodal states: source-induced bimodal chaos

The dynamics we study in this section is intrinsically due to a competition
between the single source-selected waves and bimodal states. Therefore, this
state is in an essential way different from what can be found in a single CGL
equation framework.

The wavenumber selection by the sources is of importance to understand the
competition between single mode and bimodal states. In the usual stability
analysis of the single mode and bimodal states, it is assumed that both the
AL and AR modes have equal wavenumber [52]. Therefore, this analysis does
not apply to the case of a single mode, say the right-traveling mode, with
nonzero wavenumber. The left-traveling mode is then in the zero amplitude
state and has no well-defined wavenumber; one should consider therefore its
fastest growing mode, i.e., a wavenumber of zero. The following, limited analy-
sis, already shows that for g2 just above 1, instabilities are expected to occur.
Restricting ourselves to long wavelength instabilities, the analysis is simply
as follows. Write the left- and right-traveling waves as the product of a time
dependent amplitude and a plane wave solution:

AL = aL(t)e
i(qLx−ωLt) , AR = aR(t)e

i(qRx−ωRt) , (32)

and substitute this Ansatz in the coupled CGL equations. One obtains then
the following set of ODE’s

∂taL = (ε− q2L − a2L − g2a
2
R)aL , ∂taR = (ε− q2R − a2R − g2a

2
L)aR . (33)

Consider the single mode state with aR 6= 0, aL = 0 and take qL = 0. The
maximum linear growth rate of aL now follows from Eq. (33) to be the one
with qL=0; this mode has a growth rate given by ε − g2a

2
R= ε − g2(ε − q2R).

From this it follows that a single mode state with wavenumber qR is unstable
when g2 < ε/(ε− q2R). In source/sink patterns, the selected wavenumber is as

large as
√

ε/3 at the edge of the stability band for c1 = c3 = 0; it is as large

as 0.6
√
ε in Fig. 6. In extreme cases, the value of g2 necessary to stabilize

plane waves can be at least 50% larger than the value 1 that one would expect
naively.

On the other hand, the stability analysis of the bimodal states shows that
they are certainly unstable for g2 > 1. A näıve analysis for general qL and
qR, based on Eqs. (33) can be performed as follows. Solving the fixed point
equations of Eqs. (33) for the bimodal state (i.e., aL and aR both unequal to
zero), and linearizing around this fixed point yields a 2 × 2 matrix. From an
inspection of the eigenvalues we find that the bimodal states turn unstable
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when g2 < ε− q21/(ε− q22), where q1 is the largest and q2 is the smallest of the
wavenumbers qL, qR. When both wavenumbers are equal this critical value of
g2 is one; it is smaller in general.

It should be noted that this analysis does not capture sideband instabilities
that may occur, and therefore waves in a much wider range might be unstable.
For sideband-instabilities of bimodal states, the reader may consult [52] and
[86]. However, our analysis shows already that there is certainly a regime
around g2 = 1 where both the single and bimodal states are unstable. This
regime at least includes the range 1 < g2 < ε/(ε− q2sel).

The distinction between convective and absolute instabilities becomes slightly
blurred here. Suppose for instance we inspect a single-mode state that turns
unstable against bimodal perturbations. Initially, these perturbation will be
advected by the group velocity of the nonlinear mode, but as the perturbations
grow, both modes will start to play a role, and since they feel a group veloc-
ity of opposite sign, the perturbations are effectively slowed down. Roughly
speaking, the instability might be linearly convectively unstable but nonlin-
early absolutely unstable [82].

Without going into further detail we will now show two examples of the bi-
modal chaos that occurs when g2 is just above 1. For examples of similar
dynamics, also for g2 < 1, see [86]. In the first example (Fig. 9a-b) we have
taken ε=1, c1=c3=0.5, c2=−0.7, s0=1 and g2=1.1. The selected wavenum-
ber is almost independent of the value of g2 and approximately equal to 0.35,
which yields a critical value of g2 of 1.14. For g2 just below this value, the insta-
bility appears convective, and after a transient the system ends up in a mildly
fluctuating source/sink pattern. When g2 is decreased, the instability becomes
stronger and, presumably, absolute in nature. The sources behave then very
irregularly, while the sinks drift according to there incoming, disordered waves.
Note that sources and sinks are created and annihilated in this state. In Fig.
9c-d we show the disordered dynamics for ε=1, c1=1, c3=−1, c2=1, s0=0.5
and g2=1.1. Note that in the laminar patches, since c1=−c3, the dynamics
is relaxational [2,4]. In this state, no creation or annihilation of sources and
sinks is found; the sinks drift slowly, while the sources behave very irregularly.

The dynamical states as shown in Fig. 9 are different from the chaotic states
that we are familiar with from the single CGL equation [57–59,61], and so
they are of some interest in their own right. Note that it is possible to get
persistent dynamics for values of c1 and c3 that in a single CGL equation-
framework would lead to completely orderly dynamics. As the two examples
in Fig. 9 show, qualitatively different states seem to be possible in this regime;
the question of classification of the various dynamical states is completely open
as far as we are aware.
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Finally, it should be pointed out that when, as is the case here, the left- and
right-traveling mode no longer suppress each other, εeff becomes positive. In
principle this might change the multiplicity of the sources, since the eigenvalues
coming from the linear fixed point can have a different structure for positive
εeff (see appendix B.7). However, this is only true when the effective velocity
v ± s0 is larger than the critical velocity vcL; for the cases considered above,
this does not happen. Hence, the sources are here still unique and select a
unique wavenumber.

5.3 Mixed mechanisms

In the previous sections we have described three mechanisms by which sink/-
source patterns can be destabilized. First of all, in section 4 we found that due
to a competition between the linear group velocity s0 and the propagation of
linear fronts, the cores of the sources become unstable when ε<εsoc . In section
5.1 we have shown that the waves that are sent out by the sources can be
convectively or even absolutely unstable, and in section 5.2 we found that
these waves may also be unstable to bimodal perturbations when g2 is not
very far above 1. Since the mechanisms that lead to these instabilities are
independent, these instabilities might occur together. This is the subject of
this section. In particular, one can always lower the control parameter ε in an
experiment to make the sources become core-unstable (section 5.3.1). A second
combination of instabilities occurs when g2 is close to 1 and the plane waves are
unstable and generate phase slips (section 5.3.2); a particular interesting case
occurs when the single mode waves are in the so-called intermittent regime
(section 5.3.3).

5.3.1 Core instabilities and unstable waves

As discussed in section 4.2, the cores of the source may start to fluctuate when
ε<εsoc . As is visible in Fig. 4c, the perturbations that are generated in the core
are then advected away into the asymptotic plane waves. In the discussions in
section 4 above, we have focused on the case where these waves are stable, but
obviously, when they are unstable, this will amplify the perturbations emitted
by the source core. In particular, when the waves are convectively unstable, a
stable core for ε>εsoc leads to stationary patterns, but a fluctuating core can
fuel the convective instabilities. This yields a simple experimental protocol to
check for convective instabilities; simply lower ε and follow the perturbations
send by the sources for ε>εsoc .
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5.3.2 Phase slips and bimodal instabilities

Let us for definiteness suppose we have that AL = 0, and the right-traveling
mode is active. When this AR mode is chaotic and displays phase slips, the
effective growth rate of the AL mode, εLeff , may become positive for some
period. AL only grows during this period; it depends then on the duration
and spatial extension of the positive εLeff “pocket” whether AL can grow on
average. Clearly, one should look at a properly averaged value of εLeff , and
therefore at the averages of ε − g2a

2
R [53]. When g2 is sufficiently large, the

averaged effective growth rate always becomes negative, so that even a heavily
phase slipping wave can still suppress its counter-propagating partner.

We show two examples of the dynamics when phase slips occur and g2 is not
large enough to strictly suppress the near-zero mode. As coefficients we choose
c1=1, c3=1.4, c2=1, ε=1, s0=0.5, and the dynamics is illustrated in Fig. 10.

It should be noted that in Fig. 10b the sources are stationary, while some of
the sinks drift. This seems to be due to the fact that near the sink, i.e., far
away from the sources, the wave emitted by the sources has undergone phase
slips, and the incoming wavenumbers of the sink can therefore be different
from the source-selected wavenumbers. For slightly different coefficients we
have observed patterns of stationary sources, with sinks in between that by
this mechanism move in zig-zag fashion, i.e., alternating to the left and to the
right.

5.3.3 Intermittency and bimodal instabilities

Recently, Amengual et al. studied the case of spatio-temporal intermittency in
the coupled CGL equations for a linear group velocity s0=0 and c2= c3 [54].
This particular sub-case of the coupled CGL equations is of importance in
the description of some laser systems [54,55]. When g2 is increased from zero,
the authors of [54] found that for g2 < 1 one finds intermittency, with the AL

and AR obviously becoming more and more correlated as the cross-coupling
increases. Furthermore, the authors observed that for g2 > 1, the two modes
become “synchronized”, i.e., the intermittency disappears and the systems
ends up in a state that we recognize now as a stationary source/source pattern
(not source/sink, see below). Since the intermittency “disappears” the authors
question the applicability of a single CGL equation for patches of single modes
in the coupled CGL equations (2-3).

