Finding small degree factors of lacunary polynomials

H.W. Lenstra, Jr.

To Andrze〕 Schinzel

Abstract

If K is an algebraic number field of degree at most m over the field \mathbf{Q} of rational numbers, and $f \in K[X]$ is a polynomial with at most k non-zero terms and with $f(0) \neq 0$, then for any positive integer d the number of irreducible factors of f in $K[X]$ of degiee at most d, counted with multiplicities, is bounded by a constant that depends only on m, k, and d This is proved in a companion paper (H W Lenstra, Jr, "On the factorization of lacunary polynomials") In the present paper an algorithm for actually finding those factors is presented The algorithm assumes that K is specified by means of an irreducible polynomial h with integral coefficients and leading coefficient 1 , such that $K=\mathbf{Q}(\alpha)$ for a zero α of h Also, the polynomial $f=\sum_{1} a_{2} X^{2}$ is supposed to be given in its sparse representation, 1 c , as the list of pairs $\left(2, a_{b}\right)$ for which $a_{t} \neq 0$, each a_{1} being represented by means of its vector of coefficients on the vector space basis $1, \alpha$, ,$\alpha^{(\mathrm{dcg} l \mid)-1}$ of K over \mathbf{Q} If l denotes the "length" of these input data, when written out in binary, then the running time of the algorithm, measured in bit operations, is at most $(l+d)^{c}$ for some absolute and effectively compuiable constant c Taking $K=\mathbf{Q}$ and $d=1$, one deduces that all rational zeroes of a sparsely represented polynomial with rational coefficients can be found in polynomial time This answers a question raised by F Cucker, P Konan, and S Smale

1991 Mathematics Subject Classffication Prımary 11R09, IIY16
Kcy words lacunary polynomial, computational complexity
Acknowledgements. The author was supported by NSF under grant No DMS 92-24205 He thanks J A Carrk, C J Smyth, and J D Vaaler for helpful assistance

1. Introduction

F Cucker, P Korran, and S Smale [2] exhibited a polynomial time algorithm accomplishing the following Suppose that a polynomial $f=\sum_{i} a_{t} X^{2}$ in one variablo with coofficients in the ring \mathbf{Z} of integers is specified in its sparse representation, 1 c , by the list of pairs $\left(\imath, a_{1}\right)$ for which $a_{\imath} \neq 0$ Then the algorithm finds all zorocs of f in \mathbf{Z} Onc of the questions they raised is whether one can also find all rational zeroes of f in polynomial time In the present paper I show that this is indeed the
case Rational zeroes correspond to irreducible factors of degree 1 over the field \mathbf{Q} of rational numbers, and my result extends to finding rreducible factors of low degrees over algebraic number ficlds

For a ring R, let $R[X]$ denote the ring of polynomials in one variable X over R A polynomial is monic if its lcading coefficient is 1

Theorem. There is a deterministuc algorithm that, for some positive rcal number c, has the following property given an algebravc number field K, a sparsely represented non-zero polynomial $f \in K[X]$, and a positvec integer d, the algorthm finds all monic urreducible factors of f in $K[X]$ of degree at most d, as well as theur multiplucuties, and at spends time at most $(l+d)^{c}$, where l denotes the length of the input data

The conventions in this theorem are as in [8, Section 2] Rational numbers are represented as fractions of integers An algebraic number field K is supposed to be specified by means of a monic irreducible polynomial $h \in \mathbf{Z}[Y]$ such that $K=\mathbf{Q}(\alpha)$ for a zero α of h, an element of K, such as a coefficient of f, is then represented by means of its vector of coefficients on the vector space basis $\left(\alpha^{\prime}\right)_{f=0}^{m-1}$ of K over \mathbf{Q}, where $m=\operatorname{deg} h$ Here the polynomial $h=\sum_{j=0}^{m} h_{1} Y^{\jmath}$ is densely represented, 1 e , by means of the list of all pairs $(\jmath, h),, 0 \leq \jmath \leq m$, including those for which $h_{j}=0$ The length (or the szze) of the mput data is defined in $[8,21]$ (cf [2, Sec 1]), it may informally be thought of as the number of bits necded to spell out the data in binary The time taken by an algorithm is measured in bit operations

