provided by Leiden University Scholary Publications

PHYSICAL REVIEW B VOLUME 59, NUMBER 1 1 JANUARY 1999-|

Quantum magnetism in the stripe phase: Bond versus site order
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It is argued that the spin dynamics in the charge-ordered stripe phase might be revealing with regards to the
nature of the anomalous spin dynamics in cuprate superconductors. Specifically, if the stripes are bond ordered
much of the spin fluctuation will originate in the spin sector itself, while site-ordered stripes require the charge
sector as the driving force for the strong quantum spin fluctuat{@@163-1829)05301-]

For quite some time it has been suspetfethat the netic correlation lengtl is already quite large at the tem-
anomalous spin dynamics of superconducting cuprates has peratures of interest: since the width of the incommensurate
do with theO(3) quantum nonlinear sigma mod@&NLS), peaks is smaller than their separation, the correlation length
describing the collective dynamics of a quantumis larger than the stripe spacifglt follows that atT=T,, a
antiferromagnet. The discovery of the stripe phdsepens a  continuum description of the spin dynamics should be sen-
new perspective on these mattéBelow the stripe-charge sible. Below T, 1/T; starts to increase exponentially upon
ordering temperature, charge fluctuations have to become itewering temperature, signaling the diverging correlation
consequential and the remaining spin dynamics should falength associated with the renormalized classical regime.
automatically in QNLS universality. As will be explained, Taken together, this fits quite well the expectations for a
the available data suggest that this spin dynamics is charagquantum antiferromagnet that is rather close to its quantum
terized by a close proximity to the QNLS zero-temperaturecritical point with a crossover temperature from the renor-
transition. This enhancement of the quantum-spin fluctuamalized classical to the quantum critical regifie=T,,.
tions as compared to the half-filled antiferromagnet can have The increase of the coupling constapt, controlling the
a variety of microscopic sources. Here we will focus on thelong wavelength fluctuations, originates in some microscopic
possibility that these are due entirely to the charge-orderingghenomenon. A limiting case is that charge can be regarded
induced spatial anisotropy in the spin system. Although theas completely static even on the scale of the lattice constant,
influence of spatial anisotropy is well understood on thesuch that its effect is to cause a spatially anisotropic distri-
field-theoretic levef,’ the charge can be bond ordered or sitebution of exchange interactiofi€. As indicated in Fig. 1,
ordered and this links the spin physics of the stripe phase tahere are two option$:the stripes can b&ond or site or-
that of coupled spin laddefs! At superconducting doping dered. It is expected that the spin dynamics associated with
concentrations, bond and site order translate into couplethe hole-rich regions is characterized by a short time scale
two-leg and three-leg spin ladders, respectively. We willand the magnetic ordering phenomena are therefore associ-
present an in-depth quantitative analysis of both problemsated with the magnetic domains. The spin-only model of
showing that spatial spin anisotropy has to be largely irrelrelevance becomes either a si@s1/2 Heisenberg model
evant for site order, while it might well be the primary describing three-leg ladde(site ordereflor two-leg ladders
source of quantum spin fluctuations in the bond-orderedbond orderefwith uniform exchange interactiong), mu-
case. A strategy will be presented to disentangle these matally coupled by a weaker exchange-interaction coupling
ters by experiment. (ad,a<<1). This model is explicitly,

Let us first comment on the available information regard-
ing the stripe-phase spin system. The spin-ordering tempera-,,
ture appears to be strongly surpressed as compared to halﬁ_‘]zi» SS”er‘]iﬁ% iy 33+5x+a3ix:% iy SSi+ s,
filling.* A first cause can be a decrease of the microscopic )
exchange interactions. However, the more interesting possi-
bility is that some microscopic disordering influence has  (a)] i
moved the antiferromagnet closer to the zero-temperature
order-disorder transitioiquantum critical point The few T l
data available at present seem to favor the second possibility.