The purpose of this section is to clarify, correct and extend their results, using
our results for the wavenumber selection, the bimodal instabilities and the
discussion in section 5.3.2. In particular we will show that, (i) for sufficiently
large g2, the intermittency can persist, (ii) when the intermittency disappears
it can do so by at least two distinct mechanisms, (iii) more complicated states
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can occur. We conclude then that for single mode patches the single CGL is a
correct description, provided one is sufficiently far away from bimodal insta-
bilities and one takes the source-selected wavenumber and correct boundary
conditions into account.

For the case considered in [54] the group-velocity s0 is equal to zero, so the
two modes AL and AR are completely equivalent. The distinction between
sources and sinks depends therefore on the nonlinear group velocity, which
follows from the selected wavenumber. The counting arguments yield in this
case again a discrete v = 0 source and a two parameter family of sinks (see
section 3). In simulations we typically find stationary sources that separate
the patches of AL and AR mode, and single amplitude sinks sandwiched in
between these sources.

We will show now a variety of scenarios for intermittency in the coupled CGL
equations (2-3). The coefficients used in [54] are c1=0.2, c2= c3=2, ε=1 and
s0=0. The coefficients c1 and c3 are chosen such that a single mode is in the
so-called intermittent regime. In this regime, depending on initial conditions,
one may either obtain a plane wave attractor or a chaotic, “intermittent”
state; the latter one is typically built up from propagating homoclinic holes
and phase slips [57–59,61].

In Fig. 11a we take g2 = 2 and start from an ordered pair of sources. By
a rapidly changing c1 to a value of 1.2 and then back to the value 0.2, we
generate phase slips that nucleate a typical intermittent state. This intermit-
tent state persists for long times; there is no “synchronization” whatsoever.
We found that we can also first let the source develop completely, and then
introduce some phase slips; also in this case the intermittency clearly persists.
To understand this, note that in this case g2 is sufficiently large, and so εeff is
negative (see 5.3.2); although there are phase slips, the two modes suppress
each other completely.

In contrast, when g2 is lowered, εeff can become positive, and this corresponds
to the scenario described in [54]. In Fig. 11b we start from state obtained
for g2=2, and then quench g2 to a value of 1.5. In this case, εeff becomes
positive every now and then, and after a while, in the patch originally the
exclusive domain of AL, small blobs of AR mode grow. After a sufficient period
has elapsed, these blobs nucleate new sources, and the system ends up in a
stationary source/source pattern. The laminar patches in between the sources
are quite small and the intermittency disappears.

The system switches from the intermittent to the plane wave attractor when
the new sources are formed; this does not mean that the CGL equation is
incorrect here, since both plane waves and intermittent states are attractors
for these coefficients. The dissappearance of the intermittency can be easily
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understood as follows: the main mechanism by which intermittency spreads
through the single CGL equation is by the propagation of homoclinic holes
that are connected by phase slip events [61]. If the phase slips now generate
sources, there is no generation of new homoclinic holes and the intermittency
dies out.

It should be noted that for this particular choice of the coefficients c1 and c3,
the homoclinic holes have a quite deep minimum in |A|, which increases the
value of the average of εeff ; therefore one needs quite a large g2 to guarantee
the mutual suppression of the AL and AR modes.

Finally, we found that the selected wavenumber for the coefficients of this
particular example is ≈ 0.1. As a consequence, the transition to stationary
domains as observed in [54] can not occur at g2 precisely equal to 1, but
occurs for g2 ≈ 1.01 (see section 5.2).

This generation of sources due to phase slips of the nonlinear mode is not the
only way in which the intermittency can disappear. Considerer the example
shown in Fig. 11c. We have chosen the coefficients as c1 = 0.6, c3 = 1.4, c2 =
1, ε=1, s0=0.1 and g2=2. The sources select now a wavenumber of 0.3783, and
the plane wave emitted by the source simply “eats up” the intermittent state;
note the single amplitude sinks visible for late times. It should be realized
that many dynamical states are sensitive to a background wavenumber, and
that the spatio-temporal intermittent state is particularly sensitive to this
[61]; when describing a patch in the coupled CGL equations by a single CGL
equation, one should take into account that one has wave-selection at the
boundaries due to the sources.

Finally, when c2 is lowered to a value of 0, the sources themselves become
unstable and the system displays the tendency to form periodic patterns;
these are however not stable, and an example of the peculiar dynamical states
one finds is shown in Fig. 11d.

In conclusion, when one is far away from any bimodal instabilities, i.e., when
g2 is sufficiently large, a description in terms of a single CGL equation is
sufficient for the patches separating the sources, provided one takes into ac-
count the group velocity, boundary effects and, most importantly, the selected
wavenumber. It is amusing to note that the question under which conditions
a single amplitude equation is a correct description of these waves depends on
the coefficients g2 and c2 of the cross-coupling term.

5.3.4 Periodic and other states

We would like to conclude this section by showing an example of the wide
range of different states that occur in the coupled amplitude equations when
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we sweep c2. We choose the other coefficients as follows: g2=1.1, c1=0.9, c3=
2, s0 =−0.1, ε=1. Our main finding is that for large positive or negative c2,
their is no sustained dynamics, while for small c2 we find a strongly chaotic
state. In between there are at least two transitions between laminar and dis-
ordered state (see Figs. 12 and 13).

For sufficiently negative c2, all initial conditions evolve to a spatially periodic
state, with rapidly alternating AL and AR patches. We can view these states as
an example of highly nonlinear standing wave patterns. Depending on initial
conditions, these states may either be stationary or have a small drift. For our
particular choice of coefficients it is empirically found that these states are
linearly stable for c2 ≤ −0.72. In Fig. 12a we see the evolution from a slightly
perturbed initial condition for this value of c2. Qualitatively, we observe that
when the “local wavenumber” of the standing wave is lowered, this leads to
oscillations, that may or may not lead to “defects”. After some reasonably long
transient (note the perturbation at x ≈ 320, t ≈ 2600), the dynamics settles
down in a slowly drifting standing wave. This shows that these generalized
standing waves are stable here.

In Fig. 12b we start from such a coherent standing wave state and have low-
ered c2 to a value of −0.71. In this case perturbations of the waves are spon-
taneously formed, indicating a linear instability. Since the state is unstable,
these perturbations then spread to the system in a way that is reminiscent
of the intermittent patterns obtained, for instance, in experiments on inter-
mittency in Rayleigh-Bénard convection [87]. It should be noted that, due to
the instability of the laminar state, one does not have an absorbing state, so
strictly speaking this state should not be referred to as intermittent. Inter-
estingly enough, the transition between laminar and chaotic behavior seems
to be second order, i.e., we could not find any hysteresis. The transition is
simply triggered by the linear stability of the periodic/standing waves, and
when these waves are stable, they are the only type of attractor.

If c2 is further increased to a value of −0.5 (Fig. 12c), we find a state that
we might call defect-chaos of a standing wave pattern. For c2=0 (Fig. 12d),
the dynamics evolves on much faster time-scales, and no clear structures are
visible by eye.

On the other hand, when we keep increasing c2, we again find regular states,
but these ones correspond to stationary source/sink patterns. This is illus-
trated in Fig. 13, where we show four space-time plots for increasing, positive
values of c2. In comparison with the dynamics as shown in Fig. 12d, the time
scales become slower and slower when c2 is increased. This slowing down be-
comes quite clear for c2=0.8 (Fig. 13a) and c2=0.9 (Fig. 13b). For c2 = 0.95
(Fig. 13c), the dynamics becomes even more slow and regular. We clearly see
now stationary sources, with irregularly moving sinks in between. Due to the
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smallness of g2, phase slips in one of the single modes leads in some case to
the formation of new sources and sinks. When c2 is increased to a value of 1
(Fig. 13d), some slow dynamics sets in, that may or may not be a long living
transient. For values of c2 above 1.1, all initial conditions seem to evolve to a
stationary, regular source/sink pattern.

6 Outlook and open problems

In this paper we have extended the coherent structures framework and the
counting arguments to the coupled CGL equations, and obtained important
information on the dynamical states that are independent of the precise values
of the coefficients and bear experimental relevance. In general, these consider-
ations lead to the conclusion that sources are often unique, sometimes come in
pairs but in any case are at most members of a discrete set of solutions. As a
result, they are instrumental for the wavenumber selection of both regular and
chaotic patterns. Many of the instability mechanisms and dynamical regimes
of the coupled CGL equations can be understood qualitatively from this point
of view, and we have shown several examples of hitherto unexplored regimes
of persistent spatio-temporal chaotic dynamics (see Table. 1). In this closing
section, we wish to discuss some of these findings in the light of experimental
observations, and summarize the most important open theoretical problems.

6.1 Experimental Implications

In short, the experimental predictions that we make, based on our study of
the coupled CGL equations are the following :

• Multiplicity. Our analysis shows that sources are expected to come in a dis-
crete set, which would experimentally amount to a unique, stationary source.
Furthermore, this source is expected to be symmetric, in that it sends out
waves of the same wavenumber to both sides.

Sinks are non-unique. This means that one could have sinks with different
velocities present at the same time. In light of the previous remark on the
uniqueness of sources, this might prove hard to observe experimentally.

• Wavenumber selection. One important consequence of the uniqueness of
sources is that they select an asymptotic wavenumber, just as spirals do in the
2D-case. Since the traveling-wave system is quasi-one-dimensional however, we
expect the wavenumber selection to be much easier to study.