One way of finding the irreducible factors of f in $K[X]$ is first to convert f from its sparse to its dense representation and next to apply one of the wellknown polynomal time algorithms (sec [4, 6]) for factoring densely represented polynomials over algebraic number fields This procedure, however, fails to satisfy the time bound stated in the theorem Consider, for example, the case in which $f=X^{n}-1$ for large n, with fixed d and K, then the length l of the data has order of magnitude $\log n$, and the length of the dense representation of f, which is about n, is exponential in l, so it cannot be written down within time $(l+d)^{c}$

Our result is "uniform in K " rather than having a scparate algorithm for each K, we have one single algorithm that accepts data specifying K as part of the input, for fixed d, the running time is polynomially bounded in terms of the length of these data and the data specatying f For varying d, the running time can still be said to be polynomially bounded in terms of the length of the mput data and the possible length of the output, since the polynomials produced by the algorithm are densely represented and may have degree up to d However, the algorithm may spend time exponential in $\log d$ and still find no factors

The number of different factors found by the algorithm is at most an absolute constant times $k^{2} 2^{n} \quad n \log (2 n k)$, where k is the number of non-zero terms of f and $n=d\left[\begin{array}{ll}K & \mathbf{Q}\end{array}\right]$, by $[9$, Theorem 1] This is an exponential bound, but it is completely mdependent of the degree and the coefficients of f and of the coefficients of the polynomial defining K

The idea behind the algorithm is best illustrated on an easier problem. Suppose that a sparsely represented polynomial $f \in \mathbf{Q}[X]$ as well as a rational number x are given. How does one test in polynomial time whether or not $f(x)$ vanishes? Just substituting x for X in f is not feasible, since if the degree of f is very large then $f(x)$ may be too large to write down, let alone to calculate. Fortunately, if it is just a matter of testing whether $f(x)$ vanishes, one can get away with a much simpler procedure. Namely, excluding the easy cases $x= \pm 1$, one proves that a large degree polynomial with not many non-zero terms can vanish in x only if it does so for obvious reasons, namely if there are "widely" spaced non-negative integers u and "low" degree polynomials f_{u} with $f_{u}(x)=0$ and $f=\sum_{u} f_{u} \cdot X^{u}$. The bounds that make this statement valid depend on the number of non-zero terms of f and on the sizes of the numerators and denominators of its coefficients, but they do not depend on x. Thus, to test whether f vanishes at a given rational number $x \neq \pm 1$, one "breaks" f into appropriate polynomials f_{u} and one tests whether they all vanish at x.

The algorithm underlying our theorem follows the same idea, and it is presented in Section 4. The basic result justifying the procedure (Proposition 2.3) is formulated and proved in Section 2. Section 3 contains several auxiliary algorithms, one of which finds the cyclotomic factors of f. The phenomenon that these require separate treatment is familiar from Schinzel's work on factors of lacunary polynomials.

Should the need for finding small degree factors of sparse polynomials over algebraic number fields cver arise, then a suitable variant of my method may very well have practical value; however, as it stands it is designed only to lead to a valid and efficient proof of the theorem.

Scveral results in this papor assert the existence of algorithms with certain properties. In each case, such an algorithm is actually exhibited in the paper itsclf or in one of the references. All these algorithms are deterministic, and the constants appearing in running time estimates are effoctively computable. Polynomials are densely represented in algorithms, unles. it is explicitly stated that they are sparsely represented.

By \mathbf{R} we denote the field of real numbers, and by \mathbf{C} the ficld of complex numbors. The degree of a field extension $E \subset F$ is written $[F: E]$. The multiplicative group of non-zero elements of a field F is denoted by F^{*}.

