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Abstract. If K is an algcbraic number field of degree at most m over thc field Q of

rational numbers, and / 6 K[X] is a polynomial with dt most k non-zero terms and with
/(O) / 0, then for any positive integer d the number of irreducible factors of / m K[X]
of degiee at most d, counted with multiplicities, is bounded by a constant that depends

only on m, k, and d This is proved m a compamon papei (H W Lenstra Jr "On the
factonzation of lacunary polynomials") In the piesent paper an algonthm for actually
finding those factors is presented The algonthm assumes that K is specified by means

oi an irreducible polynomial h with integral coefhcients and leadmg coefficient l, such
that K = Q(a) for a zero α of Λ Also, the polynomial / = ]T( a%Xl ls supposed'to be
given m its sparse representation, i c , äs the hst of pairs (z, o() for which a, / 0, each
a, bemg represented by mcans of its vector of coefficients on the vectoi space basis l α

, α̂ 108'1̂ "1 of K over Q If l denotes the "length" of these mput data, when written
out m bmary, then the runnmg time oi the algonthm, measured in bit operations is at
most (/ + d)c for sorne absolute and effectively compulable constant c Taking K = O

and d = l, one deduces that all rational zeroes of a sparsely represented polynomial with
latiorial coefficients can be found m polynomial time This answers a question raised by
F Gucker, P Konan, and S Smale
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l. Introduction

F Gucker, P Koiran, and S Smalc [2] exlubitod a polynomial time algonthm ac-

compli&hmg the followmg Suppo&e that a polynomial f = Σι a<Xl ln one variable

with cocfficicnts in thc ring Z of mtcgers is specified m its sparse representation,

i c , by the h&t of pairs (i, a,) for which at 7= 0 Then the algonthm finds all zeroes

of f m Z One of thc qucstions they raised is whcthei one can also find all rational

/croes of / in polynomial time In thc prescnt paper I show that this is indeed the
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case Rational zeroes corre&pond to irrcducible factors of degrce l over the field Q

of rational numbers, and my result extends to findmg ineducible factors of low

dcgrccs over algebraic number fields

For a ring R, let R[X] dcnote the ring of polynomials m one variable X ovei R

A polynomial is momc if it& Icading coefficient is l

Theorem. There ι$ a defermmistic algonthm that, for some positive real num-

ber c, has the following property gmen an algebraic number field K, a sparsely

represented non-zero polynormal j € K[X], and a positive integer d, the algonthm
finds all momc irreducible factors of j in K[X] of degree at most d, äs weit äs
their multiphcities, and it spends time at most (l + d)c, where l denotes the length
of the input data

The conventions in this theorem are äs m [8, Section 2] Rational numbers
are rcpresented äs fractions of mtegcrs An algebraic number field K i& supposed
to be specified by means of a momc irreducible polynomial h 6 Z[Y"] such that
K = Q(a) for a zcro n of h, an elemcnt of K, such äs a coefficient of /, is then
represcnted by means of its vcctor of coefficicnts on the veetor space basis (a·1)"'̂

of K over Q, whcre m = dcg/i Here the polynomial h = ̂ "̂  h,Υ1 is densely

represcnted, i e , by means of the hst of all paus (j,h,), 0 < j < rn, mcluding those

for which h, — Q The length (or the size) of the input data is defincd in [8, 2 f ]

(cf [2, See 1]), it may mformally be thought of äs the number of bits necded to
spell out the data m bmary The time taken by an algonthm is measurcd m bit
operations

One way of findmg the irreducible factors of / m K[X] is first to convert /
from its sparse to its dense reprcsentation and next to apply onc of the woll-
known polynomial time algonthms (sec [4, 6]) for factormg den&cly reprc&entcd
polynornials over algcbiaic number ficlds This proccdure, however, faüs to satisfy
the time bound statcd m the theorem Consider, for cxample, the ca&c in which
f = Xn - l for large n, with fixed d and K, then the length l of the data has
order of magmtude log r?, and the length of the dense icprcsentation of /, which
is about n, is exponential in /, so it cannot be written down withm time (/ + d)'

Our result is "uniform in K" rathcr than havmg a separate algonthm for
cach Ä", we have one smglc algonthm that accepts data specifymg K äs part of
the input, for fixed d, the runmng time i& polynomially bouridcd m toi ms of the
length of these data and the data specifymg / For varying d, the runmng time
can still bc said to be polynomially bounded in tcrms of the length of the input
data and the po&siblc length of the Output, smce the polynomials produced by
the algonthm are densely represented and rnay havc degree up to d However, the
algonthm rnay spcnd time exponential in log d and still find no factors