• Scaling Behavior.We have made definite predictions for the small-ε scaling of

38



the width of sources and sinks. Moreover, we predict the stationary sources to
disappear at some finite value of ε, which is the point where the non-stationary
sources take over. These sources scale as ε−1, as do the sinks.

• Instabilities and Dynamical Behavior. Apart from the non-stationary sources
that occur when ε is decreased sufficiently, we have found that there are at least
two other mechanisms leading to dynamical states. The central observation
is that the waves that are selected and sent out by the sources may become
unstable. Similar to what happens in the single CGL equation, these waves
can become convectively or absolutely unstable; the latter case in particular
yields chaotic states (section 5.1). When the cross-coupling coefficient is not
too far above one, and the selected wavenumber is unequal to zero, there is a
regime where both single and bimodal states are unstable.

6.2 Comparison of results with experimental data

Most research in the field of traveling wave systems has focussed on the prop-
erties of the single-mode states, i.e., the states where the entire experimental
cell is filled up by either the left- or the right-traveling wave. From such a
perspective, it is natural to disregard the source/sink patterns that generally
occur initially above onset as unwanted transient states. Consequently they
have not been studied as extensively as we think they deserve to be. It is the
aim of this section to confront a number of the theoretical findings of this arti-
cle with some of the experimental observations in the heated wire experiments
[29–32] and in the experiments on traveling waves in binary liquids [33–35,88–
90]. In no way do we claim this comparison to be exhaustive — the main aim
of our discussion is to show that our results put various earlier observations
in a new light, and that it should be feasible to settle various of the issues we
raise with further systematic experiments.

6.2.1 Heated Wire Experiments

When a wire which is put a distance of the order of a millimeter under the
free surface of a liquid layer is heated, traveling waves occur beyond some
critical value of the heating power [29–32]. This bifurcation towards traveling
waves turns out to be supercritical [32], and the group velocity and phase
velocity turn out to have the same sign in the experiments [29] 13 . The paper
by Vince and Dubois [32] is one of the few papers we know of that discusses
the ε-dependence of the width of sources. The authors show that the inverse
width scales linearly with the heating power Q, and associate this with a

13 Fig. 11 of [32] also illustrates quite nicely that the group velocity and phase
velocity are parallel.
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scaling of the source width as ε−1. This is correct if the value of Q at which
the source width diverges coincides with the threshold value for the linear
instability, but whether this is actually the case is unfortunately not quite clear
from the published data 14 . Formulated differently, in terms of our numerical
data shown in Fig. 4d, the question arises whether in the experiments the
approximate linear scaling of the inverse width with the heating power was
associated with that of the thick line above εsoc , or with the linear scaling ∼ ε
below εsoc . If indeed the experiments are consistent with an ε−1 scaling of the
width, then according to our analysis the sources should be (weakly) non-
stationary and prone to pinning to inhomogeneities in the cell. If the source
width diverges at a finite value of ε, this might be evidence for the existence
of the critical value εsoc . It should be of interest to investigate this further.

In [30], Dubois et al. also note that “. . .sources may be large when the sinks
are always very narrow . . .” in their heated wire experiments. This agrees with
our finding that sinks are always less wide than the sources but the published
data do not allow us to extract the scaling of the sink width with ε.

In the experiments by Alvarez et al. [29], sources were found to be stationary
and symmetric but non-unique, i.e., each source sends out the same waves to
both sides, but different sources send out different waves. As a result, patches
with different wavenumbers were found to be present in the system (at any
one time), and the sources were seen to move in response to the fact that
they were sandwiched between waves of different frequency. We have already
seen in section 3.3 that there are certain regions of parameter space where
there were two different sources present at the same time (for one of them, the
linear group velocity s0 and nonlinear group velocity s had opposite signs).
However, the fact that we can have various discrete source solutions can not
explain the experimental observations. First of all, in our simulations two of
such sources were separated by a sink-type structure in one single mode patch,
not by a sink separating two oppositely traveling waves, as in the experiments.
Secondly, in the experiments there were always slight differences between any
two pair of sources, which appears inconsistent with the existence of a finite
number of discrete source solutions.

It appears likely to us that the occurrence of slight differences between dif-
ferent sources results from the fact that there are always some impurities or
inhomogeneities present in any experimental setup. Very much like the spirals
and target patterns one encounters in the 2D CGL equation [91], coherent

14 In the experiments shown in Fig. 10 of [32], the source width diverged at Q ≈ 4.2
Watts. Unfortunately, the distance h between the wire and the fluid surface is not
given for the data shown. All other measurements in the paper are made at h = 1.34
mm and h = 1.97 mm, and these values correspond to Qc ≈ 2.5 Watts and Qc ≈ 2
Watts.
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structures might well be pinned to such imperfections 15 . This would of course
not invalidate the results of the counting arguments for the homogeneous case,
as it is precisely on the basis of this counting argument that one would expect
the properties of the discrete source solution(s) to depend sensitively on the
local parameter values.

The sinks which in the experiments of [29] were sandwiched between two
patches with different wavenumbers, were found to move according to what
was referred to as a “phase matching rule”: during the motion, a constant
phase difference is maintained across the sink profile, so that no phase slip
events occur. This commonly occurs for sinks in the single CGL equation, and
Fig. 3 provides an example of this, but there is one important difference here:
sinks in the experiments separate two oppositely traveling waves, so phase
matching in the actual experiments involves the fast scales represented by the
critical wavelength qc of the pattern at onset. In the amplitude approach all
information about this qc is lost since we eliminated the fast scales and only
consider the difference between the actual wavenumber q of the pattern and
this qc. At least in the experiments of [29] the coupling between the fast and
the slow scales is important. These so-called non-adiabatic effects [81] will be
the object of further study. Experimentally, it is not clear whether the “phase
matching rule” was a peculiarity of [29], or whether it holds quite generally.

As we have seen in this paper, the wavenumber selection by sources entails
various scenarios for instabilities and chaotic dynamics in the single-mode
patches that are separated by sources and sinks. In the experiments, there
are regimes in parameter space where the dynamics is reminiscent of what
one expects when the mode selected by the sources becomes convectively or
absolutely unstable. Whether the data are consistent with this scenario has
remained unexplored, however.

We finally note that it has recently become apparent that traveling waves
in convection cells with a free surface which are heated from the side [92–
94], are intimately related to those occurring in the heated wire experiments
[36]. Sources and sinks have also been observed in such experiments, but a
systematic study of some of the issues we raise does not appear to have been
undertaken yet. Clearly, both the heated wire experiments and this system
appear to be very suitable setups to study the dynamics of sources and sinks;
in addition, both do show rich dynamical behavior.

15 An example of how sources can be pinned near cell boundaries below εsoc is dis-
cussed in [48].
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6.2.2 Binary mixtures

One of the best studied experimental traveling wave systems is binary fluid
convection [33–35,89,90]. Since the bifurcation in this case has been shown
to be weakly subcritical [20], the description of the behavior in this system
is strictly speaking beyond the scope of the coupled CGL equations we con-
sider. A brief discussion is nevertheless warranted, not only because some of
the behavior of sources and sinks is quite generic, in that it does not strongly
depend on the underlying bifurcation structure (e.g., sources still form a dis-
crete set according to the counting arguments), but also because the additional
complications of the binary mixture convection experiments are an interesting
subject for future study.

Kaplan and Steinberg have shown that the transition from localized traveling
wave patterns (pulses) to extended traveling waves is essentially governed
by the convective instability of the edges of the pulses [37] 16 . The fact that
the relevant front velocity is given by linear marginal stability arguments,
suggests that the subcritical character of the bifurcation is not very strong
here. On the other hand, the nonadiabatic effects, such as locking, observed
in [38], point in the other direction, namely that the subcritical nature of the
transition is rather strong. Hence, the importance of the subcritical effects in
these experiments can not be trivially established.

Kolodner [34] has observed a wide variety of source/sink behavior. In some
cases, there appears to be a stable source/sink pair where the sink is clearly
wider than the source. This of course contradicts what we typically find (except
close to the relaxational limit — see section 4.4). This may have to do with
the subcritical nature of the bifurcation, but one should also keep in mind that
in other cases there is evidence that such behavior could still be a transient,
because there are still phase slip events occurring. E.g., Fig. 5 of [34] shows a
notable example of a case in which the sink is initially wider than the source,
but in which a process clearly involving the fast scales narrows it down, so
that in the end it smaller than the source.

Another interesting state that is encountered in the experiments are drifting
source/sink patterns (see, e.g., Fig. 7 of [34]). The sources here move slowly but
with a constant velocity, and are non-symmetric in that the wavenumbers on
either side are different. However, there is again a one-to-one correspondence
between the drift velocity and the difference in wavenumbers. In [34], this is
referred to this process as “Doppler shifting”, to indicate that in the frame
co-moving with it, the drifting source sends out waves with the same frequency
to the left and the right. This is completely equivalent to the “phase matching
rule” of [29]. When such a moving source is present, the sinks are also found

16 This is similar to the behavior of sources near εsoc (section 1.2.2).
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to obey the phase matching rule and so they move with exactly the same
drift velocity as the sources. Clearly, it is still the source that selects the wave
number and hence plays the active role here — as usual, the sink motion is
essentially determined by the properties of the waves that come in. A priori,
one could imagine that the sources and sinks in the binary fluid experiments
are more prone towards obeying the phase matching rule due to the subcritical
nature of the bifurcations to traveling waves, but one can find various examples
in the experiments where they do not obey this rule. Obviously, this question
deserves further study.