2. Heights and lacunary polynomials

Let $\overline{\mathbf{Q}}$ denote an algebraic closure of \mathbf{Q}, and let $K \subset \overline{\mathbf{Q}}$ be a finite extension of \mathbf{Q}. Write M_{K} for the set of non-trivial prime divisors of K, and for each $v \in M_{K}$, let $\|\cdot\|_{\nu}: K \rightarrow \mathbf{R}$ be a corresponding valuation; we assume that these valuations are normalized as in [5, Chap. 2, Sce. 2]. This normalization is characterized by the facts that the product formula

$$
\begin{equation*}
\prod_{v \in M_{K^{K}}}\|x\|_{v}=1 \quad \text { for all } x \in K^{+} \tag{2.1}
\end{equation*}
$$

holds, and that the relative height function

$$
H_{K} \quad K \rightarrow \mathbf{R}, \quad H_{K}(x)=\prod_{v \in M_{K}} \max \left\{1,\|x\|_{v}\right\}
$$

(see [5, Chap 3, Sec 1]) satisfies $H_{K}(k)=k^{[K \mathrm{Q}]}$ for all positive integers k
The absolute height function $H \quad \mathbf{Q} \rightarrow \mathbf{R}$ is defined by

$$
H(x)=H_{K}(x)^{1 /[K \mathbf{Q}]}
$$

where K is such that $x \in K$, this is independent of the choice of K For example, for $r, s \in \mathbf{Z}, s>0, \operatorname{gcd}(r, s)=1$ one has $H(r / s)=\max \{|r|, s\}$

For a pontive integer n, we define

$$
c(n)=\frac{2}{n(\log (3 n))^{3}} \quad \text { if } n \geq 2
$$

and $c(1)=\log 2$ This is a decreasing function of n

Proposition 2.2. Let n be a positive integer Suppose that $x \in \overline{\mathbf{Q}}^{*}$ is of degree at most n over \mathbf{Q}, and that $\log I I(x)<c(n)$ Then x is a root of unty

Proof See [12, Corollary 2] This proves 22
If K is as above, then for $v \in M_{K}$ we extend $\left\|\|_{v}\right.$ to a function $K[X] \rightarrow \mathbf{R}$ by $\left\|\sum_{i} a_{\iota} X^{\imath}\right\|_{v}=\max ,\left\|a_{\iota}\right\|_{v}$ Define $\mathbf{H} \quad \overline{\mathbf{Q}}[X] \rightarrow \mathbf{R}$ by $\mathbf{H}(f)=\prod_{v \in M_{K}}\|f\|_{v}^{1 /[K \mathbf{Q}]}$, where K is chosen such that $f \in K[X]$, this is mdependent of the choice

Proposition 2.3. Let k, t, u be non-negative integers, and let $f \in \overline{\mathbf{Q}}[X]$ be a polynomal with at most $k+1$ non-zcro terms Suppose that n is a posituve integer with

$$
u-t>\frac{\log (k \mathbf{H}(f))}{c(n)}
$$

and that f 2s wrattcn as the sum of two polynomals $g, h \in L[X]$ such that every non-zcro term of g has degree at most t and puery non-zero term of h has degree at least a Then every zcro of f in \mathbf{Q}^{+}that has degrec at most n over \mathbf{Q} and that is not a root of unity is a common zero of g and h

Proof Let $x \in \mathbf{Q}^{+}$be of degree at most n over \mathbf{Q}, and suppose that $f(x)=0$ Then we have $g(x)=-h(x)$ We shall assume that $g(x)=-h(x) \neq 0$, and prove that x is a root of unity