The number of different factors fourid by the algonthm is at most an absolute
coristant times k2 1" n log(2nfc), where k is the number of non-zero terms
of / and n = d [K Q], by [9, Theorem f] This is an exponential bound, but
it is completcly independent of the degree and the coefficicrits of / and of the
coefficients of the polynomial dofming K
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The idea behind the algorithm is best illustrated 011 an easier problem. Suppose
that a sparsely represented polynomial / e Q[-X"] äs well äs a rational number χ
are givcn. How does one test in polynomial time whether or not /(z) vanishes?

Just substituting χ for X in / is not feasible, since if the degree of / is very large

thcn f(x) may be too large to write down, let alone to calculate. Fortunately, if it

is just a matter of testing whether f(x) vanishes, one can get away with a much

simpler procedure. Namely, excluding the easy cascs χ = ±1, one proves that a

large degree polynomial with not many non-zero terms can vanish in χ only if

it does so for obvious reasons, namely if there are "widely" spaced non-negative

integers u and "low" degree polynomials fu with f„(x) = 0 and / = ̂u /„ · Xy.

The bounds that make this Statement valid depend on the number of non-zero

terms of / and ori the sizcs of the numerators and denominators of its coefficients,

but they do not depend on x. Thus, to test whether / vanishes at a given rational

number χ φ ±1, one "breaks" / into appropriate polynomials /„ and one tests

whether thcy all vanish at x.

The algorithm underlying our theorein follows the same idea, and it is pre-

sentcd in Section 4. The basic result justifying the procedure (Proposition 2.3)

is formulated and proved in Section 2. Section 3 contains several auxiliary algo-

rithms, one of which finds the cyclotomic factors of /. The phenomenon that these

require separate treatmcnt is familiär from Schinzel's work on factors of lacunary
polynomials.

Should the need for finding small degree factors of sparse polynomials over
algebraic number fields ever arise, then a suitable variant of my method may very
well have practical value; however, äs it Stands it is designed only to lead to a valid
and efficient proof of the theorem.

Several results in this papcr assert the existence of algorithms with certain
properties. In each case, such an algorithm is actually exhibited in the paper it-
sclf or in one of the references. All these algorithms are deterministic, and the
constants appearing in running time estimates are effcctively computable. Polyno-
mials are densely represented in algorithms, uriless it is explicitly stated that they
are sparsely represented.

By R we denote the field of real numbers, and by C the field of complex num-
bcrs. The degree of a fielt! cxtension E C F is written [F : E]. The multiplicative
group of non-zero elements of a field F is denoted by F*.

2. Heights and lacunary polynomials

Let Q denote an algebraic closure of Q, and let K C Q be a finite extension of Q.
Write M κ for the set of non-trivial prime divisors of K, and for each v 6 M κ, let

|| · || u : K —» R be a corresponding valuation; we assume that these valuations are

normalized äs in [5, Chap. 2, See. 2]. This normalization is characterized by the
fact s that the product formula

(2.1) |N|„ = 1 for all χ· e iT
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holds, and that thc relative height funchon

HK K^TL, HK(x)= Y[ max{l,||a;||4

(see [5, Chap 3, See 1]) batisfies H κ (k) = k^K Q) for all positive integer, A

The absolute height funetion H Q — > R is defined by

where K is such that χ e K, this i& mdependent of the choice of K For example,

for r, s e Z, s > 0, gcd(r, s) = l one has H(r/s] = max{|r|, s}

For a positive integer n, we defme

2
c(n) = - - - -τ ιί η > 2,

n (log(3n))3

and c(l) — log 2 This i& a decrcasmg function of n

Proposition 2.2. Lei n be a positive integer Supposc that χ e Q* is of degree at

most n over Q, and that log II (x) < c(n) Then χ is a root of untty

Proof See [12, Corollary 2] This proves 2 2

If K ib äs above, then for v e M κ we extend || ||„ to a function K[X] ->· R by

, |k||„ Define H Q[X] -> R by H(/) = Π,6Λίκ H/lli/lÄ Q1,
wheie Ä" is chosen such that / 6 K(X], this is mdependent of the choice