The fact that Kolodner [34] observes in his Fig. 7 a steadily moving source is
not necesarily in contradiction with our counting arguments, as these do allow
for the existence of a discrete set of v 6= 0 sources. In practice, however, for a
proper analysis of such source solutions in the binary fluid experiments it is
probably necessary to include the coupling to the slow concentration field, as
in the work of Riecke and coworkers on traveling pulse solutions [16,95,96].

Although several of the experiments of Kolodner have been done at very small
values of ε, there is no visible evidence of the divergence of the width of any
of the sources and sinks. Presumably, this is due to the subcritical nature of
the bifurcation — in section 4.2 we already argued that in this case the width
of neither the sources nor the sinks need to diverge as ε → 0.

In passing, we note that, quite impressively, Kolodner has also been able to
extract the spatial amplitude profiles of his sources and sinks (Figs. 8, 18 and
21 of [34]). These agree remarkably well with the profiles we obtained nu-
merically using the shooting method described earlier. Even the characteristic
overshoots of the amplitudes near the edges of sinks are clearly observable in
all cases.

In conclusion, although a detailed comparison between the sources and sinks in
binary fluid experiments and those analyzed theoretically here, is not justified,
many qualitative features (multiplicity, wavenumber selection, etc.) are quite
similar. We expect that the ε dependence of the width of these structures is
very different in the two cases, due to the subcritical nature of the bifurcation
in binary mixtures and due to the coupling to the slow concentration field. The
latter effect probably also plays an important role in the drift of the sources.

6.3 Open problems

In spite of the fact that we have been able to map out many of the various
possible static and dynamical properties of sources and sinks, there remains a
large number of theoretical issues and open problems which need to be studied
in further detail. This section briefly lists the ones we consider most important.
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• Phase matching. The absence of the coupling of the phases across a mov-
ing sink appears to be one of the main short comings of the coupled CGL
equations.

For the single mode CGL equation, the velocity of sinks is determined in terms
of the two wavenumbers qN1

and qN2
of the incoming modes, without solving

for the structure of the sinks: v = (c1+c3)(qN1
+qN2

) [62]. This follows directly
from the requirement that in the frame moving with the sink, the frequencies
to the left and the right of the sink should be equal. Phase slips occur when
these frequencies are unequal, and in that case the sink is not a “coherent
structure” (i.e., it has a time-dependent spatial profile).

For the sinks in the coupled CGL equations (2,3) that we have studied here, the
velocity of a moving sink can not be simply given in terms of the wavenumbers
of the incoming waves — the velocity is determined implicitly by the solution
of the ODE’s (12-15). The frequencies to the left and to the right of sinks corre-
spond to two different modes, and the coupling between these modes depends
only on their amplitudes, not on their phase. Moreover, the phase matching
as observed empirically in the experiments [29] clearly involves the fast scale
that has been eliminated to obtain the amplitude equations; therefore, such
rule can never be implemented in the standard coupled CGL Eqs. (2,3) [29].

The phase matching as observed in the experiments is clearly a non-adiabatic
effect as it involves both the fast and the slow scales. Can this non-adiabatic
effect be studied perturbatively, as in [81]? As pointed out to us by Newell,
the experimental phase matching appears to be the analogue in space-time
of what happens at grain boundaries in the phase equations in the nonlinear
regime [3]. Does this analogy open up a route towards analyzing this effect?

• Multiplicities. In our counting analysis, we have focussed on the regime
where |v|<s0, and in particular on the case v=0. From the results detailed in
the appendix, it follows that the flow structure near the fixed points changes
when |v| > s0; this implies that the counting arguments allow for rapidly
moving source and sinks solutions with different multiplicities. We do not know
whether such solutions actually exist. We have not studied this possibility (nor
the one associated with changes of the fixed point structure related to the
critical velocity vcN) in detail, as we have neither found such coherent structure
solutions of the ODE’s, nor observed any of them in numerical simulations of
the coupled CGL equations.

• Coherent structures. When g2 is large enough, single amplitude coherent
structures such as sources, sinks and homoclinic holes are often exact solutions
of the coupled CGL equations. One of the modes corresponds then to the
coherent structure, the other mode is zero. To see this, note that solutions of
the single CGL equation have often a minimum amplitude am which is nonzero.
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As long as εeff = ε − g2a
2
m remains negative for the zero mode, this mode is

suppressed. A detailed analysis of the behavior of such coherent structures as
g2 is reduced and the other mode becomes active, remains to be done.

The closely bound source/sink pairs, as shown in Fig. 7a can be seen as a
“new” coherent structure of the coupled CGL equations. We note that from a
counting point of view, such source-sink pairs typically correspond to homo-
clinic orbits, since they often connect the same plane wave state to the left
and the right. Irrespective of the details of the structure of the corresponding
fixed point, one needs to satisfy in general one condition to obtain such a ho-
moclinic orbit (One can see this easily as follows. Suppose the fixed point has
a n-dimensional outgoing manifold. This yields n− 1 degrees of freedom and
n conditions, so in general one parameter needs to be tuned to obtain a homo-
clinic orbit). Since we have three free parameters, this yields a two-parameter
family of such sink-source pairs

It would be interesting to investigate whether these homoclinic structures
are connected to the homoclinic holes, analyzed recently for the single CGL
equation [61]. It is conceivable that upon lowering g2, the suppressed mode
will mix in below some particular value of g2, so that a homoclinic holes can
be deformed to coupled sink-source pairs.

A related issue is the study of the cross-over from an array of sources and sinks
to an (almost) periodically modulated amplitude pattern of the type seen in
Fig. 12 and by Sakaguchi [53].

• Phase-space and dynamical arguments. In section 4.2, the existence of a spe-
cial value εsoc was obtained from what was essentially a dynamical argument.
At this value of ε, the width of stationary sources, as determined by the set of
ODE’s (12-15), was found to diverge. What is the precise connection between
the phase-space structure of the ODE’s and the dynamical argument? This
question is related to that which arises in the study of nonlinear global modes
, and it is quite possible that the analysis of [80] can be extended to sources
as well.

• Stability. A full stability analysis of sources and sinks would be welcome, as
most of our discussion on their stability is based on intuitive arguments. Such
an analysis might well detect the existence of additional instability mechanisms
associated with the existence of discrete core modes in much the same way as
happened for pulses [76].

• Breathing. In section 4.2, we noted that interactions between local struc-
tures and fronts often give rise to an oscillatory or “breathing” type of dy-
namics [78,95]. The mechanism through which this happens remain largely
unexplored, however.
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Coullet et al. [44] briefly mention that below εsoc , sources are very sensitive
to noise. We found that the average width of the breathing sources depends
weakly on the strength of the noise, but have not investigated this issue in
detail. The dependence on the noise should be clarified further.

Finally, after a long transient, the non stationary sources below εsoc seem to
be only very weakly time-dependent, and in some sense ”near” a stationary
source solution. Can this idea be made more precise?

• Pinning and interactions. Partly to explain the experimental observation of
Alvarez et al. [29], we have conjectured that sources can be pinned to slight
inhomogeneities, and that if they do, the selected wavenumber will vary with
the local inhomogeneity. Moreover, stationary sources are then expected to
exist below εsoc of the homogeneous system, in much the same way as boundary
conditions can give rise to the existence of stable stationary sources below εsoc
[48]. Again, a back-up of these conjectures is called for.

As some of our simulations indicate (see Fig. 14), when sources and sinks get
close to each other, they attract and eventually coalesce (or form a pair) in
some characteristic fashion. Can this attraction be understood perturbatively?

• Bimodal chaos. One of our key observations is that the wavenumber selection
induced by the sources allows for a bimodal instability for g2 just above 1. For
g2 just below 1, similar behavior can be found [86]. The chaotic dynamics in
these regimes involves the competition between the two modes in an essential
way, and apart from [54,86], a detailed analysis of the dynamics here is lacking.

• Subcritical bifurcations. To what extent can our arguments be extended to
the case of a weakly subcritical bifurcation? As we discussed in section 6.2.2,
this issue is of relevance to the experiments on binary mixtures.

Finally, we stress that in most cases we have only shown examples of the
possible types of behavior. A more systematic mapping out of the phase-space
of the coupled CGL equations (2-3) may very well lead to additional surprises.
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A Coherent structures framework for the single CGL equation

A.1 The flow equations

In this appendix, we lay the groundwork for our analysis of the coupled equa-
tions by summarizing and simplifying the main ingredients of the analysis of
[62] of the single CGL equation

∂tA = εA+ (1 + ic1)∂
2
xA− (1− ic3)|A|2A . (A.1)

Note that if a single mode is present, the coupled equations reduce to a single
CGL written in the frame moving with the linear group velocity of this mode,
not in the stationary frame.

As in Eqs. (11), a coherent structure is defined as a solution whose time
dependence amounts, apart from an overall time-dependent phase factor, to a
uniform translation in time with velocity v:

A(x, t) := e−iωtÂ(x− vt) = e−iωtÂ(ξ) . (A.2)

Note that if the coherent structure approaches asymptotically a plane wave
state for ξ → ∞ or for ξ → −∞, the phase velocity of these waves would
equal the propagation velocity of the coherent structures if ω would be 0.
When ω 6= 0, these two velocities differ.