Let K be chosen such that $x \in K$ and $f \in K[X]$ Then we have $g, h \in K[X]$ Let $v \in M_{K}$ From $h(x) \neq 0$ it follows that h has at least 1 non-sero term, and sunce f has at most $k+1$ non-zero terms 11 follows that g has at most k non-zero terms Thus $g(x)$ is a sum of at most k terms a, x^{\prime}, with $\|a,\|_{v} \leq\|f\|_{v}$ and $\iota \leq t$ This leads to the estimate

$$
\|g(r)\|_{0} \leq \max \left\{1,\|k\|_{0}\right\} \quad\|f\|_{0} \quad\|x\|_{0}^{\prime} \quad \text { if }\|x\|_{0} \geq 1
$$

Likewise, $h(x)$ is a sum of at most k terms $a_{t} x^{i}$, with $\left\|a_{\imath}\right\|_{u} \leq\|f\|_{v}$ and $i \geq u$, so

$$
\|h(x)\|_{u} \leq \max \left\{1,\|k\|_{v}\right\} \cdot\|f\|_{v} \cdot\|x\|_{v}^{u} \quad \text { if }\|x\|_{v} \leq 1 .
$$

We have $\|g(x)\|_{v}=\|h(x)\|_{v}$, so we can combine these two statements in

$$
\max \left\{1,\|x\|_{v}\right\}^{u-\iota} \cdot\|g(x)\|_{v} \leq \max \left\{1,\|k\|_{v}\right\} \cdot\|f\|_{v} \cdot\|x\|_{v}^{u}
$$

Raise this to the power $1 /[K: \mathbf{Q}]$ and take the product over $v \in M_{K}$. Using the fact that $H(k)=k$, and applying (2.1) to x and to $g(x)$ (which are both supposed to be non-zero), one finds that

$$
H(x)^{u-l} \leq k \cdot \mathbf{H}(f)
$$

By hypothesis, we have $k \cdot \mathbf{H}(f)<\exp ((u-t) c(n))$. It follows that $\log H(x)<c(n)$, so 2.2 implies that x is a root of unity. This proves 2.3 .

Proposition 2.4. Let $K \subset \overline{\mathbf{Q}}$ be a finate extension of \mathbf{Q}, and let $f \in K[X]$. Let r be a positive integer such that all coefficients of $r f$ are algebranc integers, and let s be a positive real number with the property that for every field homomorphism $\sigma: K \rightarrow \mathbf{C}$ and every coefficient a of f one has $|\sigma a| \leq s$. Then one has $\mathbf{H}(f) \leq r s$.

Proof. First assume that $r=1$. Then each cocfficient of f is an algebraic integer, so $\|f\|_{v} \leq 1$ for each non-archimedean $v \in M_{K}$. Also, by definition of s we have $\|f\|_{v} \leq s$ for each real $v \in M_{K}$, and $\|f\|_{v} \leq s^{2}$ for cach complex $v \in M_{K}$. Collecting all v, one obtains $\mathbf{H}(f) \leq s$, since the number of real v plus twice the number of complex v equals $[K: \mathbf{Q}]$. The case $r>1$ is reduced to the case $r=1$ by the formula $\mathbf{H}(r f)=\mathbf{H}(f)$, which follows from (2.1), applied to $x=r$. This proves 2.4.

3. Auxiliary algorithms

Proposition 3.1. There is an algorıthm that, for some positive constant c_{1}, has the following property: given an algebranc number field K and a densely represented non-zero polynomial $f \in K[X]$, the algorithm finds the complete factornzation of f into monic urreducuble factors in $K[X]$, and it does so in time at most $\mathcal{l}^{\prime 1}$, where l denotes the length of the data.

For the proof of this proposition, and a description of the algorithm, we refer to $[4 ; 6]$. It makes use of lattice basis reduction [7].