Proposition 2.3. Le.t k, i, u be non-negatme integer s, arid let f e Q[X] be a
polynormal mth at most k + l non-zcro ierms Suppose that n is a po&iiive integer
with

log(A_H(/))
u-t>

c(n)

and thai j i& writtcn äs the sum of two polyriomials g, h <E L[X] such that every
non-zcro tcrrri of g has degree al mot,i t and euer// non-zero terrn of h has degree
ai least a Then em ry zrro of f m Q* that has degree at most -n over Q and that
/s not a root of umty if> a cornmon zero of g and h

Proof Let χ G Q* bc of degree at mo&1 n over Q, and suppobc that f(x) - 0
Then we have g(x) = -h(j) We shall assumc that q(a] = -h(x) φ 0, and piove

that L is a root of umty

Let K be chosen such that r € K and / e K[X] Then we have g, h e K[X]
Let v G M κ From h(x) ̂  0 it follows that h has at least l non-/ero term, and

smce / has at most k + f non-zero terins i1 followb thai g has at most k non-zero

terms Thus g(%) is a sum of at most k tcrms 0,7', with ||a(||„ < ||/||u and ι < t

This leadb to the estimatc

, ||Ä||„} ||/||„ ĵ H',, ύ\\Ί\\,>1
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Likewise, h(x) is a sum of at most k terms a,xl, with \\a,\\u < \\f\\v and i > u, so

\\h(X)\\v<ni&x{l,\\k\\v}· \\f\\,,· \\x\\« if|N|„<l.

We have ||g(o;)||„ = ||/i(x)||u, so we can combirie the&e two Statements in

max{l, \\x\\u}"~L · \\g(x)\\v < max{l, ||fc||„} · ||/||„ · H«.

Raise this to the power l. /[K : Q] and take the product over v G MK· Using the

iact that H (k) = k, and applying (2.1) to χ and to g(x) (which are both supposed

to be non-zero), one finds that

By hypothesis, wo have k-H(f) < cxp((u— i)c(n)). It follows that logPI(x) < c(n),

so 2.2 implies that χ is a root of unity. This proves 2.3.

Proposition 2.4. Lei K c Q be a fimte extension o/Q, and let f G Ä"[-X"]. Lei r
be a positive integer such that all coefficients of rf are algebraic integers, and let
s be a positive real riumber with the property that for evenj field homomorphism
σ : K — > C and every coefficient a of f one has \σα < s. Then one has H(/) < rs.

Proof. First assume that r = i. Then each cocf&cient of / is an algebraic integer,

feo II/H u < l for each non-archimedean v e MK· Also, by definition of s we have

11/11 u < s for each real u & MK, and ||/||„ < s2 for each complex υ G MK·

Collecting all v, one obtains H(/) < s, since the number of real v plus twice the

numbcr of complex v equals [K : Q] . The case r > l is reduced to the case r = l

by the forrnula H(r/) = H(/), which follows from (2.1), applied to χ = r. This

proves 2.4.

3. Auxiliary algorithms

Proposition 3.1. There is an algonthm that, for sorne positive constant c\, has

the followmq property: given an algebraic numtter field K and a densely rcpresented

non-zero polynornial f & K[X], the algoriÜim finds the complete factonzation of f
wto rnonic irreducible factors m K[X], and it does so m tirne at most /", where
l denotes the length of the data.

For the proof of this pioposition, and a dcscription of the algorithm, we refci
to [4; 6]. It makes usc of lattice basis rcduction [7].

Let K be a fiele! of characteristic zero. For / G K[X], we define the sparse
derivative /'J' of / to bc the ordinary derivative of f/X', if X' is the highest
powcr of X dividing /', and wc define it to be 0 if / = 0; the higher sparse
derivatives /̂  are dcfined inductivcly by /'Ί = (/''~'')''̂  and for convenience wc

set /'°J = /. If / 7̂  0, then clearly the numbcr of non-zero terms of /W is one less

thari the number of non-zero terms of /. 1t follows that /M — 0 if and only if ι is

greater than or equal to the uumber of non-zero terms of /.