We specifically refer to the ESR work by Kataevall? on l 1
Lay g9 x—yEWGd 0:SKCUO, exploiting the Gd local mo- J(T l
ments to probe the spin system in the CuO planes. Quite
remarkably, little change is seen in the spin-lattice relaxation 7 i 7 T

rate (1/T,) at the charge-ordering temperaturg,~70 K.

Above T, the 11T, is quite similar to that in La_,Sr,CuQy FIG. 1. Schematic distinction between site-order@i and
where it is known from, e.g., heutron scattering that the magbond-orderedb) stripes.
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wherei=(iy,iy) runs over a square latticé,=(1,0), 4,
=(0,1). n, measures the width of the ladder gma@ounts
the ladders.

Since the interest is in nonuniversal quantities as related

:(a)

r —-—3-leg QNLSM

1-leg QNLSM

to the nontrivial lattice cutoff, we studied the model equation
(1) numerically using a highly efficient loop algorithm quan-
tum Monte Carlo methdd supported with a technique of
improved estimators To keep track of the various finite-
temperature crossovers we focused on the temperature de-
pendence of the staggered correlation length in both direc- L
tions, parallel €,) and perpendicularg), to the stripes. We 0
typically insisted on X 10* loop updates for equilibration :(b)
and (2—-3)x 10° updates for a measurement, keeping the di- L
mensions of the system in the and y directions L,
=6¢, ,, to avoid finite-size effect® The correlation length
was determined by fitting the staggered spin-spin correlation T
function C(r)=(—1)*""%S,,-S), using a symmetrized
two-dimensional Ornstein-Zernike form C(r)
=A(r Y2 e+ (L—r) Y2 (LN separately for the
X[r=(r,0),L.=L,] andy[r=(0,),L=L,] directions, omit-
ting the first few points to ensure asymptoticity. We checked
our results against the known results for both isolated ladders
by Greven etall’ (a=0, n=1,2,3) and the low-
temperature results for the isotropia£1) limit.1>16:18
SinceO(3) universality is bound to apply at scales muc
e e et T vatious e Mot ht 1 one ke cudine
length can be used to further characterize the long- 'menS'Orla to two-dimensional crossovésliows closely the re-
) . . ults forT*.
wavelength dynamics. The absolute lattice cutoff is reached
at a temperatureT{,,,) Where the correlation length parallel
to the stripes §,) becomes of order of the lattice constant. coupled two- and three-leg ladders, respectivelp deter-
However, the problem is characterized by a second cutoffmine T, we used fora close to 1 the same criterion as for
when the correlation length is less than the lattice constant ithe T,,« determination in the isotropic problefie, (T°)
the direction perpendicular to the stripes), the dynamics =0.7—0.8]. This becomes inconsistent for small where
is that of N, independently fluctuating spin ladders. We de-one better incorporates the width of the ladfigy(To)=n,
fine Ty as the temperature whegg=a, is the crossover X (0.7—0.8)] and we used a linear interpolation to connect
temperature below which the system approack@2sl)-  smoothly both limits. We checked that below thg, deter-
dimensionalO(3) universality. In this latter regime, further mined in this way, bottf, and £, exhibited the same depen-
crossovers are present. When the effective coupling constadence on temperature after an overall change of scale, dem-
(go) is less than the critical coupling constag,) a cross- onstrating that the collective dynamics is indeed if2#1)-
over occurs from a “high”-temperature quantum critical dimensional regime.
(QC) to a low-temperature renormalized classi@aLC) re- In Fig. 2 we summarize our results in the form of a cross-
gime. In the QC regimé~ 1/T while the crossover tempera- over diagram as function af and temperature, both for the
ture T* to the RC regime can be deduced from the exponenene- and three-legFig. 2(@] and the two-leg[Fig. 2(b)]
tial increase of the correlation length at Ik using*6° cases. Consistent with analytic predictidfshe behavior is
radically different for the half-integer spin one- and three-leg
e /T cases on the one hand, and the “integer spin” two-leg case
p——— (2)  on the other hand. Let us first discuss the former. Here the
ground state remains in the renormalized classical regime for