Let K be a field of characteristic zero. For $f \in K[X]$, we define the sparse derivative $f^{[1]}$ of f to be the ordinary derivative of f / X^{\prime}, if X^{\prime} is the highest power of X dividing f, and we define it to be 0 if $f=0$; the higher sparse derivatives $f^{[2]}$ are defined inductively by $f^{[1]}=\left(f^{[1-1]}\right)^{[1]}$, and for convenience we set $f^{[0]}=f$. If $f \neq 0$, then clearly the number of non-zero terms of $f^{[1]}$ is one less than the number of non-zero terms of f. It follows that $f^{[2]}=0$ if and only if \imath is greater than or equal to the number of non-zero terms of f.

Proposition 3.2. Let K be a field of characterıstic zero, let $f \in K[X]$ be a nonzero polynomıal, and let $g \in K[X]$ be an arreducıble polynomaal with $g(0) \neq 0$ Then the number of factors of g in f is equal to $\min \left\{\imath \geq 0 \quad g\right.$ does not divide $\left.f^{[t]}\right\}$, and ut is smaller than the number of non zero terms of f

Proof 'The first assertion is proved in a routine manner by induction on the number of factors of g in f If f has exactly $k+1$ terms, then $f^{[k]}$ is a polynomial with exactly one term, which is not divisible by g Thus the socond assortion follows from the first This proves 32

The second assertion can also be derived from an observation of Hajos (sce [3, 11, Lemma 1])

Proposition 3.3. There is an algorıthm that, for some posituve constant c_{2}, has the following property Given an algebranc number field K and a sparsely represented non-zero polynomal $f \in K[X]$, the algorithm computes the sparse repre scntations of the sparse dervatives $f^{[2]}$ for all $\imath \geq 0$ that are less than the number of non zero terms of f and it does so in time at most $l^{c^{2}}$, where l denotes the lingth of the data

Proof This is obvious - one just computes the polynomials $f^{[i]}$ directly from the definition This proves 33

Proposition 3.4. There as an algorithm that, for some posituve constant c_{3}, has the following propcrty given an algebraic number field K, a sparsely represented non zero polynomaal $f \in K[X]$, and a positive integcr r, the algorithm computes the greatest common divzsor of f and $X^{r}-1$ in $K[X]$, and it docs so in time at most $(l+r)^{\text {r3 }}$, wherel dcnotes the length of the data

Proof The algorthm runs as follows Let $f=\sum_{1} a_{1} X^{t()}$ For cach n, compute the remainder $u(\imath)$ of $t(\imath)$ upon division by r Next compute the polynomial $h=\sum_{1} a_{2} X^{u(1)}$, and use the Euchdean algorithm for polynomials in order to compute the greatest common divisor of h with $X^{r}-1$. This ged is the output of the algorithm

To prove the correctncss, it suffices to remark that from $t(\imath) \equiv u(l) \bmod r$, for each ι, it follows that $f \equiv h \bmod X^{\gamma}-1$, and therefore $\operatorname{gcd}\left(f, X^{\prime}-1\right)=$ $\operatorname{gcd}\left(h, X^{\prime}-1\right)$

The running time estimate is proved in a completely stranghtorwad way, note that h is densely represented, and has degree less than r For a running time stimate of the Euchdean algorithm for polynomials, see [4, Cor 18$]$ This proves Proposition 34

If K is a field, we call a polynomial $g \in K[X]$ cyclotomuc if, for some positive integer I, it is a monic irreducible factor of $X^{\prime}-1$ in $K[X]$

Proposition 3.5. There is an algonthm that, for some positive constant (4, has the following property guocn an algebrazc number field K, a sparsely rcpresented
non-zero polynomial $f \in K[X]$, and a positive unteger d, the algorathm computes in time at most $(l+d)^{c_{4}}$ all cyclotomic factors g of f in $K[X]$ that have degree at most d, as well as, for each such g, the multuplucaty $m(g)$ of g as a factor of f, here l denotes the length of the input data

Proof We clamm that the following algorithm has the stated properties It produces a list of pairs $g, m(g)$, which is initially supposed to be empty