272 H W Lenstra Jr

Proposition 3.2. Lei K be a field oj charactcnstic ze.ro, let f Έ K(X] be a non-

zero polynomiol, and let g 6 K[X] be an irrcducible polynormal wiih g(0) ̂  0 Then

thc numbcr of factors of g m f is equal to mm{i > 0 g does "not dnnde /'''}, and

it is smaller ihan the nurnber of non zero terrris of f

Proof The fiist as&ertion is proved m a routme rnanner by mduction on the numbcr

of factors of g m / If / has exactly k + l terms, then /IA1 is a polynomial with

exactly onc term, which i& not divi&ible by g Thus the sccond as&crtion follows

from the fir&t Thib proveb 3 2

The second a&sertion can also be derived from an observation oi Hajob (sce

[3, 11, Lemma 1])

Proposition 3.3. There is an algorithm that, for some positive constant c2, has

th( following property Given an algebraic numbcr field K and a sparsely repre-

sented non-/fro polijnomial / ε K[X], the algorithm computes the sparse repre

sentations oj tht sparte derivatives /̂  for all ι > 0 that are less than thc nurnber

of non /cro trrms oj f and it does so m time at mo<,t Vλ, whcre I denoüs the
l( ngth of the data

Proof This is obvious -one just computes thc polynormals /W directly from thc
defmition This proves 3 3

Proposition 3.4. There 'is an algorithm that, for some positive constant c?, has
the followmg property given an algebraic numbcr field K, a sparsely represented
non 7ero polynomial j 6 K\X], and a positive integer τ, the algorithm computes
the grfatest common dwisor of f and X'' — f m K[X], and it does so in time at

rnost (l + r)'', where l dcnotcs thc length of the data

Proof The algorithm runs ab followb Let / = Σ,α,Χ̂  ) Foi cach i, compute

the remamder u(i) oi t(i] upori division by r Next compute the polynomial

h = Σ, a,,Xu('\ and use the Euchdean algorithm ior polynonualb in Order to

compute the greatcst common divisor of h with Xr - l Thib gcd is the Output ot

the algonthm

To prove the corrcctncss, it suffices to remark thal from t(i) = υ(ι] mod r,

for ca-ch i, it follows that j = h mod X1 - l, and therefore gcd(f, X' - 1) =

gcd(h,X' -1)

The runrimg time e&timate is proved m a completely straightforwaid way, note

that h is densely reprehented, and has dcgree lesb than r For a runmng tirne

cstimate of the Euchdean algorithm for polynormak, bee [4, Gor l 8] This proves

Propositiori 3 4

Jf K ib a field, we call a polynomial g 6 K(X] cyclotorruc ii, for bome positive

integer t, it is a momc irreduciblc factor of X' - l in K[X]

Proposition 3.5. There is an algorithm that, foi sonu positive constant c4, has

the followmg property gtucn an algebraic nurnber field K, a sparsehj represented
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non-ze.ro polynomial f E K[X], and a positive integer d, the algomthm computes
in hme at rnost (l + d)c/l all cyclotomic factors g of f in K[X] that have degree
at most d, äs well äs, for each such g, the multiphcity m(g) of g äs a factor of f,
here l denotcs the length of the inpvt data

Proof Wc claim that the followmg algorithm has the stated properties It produces
a libt of pairs g, m(g), which is mitially supposed to be empty

For each integer r = l, 2, , 2 (d [K Q])2 in &ucces&ion, do the followmg
Compute gcd(/, Xr - 1) with the algorithm of 34, factor gcd(/, X1 - 1) mto
irreducible factors m K[X] by rneans of the algorithm öl 3 l, and discard those
irreducible factors that appear already on the list or have degree greater than d
Adjom the remammg irreducible factors g to the hst, and for each of them compute
rn(g) from the foimula

m(g) = mm{z l < ι < k, g does not divide gcd(f̂ ,X' — 1)},

where k is one less than the number of non-zero terms of /, here /W is computed

m its sparse rcpresentation by the algorithm oi 3 3, and its gcd with X' — l is

computed in its dense representation äs in 3 4
This completes the description of the algorithm
The proof of the bound for the runnmg time is straightforward, and left to the

rcader We prove that each cyclotomic factor g oi f oi degree at most d is found
by the algorithm, and that m(g) is its multiphcity Let g be such a factor, let ζ be
a zero oi g m an extension field of K, and let r be the multiphcative order of ζ

Denotmg the Euler </?-function by φ, we have

¥>(r) = [Q(C) Q]<[#(0 Q] = [#(0 K\ [K Q]

= (degg) [K Q}<d (K Q]

The elementary mequahty ψ(τ) > \/r/2 now nnplies that r < 2 (d [K Q])2

Therefore g is indecd found by the algorithm Rom Proposition 3 2 it follows that

m(g) equals the multiphcity of g äs a factor of / This proves 3 5

The function H m the followmg result is äs defined in Section 2, with Q equal to
an algebraic closure of Q that contams K