For solutions of the form (A.2), ∂t = −iω − v∂ξ, so when we substitute the
Ansatz (A.2) into the single CGL equation (A.1), we obtain the following
ODE:

(−iω − v∂ξ)Â = εÂ+ (1 + ic1)∂
2
ξ Â− (1− ic3)|Â|2Â . (A.3)

Solutions of this ODE correspond to coherent structures of the CGL equation
(A.1) and vice-versa [62].

To analyze the orbits of the ODE (A.3), it is useful to rewrite it as a set of
coupled first order ODE’s. To do so, it is convenient to write A in terms of its
amplitude and phase

Â(ξ) := a(ξ)eiφ(ξ) , (A.4)
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where a and φ are real-valued. Substituting the representation (A.4) into the
ODE (A.3) yields, after some trivial algebra

∂ξa = κa , ∂ξκ = K(a, q, κ) , ∂ξq = Q(a, q, κ) , (A.5)

where q and κ are defined as

q := ∂ξφ, κ := (1/a)∂ξa . (A.6)

The fact that there is no fourth equation is due to the fact that the CGL
equation is invariant under a uniform change of the phase of A, so that φ
itself does not enter in the equations. The functions K and Q are given by [62]

K :=
1

1 + c21

[

c1(−ω − vq)− ε− vκ+ (1− c1c3)a
2
]

+ q2 − κ2 , (A.7)

Q :=
1

1 + c21

[

(−ω − vq) + c1(vκ+ ε)− (c1 + c3)a
2
]

− 2κq . (A.8)

At first sight it may appear somewhat puzzling that we write the equations
in a form containing κ= ∂ξ ln a instead of simply ∂ξa. One advantage is that
it allows us to distinguish more clearly between various structures whose am-
plitudes vanish exponentially as ξ → ±∞ — these are then still distinguished
by different values of κ. Secondly, the choice of κ in favor or ∂ξa allow us to
combine κ and q as the real and imaginary part of the logarithmic derivative
of Â: we can rewrite (A.5) and (A.5) more compactly as

∂ξz = −z2 +
1

1 + ic1

[

−ε− iω + (1− ic3)a
2 − vz

]

. (A.9)

where z :=∂ξ ln(Â)=κ+ iq.

The fixed points of the ODE’s have, according to (A.5), either a=0 or κ=0.
The values of q and κ for the a = 0 fixed points are related through the
dispersion relation of the linearized equation, or, what amounts to the same,
by the equation obtained by setting the right hand side of (A.9) equal to zero
and taking a= 0. Following [62] we will refer to these fixed points as linear
fixed points. We will denote them by L±, where the index indicates the sign
of κ. This means that the behavior near an L+ fixed point corresponds to
a situation in which the amplitude is growing away from zero to the right,
while the behavior near an L− fixed point describes the situation in which the
amplitude a decays to zero.

Since a fixed point with a 6= 0, κ=0 corresponds to nonlinear traveling waves,
the corresponding fixed points are refered to as nonlinear fixed points [62]. We

49



denote these by N±, where the index now indicates the sign of the nonlinear
group velocity s of the corresponding traveling wave [62]. Thus, since the index
of N denotes the sign of the group velocity, the amplitude near an N+ fixed
point can either grow (κ > 0) or decay (κ < 0) with increasing ξ.

The coherent structures correspond to orbits which go from one of the fixed
points to another one or back to the original one, and the counting analysis
amounts to establishing the dimensions of the in- and outgoing manifolds
of these fixed points. In combination with the number of free parameters
(in this case v and ω), this yields the multiplicity of orbits connecting these
fixed points, and therefore of the multiplicity of the corresponding coherent
structures.

A.2 Fixed points and linear flow equations in their neighborhood

Since there are three flow equations (A.5), there are three eigenvalues of the
linear flow near each fixed point. When we perform the counting analysis for
these fixed points we will only need the signs of the real parts of the three
eigenvalues, since these determine whether the flow along the corresponding
eigendirection is inwards (−) or outwards (+). We will denote the signs by
pluses and minuses, so that L−(+,+,−) denotes an L− fixed point with two
eigenvalues which have a positive real part, and one which has a negative real
part.

From Eqs. (A.5) and (A.9), we obtain as fixed point equations

aκ = 0 , (1 + ic1)z
2 + vz + ε+ iω − (1 + ic3)a

2 = 0 , (A.10)

where z :=κ+ iq. From (A.10) we immediately obtain that fixed points either
have a=0 (linear fixed points denoted as L) or a 6= 0, κ=0 (nonlinear fixed
points denoted as N). Defining ṽ :=v/(1+c21) and ã :=a/(1+c21), the derivative
of the flow (A.5) is given by the matrix:

DF =















κ a 0

2ã(1− c1c3) −2κ− ṽ 2q − c1ṽ

−2ã(c1 + c3) −2q + c1ṽ −2κ− ṽ















. (A.11)

Solving the fixed point equations (A.10,A.10) and calculating the eigenvalues
of the matrix DF (A.11) yields the dimensions of the incoming and outgoing
manifolds of these fixed points. Note that according to our convention, a fixed
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point with a two-dimensional outgoing and one-dimensional ingoing manifold
is denoted as (+,+,−).

We can restrict the calculations to the case of positive v, since the case of
negative v can be found by the left-right symmetry operation: ξ → −ξ, v →
−v, z → −z.

A.3 The linear fixed points

For the linear fixed points a = 0, and from (A.10) we obtain as fixed-point
equation:

(1 + ic1)z
2 + vz + ε+ iω = 0 , (A.12)

which has as solutions

z =
−v ±

√

v2 − 4(1 + ic1)(ε+ iω)

2(1 + ic1))
. (A.13)

The linear fixed points come as a pair, and the left-right symmetry implies
that for v=0, the eigenvalues of these fixed points are opposite.

At these fixed points, the eigenvalues are given by

κ or − ṽ − 2κ± i(c1ṽ − 2q) . (A.14)

To establish the signs of the real parts of the eigenvalues, we need to determine
the signs of κ and −ṽ − 2κ.

Let us first establish the signs of κ; this is important in establishing whether
the evanescent wave decays to the left (L+) or to the right (L−). For v = 0,
the equation (A.12) is purely quadratic, and so its solutions come in pairs
±(κ + iq). By expanding the square-root (A.14) for large v one obtains that
in this case κ =−v or κ =−ε/v; for large v, both κ’s are negative. Solving
equation (A.12) we find that κ changes sign when

q = ±√
ε , v =

c1ε− ω√
ε

. (A.15)

For ε < 0, these equations have no solutions, and in that case there always is
a L− and a L+ fixed point. For ε > 0 and v < (c1ε−ω)/

√
ε there also is a L−

and a L+ fixed point; for large v, there are two L− fixed points.
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To determine the sign of −ṽ−2κ note that from the solution (A.13), we obtain
that κ=−ṽ/2± Re(

√
. . ./ . . .). After some trivial rearranging this yields that

−ṽ − 2κ has opposite sign for the pair of L fixed points; when one of them
has two +’s, the other has two −’s.

In the case that we have a L+ and a L− fixed point the counting is as follows.
For the L+ fixed point, −ṽ − 2κ is negative since both v and κ are positive,
and the eigenvalue structure is then (+,−,−). The L− fixed point then has
one negative eigenvalue κ, and two positive eigenvalues coming from the −ṽ−
2κ. For large v, both κ′s are negative, and we obtain a L−(+,+,−) and a
L−(+,−,−) fixed point.

In summary, then, the counting for the linear fixed points is as follows:

ε < 0 all v : L−(+,+,−) L+(+,−,−) ,

ε > 0



























v < −vcL : L+(+,−,−) L+(+,+,+) ,

|v| < vcL : L−(+,+,−) L+(+,−,−) ,

v > vcL : L−(+,+,−) L−(−,−,−) ,

(A.16)

where vcL = |c1ε− ω|/√ε.

A.4 The nonlinear fixed points

The analysis of the nonlinear fixed points goes along the same lines. Since the
nonlinear fixed point has κ=0, z= iq, the fixed point equations become:

a2 = ε− q2 , q2(c1 + c3)− vq − ω − c3ε = 0 . (A.17)

which yields

q =
v ±

√

v2 + 4(ω + c3ε)(c1 + c3)

2(c1 + c3)
. (A.18)

So the nonlinear fixed points come as a pair.

To obtain the eigenvalues, we substitute κ=0 in the (A.11) and obtain as a
secular equation:

(1 + c21)λ
3 + 2vλ2+

[

2a2(c1c3 − 1) + 4q2(1 + c21)− 4c1qv + v2
]

λ+
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[

4a2(c1 + c3)q − 2a2v
]

= 0 . (A.19)

We only need to know the number of solution of the secular equation that
have positive real part, and instead of solving the equation explicitly, we can
proceed as follows.

For a we cubic equation of the form

p3λ
3 + p2λ

2 + p1λ
1 + p0 , (A.20)

where p3 > 0, we may read off the signs of the real parts of the solution to
this equation from the following table [62]:

p0> 0







p2 > 0, p1p2 > p0p3 : (−,−,−) (case i) ,

else: (+,+,−) (case ii) ,

p0< 0







p2 < 0, p1p2 < p0p3 : (+,+,+) (case iii) ,

else: (+,−,−) (case iv) .
(A.21)

According to these rules, there are three combinations of the coefficients that
we need to now the sign of, being

p0=4a2q(c1 + c3)− 2a2v , (A.22)

p2=2v , (A.23)

p1p2 − p0p3=−(1 + c21)
[

4a2(c1 + c3)q − 2a2v
]

+2v
[

2a2 (c1c3 − 1) + 4q2(1 + c21)− 4c1qv + v2 ] . (A.24)

As before, we will take v > 0, which makes p2 > 0.