For each integer $r=1,2, \quad, 2\left(\begin{array}{ll}d & {\left[\begin{array}{ll}K & \mathrm{Q}\end{array}\right)^{2} \text { in succession, do the following }}\end{array}\right.$ Compute $\operatorname{gcd}\left(f, X^{r}-1\right)$ with the algorthm of 34 , factor $\operatorname{gcd}\left(f, X^{\gamma}-1\right)$ mto rreducible factors in $K[X]$ by means of the algorathm of 31 , and discard those urreducible factors that appear already on the list or have degree greater than d Adjoin the remaining irreducible factors g to the list, and for each of them compute $m(g)$ from the formula

$$
m(g)=\min \left\{\imath \quad 1 \leq \imath \leq k, g \text { does not divide } \operatorname{gcd}\left(f^{[\imath]}, X^{\prime}-1\right)\right\}
$$

where k is one less than the number of non-zcro terms of f, here $f^{[2]}$ is computed in its sparse representation by the algorithm of 33 , and its ged with $X^{\prime}-1$ is computed in its dense representation as in 34

This completes the description of the algorithm
The proof of the bound for the running time is straughtforward, and left to the reader We prove that each cyclotomic factor g of f of degree at most d is found by the algorithm, and that $m(g)$ is its multiplicity Let g be such a factor, let ζ be a zero of g in an extension field of K, and let r be the multiphcative order of ζ Denoting the Euler φ-function by φ, we have

$$
\begin{aligned}
& \varphi(r)=\left[\begin{array}{ll}
\mathbf{Q}(\zeta) & \mathbf{Q}
\end{array}\right] \leq\left[\begin{array}{ll}
K(\zeta) & \mathbf{Q}
\end{array}\right]=\left[\begin{array}{ll}
K(\zeta) & K
\end{array}\right]\left[\begin{array}{ll}
K & \mathbf{Q}
\end{array}\right] \\
&=\left(\begin{array}{ll}
\operatorname{deg} g)
\end{array}\left[\begin{array}{ll}
K & \mathbf{Q}
\end{array}\right] \leq d\left[\begin{array}{ll}
K & \mathbf{Q}
\end{array}\right]\right.
\end{aligned}
$$

The elementary mequality $\varphi(r) \geq \sqrt{r / 2}$ now mplies that $r \leq 2\left(d \quad\left[\begin{array}{ll}K & \mathrm{Q}\end{array}\right]\right)^{2}$ Therefore g is indeed found by the algorithm From Proposition 32 it follows that $m(g)$ equals the multiplicity of g as a tactor of f This proves 35

The function \mathbf{H} in the following result is as defired in Section 2, with \mathbf{Q} equal to an algebranc closure of \mathbf{Q} that contams K

Proposition 3.6. There is an algorithm that, for some positzve constant c_{5}, has the following property given an algebraic number field K and a sparsely represented non zero polynomıal $f \in K[X]$, the algorithm computes in time at most l° a positive integer b satisfynng $b \geq k \mathbf{H}(f)$, here k is 1 less than the number of non-zero terms of f, and l denotes the length of the unput data

Proof As in the introduction, it is assumed that K is specified by means of an urreducible polynomial $h=\sum_{j=0}^{m} h_{j} Y^{\prime} \in \mathbf{Z}[Y]$, with $h_{m}=1$, with the property that $K=\mathbf{Q}(\alpha)$ for some zero α of h Also, each coefficient a_{\imath} of f is supposed to be represented by a vector $\left(q_{1,}\right)_{j=0}^{m-1}$ with $q_{2 j} \in \mathbf{Q}$ for which $a_{i}=\sum_{j=0}^{m-1} q_{1 j} \alpha^{j}$ For each field homomorphism $\sigma \quad K \rightarrow \mathbf{C}$, the complex number $\sigma \alpha$ is a u ero of h and therefore satisfies $|\sigma \alpha| \leq B=\sum_{j=0}^{m-1}\left|h_{j}\right|$ Hence if r is a positive integer for which
$r \cdot q_{1,} \in \mathbf{Z}$ for all i and j, then one has