whereT* =2mp, in terms of the spin stiffnesss(a). When — any finite . The reason is obvious. In isolated laddess (
Jo>0., the ground state is quantum disorde(€D) as sig- =0) with an uneven _number of Iegs the ground state is a
naled by¢ becoming temperature independent, and the crosd-uttinger liquid exhibiting algebraic long-range order and
over temperaturd’ between the QC and QD regimes is &Y finite ladder-to-ladder interaction will suffice to stabilize

estimated from the approximate relattén true long-range order af=0.2% This in turn implies a
finite T* where the classical nature of the ground state be-

cy comes visible. Interestingly, our calculations indicate fffat
= m ) andT? basically coincide for any: at the moment the sys-
y tem discovers that it is21 dimensional, the classical behav-
wherec, is spin-wave velocity in the strong direction. ior sets in. Our finding thaT® increases linearly with for
We determined the various crossover lines as function oémall « [Fig. 2(@)] confirms the scaling theory by Affleck
a for the casesn,=1, 2, and 3(anisotropic Heisenberg, and Halperin for this problerht The behavior of the spin-

AT*3-leg
@T*1-leg

FIG. 2. Crossover temperatures as a function of anisoteofoy
hthe coupled three-le@g) and two-leg(b) spin-ladder models. The
A_ilnes and points refer to the analytical and numerical results, respec-
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spin correlator for an isolated chain(S(x)S(0)) M ®

~(1/xX)exp(—x/&), &~LUT signals the approach to the I A °®

Gaussian fixed point: within the thermal lendththe system g A

exhibits algebraic long-range order. For findethe cross- I X °

over temperatur@® can be found using the standard mean- 2| 035 P

field consideration: af® temperature becomes of order of s L4 °

the exchange interaction between two patches of correlated™ |  uatm = o _:A °

spin on neighboring chains of si_zegl: k*?TO 1 i AQAAAAAA g A "% L : .
=a®3/£,(T°), whered,=£,(T% ¢, ¢ being the micro- [o025, & U 4 2

scopic staggered magnetization. Takihgndependent ofr . %»é** i~ 1D

would yield the erroneous result thaf~ . The subtlety I 0-9(@)‘% &

is that whene is sufficiently small, the quantum dynamics B = T
within the correlation volume; is already in the(2+1)- 0 0.2 0.4 T 08 08
dimensional regimé.Using theT=0 result by Affleck and

Halperin that ¢~ \/5'11 we recoverT°~a, a<<1l. The FIG. 3. £ T vs temperature for the two-leg system, whend®

other feature worthwhile mentioning is thaP and T* are  are close to critical point. Results far=0.0 (isolated laddepsand
identical for the one- and three-leg cases for sml This 1.0 (isotropic limit) are added for comparison. The vertical bar in-
is in line with the observations by Frishmugt al2® that  dicates the one-dimensional to two-dimensional crossover tempera-
these spin ladders renormalize in identical Luttinger liquidst™®-

when the ladder exchange interactions are isotropic.

In the two-leg ladders cag€ig. 2(b)] the quantum order-
disorder transition occurs at a finite value af «
=0.302). This is in line with the qualitative expectations
(see also Ref. 21and agrees with the quantitative value
obtained in a different contexf. Since the isolated two-leg Cx( 1— 9o )
ladders are incompressible spin systems, the ladder-to-ladder _ ge(a) 6
interaction has to overcome the single-ladder energy gap be- ps(@)=ps do |’ ©
fore the two-dimensional lock-in can occur. This critieals Cy( 1- g (1))
rather large, and in addition, th@+ 1)-dimensional— (2 ¢
+1)-dimensional crossover temperatufé@ shows the up- Where
ward curvature T°~+/a) previously predicted from a scal-
ing analysis of the anisotropic QNLS mod@QNLS).” As a
ramification, T° andT* (as well asT’) separate and large,
genuinely (2-1)-dimensional quantum critical regime opens

up aroundea, . This is in marked contrast with the isotropic +In[cy(1+ /1+02/c2)/c I(1+ \/5)2]}) )
Heisenberg model where the renormalized classical regime Y Ty

sets in essentially at the lattice cutét?* . o B .