Proposition 3.6. There is an algorithm that, for sorne positive constant c^, has
the followmg property given an algebraic number field K and a sparsely represerited
non zero polynomial f € K[X], the algjrithm computes in time at most Γ·> α
positive integer b sahsfying b > k H(/), here k is l less than the number of

non-zero terms of f, and l denotes the length of the input data

Proof As in the mtroduction, it is assumed that K is specified by means of an

irreducible polynomial h = Ŷ '̂ hjY1 6 Z[Y], with hm = l, with the pioperty

that K = Q(a) ior some zeio a oi h Also, each coefficient az of / is supposed to

be represented by a vector (q,,)7̂,1 with qtj e Q foi which a, = Σ™^ q^a0 For

each field homomorphism σ K —>· C, the complex number σα is a /ero of h and

therefore satisfies σα] < B = X̂ "10 \h0\ Hcnce if r is a positive integer for which
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r · qn G Z for all i and j, then one has

for all field homomorphisms σ : K -> C and all i. Thus, by 2.4 the number

b = k · max, st is a positive integer satisfying b > k · H(/). One can computc b in

polynornial time in a straightforward way, taking for r the least common multiple

(or even the product) of the denominators of the qtr This proves 3.6.

4. Proof of the theorem

The proof of the theorem stated in the introduction consists of three parts: the

description of the algorithm underlying the theorem, the proof of its correctness,

arid the running timc e&timate.

To describe the algorithm, let an algebraic nurnber field K, a sparsely rep-

resented nori-zero polynomial / 6 K[X], and a positive integer d be given. The

algorithm produces a list of pairs g, m.(y), which is initially supposecl to be empty.

Step 1. Find ihe cyclotomic factors. Use the algorithm of 3.5 to find all cyclo-

tomic factors g of / in K[X], äs well äs thcir multiplicities m(g).
Step 2. Compute a bound for the gap width. Let k + 1 be the number of non-zero

terms of /. Use the algorithm of 3.3 to compute /!'! for 0 < i < k in their sparse
representations. Next, applying the algorithm of 3.6 to each /'Ί, compute positive
integers bL satisfying

Finally, compute a positive integer b satisfying

maxflog b, : 0 < i < k}

- μικτοί) >ö~2'

with the funclion c äs defined in Section 2. For the logarithms, one can use the
algorithms in [1]. (For the sigriificarice of 6-2, see [10, See. f , end].)

Step 3. Spht } αϊ the big gaps. Let / = Eter atXi , whcre T is a set of k + l
non-negative integers and a/ e K* for each t & T. Ordering T, determine the

subset U = {u € T : there does not exist t e T with u - b < t < u} of T,
where b is äs Computer! in Step 2. Next, for each u e U, determine the subset
T (u) = {t & T : u = max{w € U : v < t}} of T. (Then T is the disjoint union
of the sets T (u), for υ e U, and each T (u) coritains u.) To concludc this step,
compute the polynomials

/„= ̂  a,X'-u (u (EU),

ι er (υ)

in their dense representations. (These polynomials satisfy /,,(0) ̂  0 and

"
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Step 4. Factor a dense polynomial. Using the Euclidean algorithm for polyno-
mials (see [4, Gor. 1.8]), compute h = gcd,(6f/ /„. Factor h into monic irreducible
i'actors in K[X] by means of the algorithm of 3.1.

Step 5. Assemble the results. Discard each monic irreducible factor of h that
occurs already among the factors cornputed in Step l or has degree greater than d.
Adjoin each of the remaining monic irreducible factors g of h to the list, with m(g)
cqual to the naultiplicity of g äs a factor of h. Finally, if 0 does not belong to the
set T of Step 3, adjoin g — X to the list, with m(X) equal to the smallest element
of T.

This concludes the description of the algorithm.
We ncxt prove the correctness. The parenthctical Statements in Step 3 arc

readily vcrified. The polynomial h divides each /„, so it divides /. One deduces
that the polynomials g produced by the algorithm are indeed monic irreducible
factors of / in K[X] of degree at most d. Also, h is not divisible by X, since none
of the f„ is, so from Step 5 one sees that no g is produced twice.