$$
\left|\sigma\left(r \cdot a_{\imath}\right)\right| \leq s_{\imath}=\sum_{j=0}^{m-1}\left|r \cdot q_{\imath}\right| \cdot B^{\jmath}
$$

for all field homomorphisms $\sigma: K \rightarrow \mathbf{C}$ and all i. Thus, by 2.4 the number $b=k \cdot \max _{1} s_{\imath}$ is a positive integer satisfying $b \geq k \cdot \mathbf{H}(f)$. One can compute b in polynomial time in a straightforward way, taking for r the least common multiple (or even the product) of the denominators of the $q_{\imath \jmath}$. This proves 3.6.

4. Proof of the theorem

The proof of the theorem stated in the introduction consists of three parts: the description of the algorithm underlying the theorem, the proof of its correctness, and the running time estimate.

To describe the algorithm, let an algebraic number field K, a sparsely represented non-zero polynomial $f \in K[X]$, and a positive integer d be given. The algorithm produces a list of pairs $g, m(g)$, which is initially supposed to be empty.

Step 1. Find the cyclotomic factors. Use the algorithm of 3.5 to find all cyclotomic factors g of f in $K[X]$, as well as their multiplicities $m(g)$.

Step 2. Compute a bound for the gap width. Let $k+1$ be the number of non-zero terms of f. Use the algorithm of 3.3 to compute $f^{[\ell]}$ for $0 \leq i<k$ in their sparse representations. Next, applying the algorithm of 3.6 to each $f^{[l]}$, compute positive integers b_{ι} satisfying

$$
b_{i} \geq(k-i) \cdot \mathbf{H}\left(f^{[l]}\right) \quad \text { for } i=0,1, \ldots, k-1
$$

Finally, compute a positive integer b satisfying

$$
b \geq \frac{\max \{\log b,: 0 \leq i<k\}}{c(d \cdot[K: \mathbf{Q}])}>b-2
$$

with the function c as defined in Section 2. For the logarithms, one can use the algorithms in [1]. (For the significance of $b-2$, see [10, Sec. 1, end].)

Step 3. Splat f at the bug gaps. Let $f=\sum_{t \in T} a_{t} X^{t}$, where T is a set of $k+1$ non-negative integers and $a_{t} \in K^{*}$ for each $t \in T$. Ordering T, determine the subset $U=\{u \in T$: there does not exist $t \in T$ with $u-b \leq t<u\}$ of T, where b is as computed in Step 2. Next, for each $u \in U$, determine the subset $T(u)=\{t \in T: u=\max \{v \in U: v \leq t\}\}$ of T. (Then T is the disjoint union of the sets $T(u)$, for $u \in U$, and each $T(u)$ contains u.) To conclude this step, compute the polynomials

$$
f_{u}=\sum_{t \in T(u)} a_{l} X^{1-u} \quad(u \in U)
$$

in their dense representations. (These polynomials satisfy $f_{u}(0) \neq 0$ and $\left.f=\sum_{u \in U} f_{u} \cdot X^{\prime \prime}.\right)$

Step 4. Factor a dense polynomial. Using the Euclidean algorithm for polynomials (see [4, Cor. 1.8]), compute $h=\operatorname{gcd}_{u \in U} f_{u}$. Factor h into monic irreducible factors in $K[X]$ by means of the algorithm of 3.1.

Step 5. Assemble the results. Discard each monic irreducible factor of h that occurs already among the factors computed in Step 1 or has degree greater than d. Adjoin each of the remaining monic irreducible factors g of h to the list, with $m(g)$ cqual to the multiplicity of g as a factor of h. Finally, if 0 does not belong to the set T of Step 3, adjoin $g=X$ to the list, with $m(X)$ equal to the smallest element of T.