The sign of p0 is equal to the sign of 2q(c1 + c3) − v, which according to
Eq. (A.18) is either ±√

. . .. The group velocity ∂qω of the the plane waves
corresponding to the N fixed points is found from (A.17) to be 2q(c1+ c3)−v,
which can be rewritten as p0/(2a

2). So, we always have one N− fixed point
with p0 < 0 and one N+ fixed point with p0 > 0.

When p0 < 0, since p2 is positive, the fixed point is N−(+,−,−) (case (iv)).
When p0 > 0, the eigenvalues depend on the sign of p1p2 − p0p3; when it is
positive the eigenvalues are (−,−,−), when it is negative, the eigenvalues are
(+,+,−). Defining vcN as the value of |v| where p1p2 − p0p3 changes sign, we
obtain for the nonlinear fixed points:
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v < −vcN : N−(+,+,+) and N+(+,+,−) ,

|v| < vcN : N−(+,−,−) and N+(+,+,−) ,

v > vcN : N−(+,−,−) and N+(−,−,−) .

(A.25)

Eqs. (A.16) and (A.25) express the dimensions of the stable and unstable
manifolds of the fixed points of the single CGL equation, and these are the
basis for the counting arguments for coherent structures in this equation [62].
We now turn to the extension of these results to the coupled CGL equations.

B Detailed counting for the coupled CGL equations

B.1 General considerations

While the counting for the coupled CGL equations follows unambiguously
from that for the single CGL, there are various nontrivial subtleties in the
extension of those results to the coupled CGL equations that require careful
discussion.

Suppose we want to perform the counting for the aL =0, κR =0 fixed point,
which corresponds to the case in which only a right-traveling wave is present.
The fixed point equations that follow from (15) are, up to a change of v →
v − s0, equal to the fixed point equation for the nonlinear fixed points of the
single CGL equation, and can be solved accordingly. To solve the fixed point
equations that follow from (13), note that aR is a constant at the fixed point
and so the term −g2(1−ic2)a

2
R can be absorbed in the −ε−iωL term. Since we

may choose ωL freely, for the counting analysis we can forget about the ig2c2a
2
R

as we may think of it as having been absorbed into the frequency. The sign of
εLeff, defined in (18) to be εLeff=ε− g2a

2
R will, however, be important. Likewise,

at the other fixed point where aR=κL=0 the effective ε is εReff=ε− g2a
2
L.

Since the fixed points we are interested in for sources and sinks always have
either aL = 0 or aR = 0, the linearization around them largely parallels the
analysis of the single CGL equation. For, when we linearize about the aL=0
fixed point, we do not have to take into account the variation of aR in the
coupling term and this allows us, for the counting argument, to absorb these
terms into an effective ε and redefined ω as discussed above. Once this is
done, the linear equations for the mode whose amplitude a vanishes at the
fixed point do not involve the other mode variables at all. As a result, the
matrix of coefficients of the linearized equations has a block structure, and
most of the results follow directly from those of the single CGL equation. We
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will below demonstrate this explicitly, using a symbolic notation for various
terms whose precise expression we do not need explicitly.

If we consider the 6 variables aL, κL, qL, aR, κR and qR as the elements of
a vector w, and linearize the flow equations (A.5) about a fixed point where
one of the modes is nonzero, we can write the linearized equations in the form
ẇi=

∑

j Mijwj, where the 6×6 matrix M has the structure

M =



































κL aL 0 0 0 0

”aL” X X ”aR” 0 0

”aL” X X ”aR” 0 0

0 0 0 κR aR 0

”aL” 0 0 ”aR” X X

”aL” 0 0 ”aR” X X



































. (B.1)

In this expression, all quantities assume their fixed point values. Furthermore,
”aR” and ”aL” represent terms that are linear in aR or aL, and the X stand
for longer expressions that we do not need at the moment. At the fixed points,
either aR or aL is zero, so either the upper-right block is identical to zero, or
the lower-left block is zero. In either case, the eigenvalues are simply given by
the eigenvalues of the upper-left and lower-right block-matrices. This implies
that for each of the 3×3 blocks, we can use the results of the counting for a
single CGL equation, provided we take into account that v and ε should be
replaced by v ± s0 and εLeff or εReff at the appropriate places!

As discussed in appendix A, the fixed point structure of the single CGL de-
pends on two “critical” velocities, vcL and vcN , In general, these are different
for the two fixed points which the orbit connects, so there is in principle a
large number of possible regimes, each with their own combination of eigen-
value structures at the fixed points. An exhaustive list of all possibilities can
be given, but it does not appear to be worthwhile to do so here. For, many of
the exceptional cases occur for large values of the propagation velocity v and
the relevance of the results for these solutions of the coupled CGL equations
is questionable — after all, as we explained before, the counting can at most
only demonstrate that certain solutions might be possible in some of these
presumably somewhat extreme ranges of parameter values, but they by no
means prove the existence of such solutions or their stability or dynamical
relevance. Indeed, as discussed in section 4.2, for small ε the sources are in-
trinsically dynamical and are not given by the coherent sources as obtained
from the ODE’s (12-15).

For these reasons, our discussion will be guided by the following observations.
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The sinks and sources observed in the heated wire experiments have velocities
that are smaller that the group velocity [29] 17 ; this also seems to hold for other
typical experiments with finite linear group velocity s0. This motivates us to
start the discussion by investigating the regime that the velocity v is smaller
than the linear group velocity, |v| < s0. The sources are now as sketched in Fig.
1a and the sinks are as in Fig. 1c; this restriction already leads to a tremendous
simplification. Furthermore, we are especially interested in the case that the
two modes suppress each other sufficiently that the effective ε of the mode
which is suppressed is negative, i.e., ε

L/R
eff < 0. This requirement is certainly

fulfilled for sufficiently strong cross-coupling. The technical simplification of
taking ε

L/R
eff < 0 is that in this case the structure of the linear fixed points

is completely independent of the parameters v and ω — see Eq. (A.16). It
should be noted, however, that in section 5.2 we will encounter source/sink
patterns where εeff is positive; these patterns are chaotic. Also, the anomalous
sources and sinks, mentioned at the end of section 3.1, can in some parameter
ranges defy the general rules obtained here (see section B.7 of this appendix).
Furthermore, in section B.6 we will discuss the cases s0 < 2q(c1 + c3) (i.e.,
sources and sinks corresponding to those of Fig. 1b and d), and the s0 = 0
limit.

B.2 Multiplicities of sources and sinks

We will first perform the analysis starting with the restrictions given above.
From Fig. 1 we can read off the building blocks of sources and sinks. are. We
refer to the fixed point corresponding to x → −∞(∞) as fixed point 1 (2).
In the coupled CGL equation case, we refer to the total group velocity of the
nonlinear waves, which is given by 2q(c1+c3)+v±s0 [see Eqs. (9), (10)]; since
by the substitution v → v ± s0 we absorb the s0 in the v, the indexes of the
N− and N+ fixed points correspond to the nonlinear group velocities in the co-
moving frame of the coherent structures. For sinks of the type sketched in Fig.
1c, AL=0 for large negative x and AR=0 for large positive x. Consequently,
the flow is

from











N+ (v − s0)

L+ (v + s0)
to











L− (v − s0)

N− (v + s0)
. (B.2)

17 In the experiments of [29], it was estimated from the data that s0 ≈ vph/3, where
vph is the phase velocity, while typical sinks had a velocity v which could be as small
as vph/50.
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For sources of the type sketched in Fig. 1a, AR = 0 for large negative x and
AL=0 for large positive x. Consequently, the flow is

from











N− (v + s0)

L+ (v − s0)
to











L− (v + s0)

N+ (v − s0)
. (B.3)

As in appendix A, we will denote the real parts of the three eigenvalues of the
fixed points by a string of plus or minus signs; e.g. (+,−,−).

For εeff <0 and arbitrary velocities, we obtain for the L fixed points (see Eqs.
(A.16)):

L−(+,+,−) , L+(+,−,−) . (B.4)

For now we assume that |v| < s0, v − s0 < 0 and v + s0 > 0. This yields,
according to (A.25) for the N fixed points:

N−(+,−,−) , N+(+,+,−) . (B.5)

For sources we find that the combined (N−, L+) fixed point 1 has a two-
dimensional outgoing manifold, which yields one free parameter. We can think
of this parameter as a coordinate parameterizing the “directions” on the un-
stable manifold 18 . Now, the only other freedom we have for the trajectories
out of fixed point 1 is associated with the freedom to view v, ωL and ωR as
parameters in the flow equations that we can freely vary. This yields a total
of four free parameters. Fixed point 2 (a (N+, L−) combination) has, accord-
ing to Eqs. (B.3-B.5), a four-dimensional outgoing manifold. An orbit starting
from fixed point 1 has to be “perpendicular” to this manifold in order to flow
to fixed point 2; this yields four conditions. Assuming that these conditions
can be obeyed for some values of the free parameters, it is clear that as long
as there are no accidental degeneracies, we expect that there is at most only
a discrete set of solutions possible — in other words, solutions will be found
for sets of isolated values of the angle, v, ωL and ωR. One refers to this as a
discrete set of sources.