Conversely, let g be a monic irreducible factor of / in K[X] of degree at most d.
We prove that g is produced by the algorithm, and that m(g) equals the multiplic-
ity of g äs a factor of /. These Statements are obvious if g is cyclotomic (Step 1)
and if g = X (Step 5). In the other case, let Q be an algebraic closure of Q con-
taining K, and let χ & Q be a zero of g. By hypothesis, χ is not a root of unity,
and χ -φ- 0. The degree [Q(x) : Q] of χ over Q satisfies

[Q(x) : Q] < [K(x) : Q] = [K(x) : K] · (K : Q] = (degff) · (K : Q] < d · [K : Q].

For each u <Ξ U, we now apply 2.3 with n — d · [K : Q], and with

Σ /«·*"> Σ /»·*"
u et/, u<u neu, v>u

in the roles of g and h. From

logfo · H(/)) log 6t,

c(n] -c(d-[K:Qi})-

and the definitions of U and fu it follows that the inequality of 2.3 is satisfied.

Now 2.3 asserts that a; is a zero of both polynomials just displayed. Since this is

the case for each u € t/, one infers that fu(x) = 0 for all u G U, and therefore
that h(x) = 0. Hence g is an irreducible factor of h, and it is produced by the
algorithm. To show that m(g) is the mult;plicity of g in /, we repeat the argument
just givcn with /'*' in the role of /, for each i — l, 2, ..., k - l. The representation
/ = ]Γ)Μ6ί/ fyX" induccs a similar representation of each /W. Thanks to the choice
of b we can still apply (2.3). Using 3.2, one deduces that χ is a j-fold zero of / if

and only if it is a j-fold zero of each f„, the case j > k being vacuously correct.

Thus, the multiplicity of g äs a factor of / is the same äs the multiplicity m(g)
of g äs a factor of h = gcd„ /„. This proves the corrcctness of the algorithm.

We prove the running time cstimate. Siricc each b,, in Step 2, is computed by
a polynomial time algorithm, its logarithm is bounded by a constant power of the
length l of the data. Also, from the dcfinition of c(n) in Section 2 one sces that
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l/c(n) is bounded by a constant times n2 It follows that the bound b computed
m Step 2 is bounded by a constant power of l + d Now let u 6 U The defimtions
of U and T (u) imply that any two consecutive non-zero terms of /„ have degrees
diffenng by at most b Smce /„ has at most k + l non-zero terms, one of which
has degrec 0, it iollows that deg/u < k b Therefore the length of the dense
representation of /„ is bounded by a constant power of l + d This implics that the
time taken by the polynomial time operations on the _/„ m Step 4 lemains withm
the bound stated m the theorem It is a routme matter to prove that this also
apphes to the time taken by the other step& of the algonthm

This proves the theorem stated in the introduction

References

[1] Brent, R P , Fast multiple-precision evaluation of elementary functions J Assoc
Comput Mach 23 (1976), 242-251

[2] Gucker, F , Koiran, P , Smale, S , A polynomial time algonthm ior diophantme
equations m one variable J Symbohc Comput , to appear

[3] Hajos, G , [Solution to problem 41] (in Hunganan) Mat Lapok 4 (1953), 40 41

[4] Landau, S , Factoring polynomials over algebraic number fields SIAM J Comput
14 (1985), 184 195

[5] Lang, S , Fundamentals of diophantme geometry Spnnger, Now York 1983

[6] Lenstra, A K , Factoring polynomials over algebraic number fields In Computer
algebra (ed by J A van Hüben, Lectuie Notes m Comput Sei 162), 245-254
Springer, Berlin 1983

[7] Lenstra, A K , Lenstra, H W , Ir , Lovasz, L , Factoring polynormals with rational
coefficients Math Ann 261 (1982), 515 534

[8] Lenstra, H W , Jr , Algorithms m algebraic number theory Bull Amer Math Soc
(N S ) 26 (1992), 211-244

[9] — On the factonzation of lacunary polynomials This volume, 277 291

[10] Lenstra, H W , Jr , Pomerance, C , A ngorous time bound ior lactormg mtegers
J Arner Math Soc 5 (1992), 483 516

[11] Montgomery, H L , Schm/el, A , Some arithmetic properties of polynomiaJs m several
variables In Transcendence theory advances and apphcations (ed by A Baker,
D W Masser), Chapter 13, 195 203 Acadenuc Press, London 1977

[12] Voutiei, P , An effective lower bound foi the height of algcbiaic numbers Acta Anth
74 (1996), 81 95