: and ps is the spin stiffness fora=1. According to

The grossa dependences of the various crossover tem- .

S ef. 7, the crossover scales ar@*=2mpga),
peratures can be understood by considering the AQNL 0= 2y do/ (ACo) + (1 9o /0) /G, ] and T
model obtained by taking the naive continuum limit for the —(:_c>n:tgs(2z)§|]0 it tgrnos out thg? fg? 2 bare coupling con

: . = S(a)]. -
ladder problem. An average staggered figlds introduced stantg® as determined for the isotropic casg®€9.1), the

for a block of 2<Xn, sites. Integrating out the quadratic . o
fluctuations?® the effective action for¢ becomes the order-disorder transition occurs at a somewhat small value of
’ a=0.08, which is not surprising given the approximations

AQNLS model with anisotropic spin-wave velocities, involved (one-loop level. However, by adjusting, to shift
a. to its numerical value dy=11.0), we find a very close

the isotropic model. According to the scaling analysis of Ref.
7, the renormalized spin stiffness becomes in terms of the
velocitiesc, y,

2
g(a)= 4w\/c0/cy( 1+ ;{cyarcsinrﬁcxlcy]/cx

(3+a) agreement between the numerical and analytical results for
2(1+a) forn =2, the various crossover temperatufésg. 2(b)]. As can be
c)z(: acg 4) seen from Fig. @), the above analysis also works quite well
9(7+3a) forn =3 for the three-leg ladders far=0.4. Remarkably, it seems
2(1+2a)(13+2a) e that T* switches rather suddenly from the AQNLS behavior
at large« to the linear behavior expected for the Luttinger
liquid regime, as if the topological terms start to dominate
(3+a) for =2 rather suddenly.
_ 4 = Besides its intrinsic interest, the above does have poten-
Cy=¢Co 3(7+3a) 5 tially important ramifications for the understanding of the
213+ 24) forn;=3, quantum magnetism in cuprates: bond ordering of stripes

would imply that already at rather moderate values of the
anisotropya, spin-ladder physics alone would enhance the
wherec, is the spin-wave velocity in the isotropic limit. The quantum spin fluctuations substantially. This can be further
coupling constang, is a independent and the same as forillustrated by comparing the temperature dependence of
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T¢,(T) for the isotropic spin systera=1 with that of the volving the static stripe phase. It should be established if the
coupled two-leg ladders in the vicinity of the critical(Fig.  stripe phase is site or bond ordered, which can be done by
3). This quantity can be directly compared with the spin-spinNMR. Next, thea should be determined from neutron mea-
relaxation rate I, and, with some caution, also toTk/  surements of the spin-wave velocities, E). Using these
(Refs. 23 and 26(a dynamical critical exponemt=1 isonly  as an input, the temperature dependence of the correlation
strictly obeyed in the QC regimeAs compared to the iso- length, as well as the NMR relaxation rates, can be calcu-
tropic case, the exponential increase Tf (signaling the lated to a high precision starting from a microscopic spin-
renormalized classical regimés shifted to a low tempera- only dynamics. Comparison of these quantities to experiment
ture, while over most of the temperature rafgg€T) is con-  should yield insights into the microscopic origin of the pe-
stant, as is found in cuprates. It is noted that the “quantumculiar spin dynamics in doped cuprates.
critical signature” ¢~ 1/T extends in the temperature range
above the dimensional crossover temperafifteSince this
regime is nonuniversal this should be regarded as a quasi- We thank B. I. Halperin for helpful discussions. J.T. ac-
criticality. knowledges support from the Foundation for Polish Science
This is no more than suggestive. However, it points at dFNP), and J.Z. financial support by the Dutch Academy of
simple strategy to clear up these matters by experiments irBciencegKNAW).
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