When we fix v=0, there is the following symmetry that we have to take into
account: ξ → −ξ, zL ↔ −zR, aL ↔ aR. Furthermore, this left-right symmetry
yields that we should take ωL = ωR, so, in comparison to the general case,
we have two free parameters less. When the outgoing manifold of fixed point

18 Note that a one-dimensional manifold yields no free parameters other than the
one associated with the trivial translation symmetry of the solution, and, in general,
a p-dimensional outgoing manifold yields p− 1 nontrivial free parameters
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1 intersects the hyper-plane zL = −zR, aL = aR, this yields, by symmetry,
a heteroclinic orbit to fixed point 2. Therefore we only need to intersect the
hyper-plane to obtain a heteroclinic orbit, which yields two conditions (instead
of four in the general case). For the sources we have now two conditions and
two free parameters; and this yields a discrete set of v = 0 sources. In other
words, within the discrete set of sources we generically expect there to be a
v=0 source solution.

For a sink we obtain, combining (B.2, B.4) and (B.5), that fixed point 1
(a (N+, L+) combination) has a three-dimensional outgoing manifold, which
yields two free parameters, while fixed point 2 (a (N−, L−) combination) has
a three-dimensional outgoing manifold, which yields three conditions to be
satisfied. Together with the three free parameters v, ωL and ωR, this yields a
two-parameter family of sinks.

B.3 The role of ε

When discussing the counting for the single CGL equation, the value of ε is
uniquely determined. In the coupled equations however, one needs to work
with the effective value of ε when studying the linear fixed points, since the
growth of the linear modes are determined by renormalized values of ε which
are given by εeff ,L = ε − g2a

2
R, εeff ,R = ε − g2a

2
L for the left- and right-

traveling modes respectively [see Eq. (18)]. While the inclusion of the sign
structure of the linear fixed points for positive values of ε may have seemed
somewhat superfluous for the single CGL equation, in the case of the coupled
equations this is relevant. In the analysis in sections B.4–B.6 we assume that
both effective values of ε are negative. Some comments on the counting for
positive values of εeff are given in section B.7.

B.4 The role of the coherent structure velocity v

In the counting for the single CGL equation, we were able to remove the group
velocity term ∼ s0 by means of a Galilean transformation to the comoving
frame. In the coupled equations this is not possible, however, and we need to
incorporate the s0-terms when studying the fixed point structure.

In particular, when translating the result for the single CGL into coupled CGL
variables, we need to make the following replacements where v is concerned

For the aR mode : v → v − s0 ≡ vR , (B.6)

For the aL mode : v → v + s0 ≡ vL . (B.7)
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Just like the possible occurrence of positive values of ε could possibly affect
the linear fixed points, this may well affect the nonlinear fixed points. In the
single CGL equation we were allowed to take v ≥ 0, but we can no longer do
this in the coupled case. Let us focus on the case v = 0, i.e, consider stationary
coherent structures. Since s0 is by definition positive, the aL mode has vL =
s0 > 0, while the aR has vR = −s0 < 0. The statement that we can alway take
v > 0 therefore no longer holds here, and we need to exercise caution when
evaluating the nonlinear fixed points as well. In particular, moving sources
(v > 0) with |vR| > vcN or vL > vcN can have different multiplicities than the
stationary one with v = 0.

In the formulas for the counting, one should keep in mind that the linear group
velocities have opposite signs for the left- and right moving modes: this is also
apparent from Eqs. (9,10), where we defined s0,R=s0=−s0,L, so that we may
write the nonlinear group velocities as

sR = s0,R + 2qR(c1 + c3) , sL = s0,L + 2qL(c1 + c3) . (B.8)

B.5 Normal sources always come in discrete sets

In this section, we show that it is not possible for normal stationary sources,
i.e., sources whose s and s0 have the same sign, and for whom εeff < 0 for the
linear modes, to come in families. The flow for a normal source is

from











AL : N− (v + s0)

AR : L+ (v − s0)
to











AL : L− (v + s0)

AR : N+ (v − s0)
. (B.9)

According to the counting, we have for the N−(v + s0) fixed point on the left
that (we take v = 0)

p0=4a2LqL(c1 + c3)− 2a2LvL = 2a2L[−s0 + 2qL(c1 + c3)] ,

=2a2LsL < 0 , (B.10)

because for a normal source sL has the same sign as s0,L. Furthermore we have

p2 = 2vL = 2s0 > 0 . (B.11)

This implies, according to Eq. (A.21), that the sign structure of the left fixed
point is a (N−(+,−,−), L+(+,−,−)) combination, independent of the se-
lected wavenumber of the nonlinear mode and the sign of the combination
p1p2 − p0p3. The dimension of the outgoing manifold is therefore always equal
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to 2, yielding one free parameter. For the right fixed point, a completely similar
argument yields an (N+(+,+,−), L−(+,+,−)) fixed point, again independent
of the selected wavenumber or sgn[p1p2 − p0p3]. We therefore have to satisfy
4 conditions at this fixed point.

Combining this with the free parameters we already had and the additional
symmetry at v = 0 we find that the sources always come in discrete sets,
independent of the selected wavenumbers and the parameters.

B.6 Counting for anomalous v = 0 sources

When the signs of the linear group velocity s0 and the nonlinear group ve-
locity s are opposite, we are dealing with anomalous sources. This section
investigates the consequences this has for the counting of such sources.

For an anomalous source, cf. Fig.1b, the flow is (again we only consider εeff < 0
for the linear modes)

from











AL : L+ (v + s0)

AR : N− (v − s0)
to











AL : N+ (v + s0)

AR : L− (v − s0)
, (B.12)

which yields for the nonlinear fixed point on the left

p0=4a2RqR(c1 + c3)− 2a2RvR = 2a2R[s0 + 2qR(c1 + c3)] ,

=2a2RsR < 0 . (B.13)

where sgn[sR] = −sgn[s0,R]. Furthermore

p2 = 2vR = −2s0 < 0 , (B.14)

so that both p0 and p2 are negative, which implies that, according to Eq.(A.21),
the sign structure of the N− fixed point depends on sgn[p1p2 − p0p3]. In par-
ticular, when p1p2 − p0p3 is negative it is N−(+,+,+), and if it is positive it
is N−(+,−,−). If p1p2 − p0p3 < 0, we can perform a similar calculation for
the right fixed point, and we find that the counting then yields a 2-parameter
family of anomalous sinks. If the expression is positive, however, we find that
the anomalous sources also come in a discrete set.

The sign of this expression depends, for any given set of coefficients, on the
selected wavenumber qsel of the nonlinear mode, and therefore the wavenumber
selection mechanism will determine whether we can actually get to a regime
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where sources come as a family. In practice, we have not found any examples
where this happens. This suggests to us that the possible regions of parameters
space where this might happen, are small.

B.7 Counting for anomalous structures with εeff > 0 for the suppressed mode

As mentioned before, another situation that can change the counting is re-
alized when the suppression of the effective ε by the nonlinear mode is not
sufficiently large at the linear fixed points, so that εeff > 0. If we restrict
ourselves to the v = 0 case, Eq. (A.16) tell us that the counting may in-
deed change when in addition |s0| > vcL. This implies that the multiplicity of
sources and sinks changes dramatically under these circumstances. An insuf-
ficient suppression may happen in particular when g2 is only slightly bigger
than 1, while the selected wavenumber is large enough to lower the asymptotic
value of the nonlinear amplitude significantly below its maximal value

√
ε. The

zero mode then no longer stays suppressed; instead, it starts to grow, and we
then typically get chaotic dynamics, see, e.g., section 5.2. For this reason, we
confine ourselves to a few brief observations concerning the v = 0 case.

For v = 0 and εeff > 0, we can, according to Eq. (A.16), have a L−(−−−) fixed
point of the AL mode when s0 > vcL. The AR mode then has a L+(+,+,+)
fixed point. Since the index of L denotes the sign of the asymptotic value of
κ, with these fixed points we could in principle build a 2-parameter family
of stationary sources, provided s and s0 have the same sign in the nonlinear
region; otherwise the structures would be anomalous sinks.

Although we have not pursued the possible properties of such sources, we
expect almost all members of this double family to be unstable. The reason
for this is that when εeff is positive, the dynamics of the leading edge of the
suppressed mode is essentially like that of a front propagating into an unstable
state. As is well known [62], in that case there is also a 2-parameter family of
fronts in the CGL equation, but almost all of them are dynamically irrelevant.

C Asymptotic behavior of sinks for ε ↓ 0

In this appendix, we will discuss the scaling of the width of sinks in the small-ε
limit.

We will assume that in the domain to the left of the sink, the AR-mode is
suppressed, i.e., εLeff < 0 (likewise to the right of the sink). As will be discussed
in section 5.2 below, we may get anomalous behavior when εeff,L > 0, which
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can occur when g2a
2
R < ε; in that case the AL mode is (weakly) unstable and

various types of disordered behavior occur.

Assuming εLeff to be negative to the left of a sink, the amplitude of the left-

traveling mode grows exponentially for increasing ξ as |AL|(ξ) ∼ eκ
+

L
ξ. The

spatial growth rate κL is given, by definition, by the value of κ at the linear
fixed point. According to Eq. (A.13), one finds for zL=κL + iqL:

zL =
−(v + s0)±

√

(v + s0)2 − 4(1 + ic1)(εeff ,L + iω)

2(1 + ic1)
, (C.1)

where we have used the fact that for the left-traveling mode, v as used in
the appendix is replaced by v + s0, and εeff,L = ε − g2a

2
R. If we expand the

square-root in the small ε regime, where ω also tends to zero, we obtain

zL ≈ −(v + s0)

2(1 + ic1)
± (v + s0)

2(1 + ic1)

[

1− 2(1 + ic1)(εeff,L + iω)

(v + s0)2

]

. (C.2)

Since εeff,L is negative, and of order ε, the root z+L with the positive real part
is therefore

z+L ≈ −εeff,L − iω

(v + s0)
, (C.3)

so that κ+
L scales with ε as

κ+
L = Re[z+L ] ∼ ε . (C.4)

In order for the exponent in |AL(ξ)| ∼ eκ
+

L
ξ to be of order unity, ξ ∼ κ+

L
−1 ∼

ε−1, which shows that the width of the sinks will asymptotically scale as ε−1

for small ε.
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Fig. 1. Schematic representations of the various coherent structures that we will
encounter in this paper. The amplitude of the left (right) traveling waves is indicated
by a thick (thin) curve, while the linear group velocity and total group velocity are
denoted by s0 and s respectively, and their direction is indicated by arrows. (a)
and (b) are, in our definition, both sources, since the nonlinear group velocity s
points outward; the majority of cases that we will encounter will be of type (a).
Similarly, (c) and (d) both represent sinks. Finally, one may in principal encounter
structures that are neither sources nor sinks. We never have observed a structure
of the form shown in (e) in our simulations, but structures like shown in (f) occur
quite generally in the chaotic regimes. The dotted curve for the AR mode indicates
that we can have many different possibilities here, including the case were AR=0; in
that case a description in terms of a single CGL equation suffices. Note that figure
(f) does not exhaust all possibilities which are essentially single-mode structures.
E.g., in our simulations presented in Fig. 3, we encounter a case where in between
a source of type (a) and one of type (b) there is a single-mode sink, for which s
points inwards.

Fig. 2. (a) Space-time plot showing the evolution of the amplitudes |AL| and |AR|
in the CGL equations starting from random initial conditions. The coefficients were
chosen as c1=0.6, c2=0.0, c3=0.4, s0=0.4, g2=2 and ε=1. The grey shading is such
that patches of AR mode are light and the AL mode are dark. (b) Amplitude profiles
of the final state of (a), showing a typical sink/source pattern. (c) Comparison
between the source obtained from direct simulations of the CGL equations as shown
in (b) (squares) and profiles obtained by shooting in the ODE’s (12-15) (full curves).
(d) Similar comparison, now for the wavenumber profiles. In (c) and (d), the thick
(thin) curves correspond to the left (right) traveling mode.

Fig. 3. (a,b) Space-time plots showing |AR| (a) and |AL| (b) in a situation in which
there are two different sources present. Coefficients in this simulation are c1 =3.0,
c2 = 0, c3 = 0.75, g2 = 2.0, s0 = 0.2 and ε = 1.0. Initial conditions were chosen
such that a well-separated source-source pair emerges, and a short transient has
been removed. The source at x ≈ 730 is anomalous, i.e., its linear and nonlinear
group velocity s0 and s have opposite signs. Sandwiched between the sources is a
single-mode sink, traveling in the direction of the anomalous source; this sink is
visible in (b). (c) Snapshot of the amplitude profiles of the two sources and the
single mode sink at the end of the simulation shown in (a-b). (d) The wavenumber
profiles of the two sources in their final state. Note that when the modulus goes to
zero, the wavenumber is no longer well-defined; we can only obtain q up to a finite
distance from the sources. The selected wavenumber emitted by the anomalous
source is qsel = 0.387, while the wavenumber emitted by the ordinary source is
qsel = 0.341. The velocity of the sink in between agrees with the velocity that
follows from a phase-matching rule, i.e., the requirement that the phase difference
across the sink remains constant. In (c) and (d), thick (thin) curves correspond to
left (right) traveling modes.
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Fig. 4. (a) Sketch of a wide source, indicating the competition between the linear
group velocity s0 and the front velocity v∗. (b) Width of coherent sources as obtained
by shooting, for c1 = c3 = 0.5, c2 = 0, g2 = 2 and s0 = 1. (c) Example of dynamical
source for same values of the coefficients and ε = 0.15. The order parameter shown
here is the sum of the amplitudes |AL| and |AR|, and the total time shown here
is 1000. (d) Average inverse width of sources for the same coefficients as (b) as a
function of ε. The thick curve corresponds to the coherent sources as shown in (b).
For ε close to and below εsoc = 0.2, there is a crossover to dynamical behavior. The
inset shows the region around ε = 0, where the average width roughly scales as ε−1.

Fig. 5. The width of stationary sinks obtained from the ODE’s (12,15) as a function
of ε, for c1 = 0.6, c3 = 0.4, c2 = 0, s0 = 0.4, g0 = 1 and g2 = 2. (a) Example
of the stationary sink which has an incoming wavenumber corresponding to the
wavenumber that is selected by the sources, for ε=0.5. (b) Idem, now for ε=0.05.
Notice the differences in scale between (a) and (b). These two sinks are not related
by simple scale transformations; this illustrates again the absence of uniform ε
scaling of the coupled CGL equations. (c) As ε is decreased, the sink width initially
roughly increases as ε−1/2. When ε becomes sufficiently small, the group-velocity
terms dominate over the diffusive/dispersive terms, and the sink-width is seen to
obey an asymptotic ε−1 scaling (see (d) for a blowup around ε = 0. The straight
line indicates the analytic result for the 50% width as obtained from Eq. (27), i.e.
width−1=5 ε/(2 ln 3).

Fig. 6. Frequency ω, corresponding selected wavenumber qsel and perturbation
velocity v∗BF as a function of c2, for ε = 1, c1 = c3 = 0.9, s0 = 0.1 and g2 = 2. For
c2 < −0.25, v∗BF < 0, and perturbations in the right-flank of the source propagate
to the left, so that the waves are absolutely unstable.

Fig. 7. Source/sink patterns with absolutely unstable selected wavenumbers for the
same coefficients as in Fig. 6 and various values of c2. (a) c2=−0.3, (b) c2=−0.4,
(c) c2=−0.6, (d) c2=−0.8. For more information see text.

Fig. 8. Two more examples of nontrivial dynamics in the absolutely unstable case.
Both cases: c1 = c3 =0.9, c2 =−2.6, g2 =2, and a transient of 104 is deleted. (a-b):
s0 =0.1. Here the periodic states are quite dominant. It appears that these states
themselves are prone to drifting and slow dynamics. (b) Snapshots of |AL| (thick
curve) and |AR| (thin curve) in the final state. Obviously, the two modes, although
disordered, suppress each other completely. (c-d) Here we have increased s0 to 0.2.
The plane waves are still absolutely unstable, and the dynamics is disordered, but
much less than in case (a-b).
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Fig. 9. Two examples of bimodal chaos. (a) and (c) show space time plots, and
the grey shading is the same as before. Both simulations started from random
initial conditions, and a transient of t=104 has been deleted from these pictures.
For a detailed description, see text. Note that the final states of runs (a) and (c),
depicted in (b) and (d), clearly show that the two modes no longer suppress each
other completely.

Fig. 10. Two examples of the combination of phase slips and a value of g2 just above
1. The coefficients are c1=1, c3 =1.4, c2 =1, ε=1, s0 =0.5. Grey shading as before
(right (left) traveling waves are light (dark)). In (a), g2=1.05, while in (b) g2=1.2.

Fig. 11. Space-time plots in the coupled-intermittent regime. To be able to show both
the dynamics in the AL and AR mode, the grey shading corresponds to 2|AR|+|AL|.
This yields that right traveling patches are brighter in shade than left-traveling
patches. (a) c1 =0.2, c2 = c3 =2, ε=1, s0 =0 and g2 =1.2. (b) Same coefficients as
(a), except for g2 = 1.5. (c) c1 = 0.6, c3 = 1.4, c2 = 1, ε= 1, s0 = 0.1 and g2 = 2. (d)
Same coefficients as (c), except for c2=0. For as more detailed description see text.

Fig. 12. Four space-time plots, showing the transition from standing waves to dis-
ordered patterns, for g2=1.1, c1=0.9, c3=2, s0=−0.1, ε=1, and (a) c2=−0.72, (b)
c2=−0.71, (c) c2=−0.5, (d) c2=0. See text.

Fig. 13. Four space-time plots for the same coefficients as in Fig. 12, but now for
positive values of c2. (a) c2=0.8, (b) c2=0.9, (c) c2=0.95, (d) c2=1.

Fig. 14. (a) Space-time plot of |AR| illustrating the interaction between sources and
sinks. The runs started from random initial conditions, and the coefficients where
chosen as c1 = 0.6, c3 = 0.4, c2 = 0, g2 = 2.0, s0 = 0.4 and at ε= 0.07. Note that ε
is well above the critical value εsoc = 0.029, and the sources are stable. Hence, any
movement of the coherent structures is solely due to their interactions. Note that in
the final stage of an annihilation event, the source moves most, while the sink stays
almost put. Note also the similarity to Fig. 24 of [34]. (b) Hidden line plot of |AL|
showing the annihilation process in detail.
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