This concludes the description of the algorithm.
We noxt prove the correctness. The parenthetical statements in Step 3 are readily verified. The polynomial h divides each f_{u}, so it divides f. One deduces that the polynomials g produced by the algorithm are indeed monic irroducible factors of f in $K[X]$ of degree at most d. Also, h is not divisible by X, since none of the f_{u} is, so from Step 5 one sees that no g is produced twice.

Conversely, let g be a monic irreducible factor of f in $K[X]$ of degree at most d. We prove that g is produced by the algorithm, and that $m(g)$ equals the multiplicity of g as a factor of f. These statements are obvious if g is cyclotomic (Step 1) and if $g=X$ (Stcp 5). In the other case, let $\overline{\mathbf{Q}}$ be an algebraic closure of \mathbf{Q} containing K, and let $x \in \overline{\mathbf{Q}}$ be a zero of g. By hypothesis, x is not a root of unity, and $x \neq 0$. The degree $[\mathbf{Q}(x): \mathbf{Q}]$ of x over \mathbf{Q} satisfies

$$
[\mathbf{Q}(x): \mathbf{Q}] \leq[K(x): \mathbf{Q}]=[K(x): K] \cdot[K: \mathbf{Q}]=(\operatorname{deg} g) \cdot[K: \mathbf{Q}] \leq d \cdot[K: \mathbf{Q}]
$$

For each $u \in U$, we now apply 2.3 with $n=d \cdot[K: \mathbf{Q}]$, and with

$$
\sum_{v \in U, v<u} f_{v} \cdot X^{v}, \quad \sum_{v \in U, v \geq u} f_{v} \cdot X^{v}
$$

in the roles of g and h. From

$$
\frac{\log (k \cdot \mathbf{H}(f))}{c(n)} \leq \frac{\log b_{1}}{c(d \cdot[K: \mathbf{Q}])} \leq b
$$

and the definitions of U and f_{u} it follows tha the inequality of 2.3 is satisfied. Now 2.3 asserts that x is a zero of both polynomials just displayed. Since this is the case for each $u \in U$, one infers that $f_{u}(x)=0$ for all $u \in U$, and therefore that $h(x)=0$. Hence g is an irreducible factor of h, and it is produced by the algorithm. To show that $m(g)$ is the multiplicity of g in f, we repeat the argument just given with $f^{[l]}$ in the role of f, for each $i=1,2, \ldots, k-1$. The representation $f=\sum_{u \in U} f_{u} X^{u}$ induces a similar representation of each $f^{[l]}$. Thanks to the choice of b we can still apply (2.3). Using 3.2, one deduces that x is a j-fold zero of f if and only if it is a j-fold zero of each f_{u}, the case $j>k$ being vacuously correct. Thus, the multiplicity of g as a factor of f is the same as the multiplicity $m(g)$ of g as a factor of $h=\operatorname{gcd}_{u} f_{u}$. This proves the correctness of the algorithm.

We prove the running time cstimate. Since cach b_{7}, in Step 2 , is computed by a polynomial time algorithm, its logarithm is bounded by a constant power of the length l of the data. Also, from the definition of $c(n)$ in Section 2 one sees that
$1 / c(n)$ is bounded by a constant times n^{2} It follows that the bound b computed in Step 2 is bounded by a constant power of $l+d$ Now let $u \in U$ The definitions of U and $T(u)$ imply that any two consecutive non-zero terms of f_{u} have degrees differing by at most b Since f_{u} has at most $k+1$ non-zero terms, one of which has degrec 0 , it follows that $\operatorname{deg} f_{u} \leq k \quad b$ Therefore the length of the dense representation of f_{u} is bounded by a constant power of $l+d$ This implies that the time taken by the polynomial time operations on the f_{u} in Step 4 remans within the bound stated in the theorem It is a routine matter to prove that this also applies to the time taken by the other steps of the algorithm

This proves the theorem stated in the introduction

References

[1] Brent, R P, Fast multiple-precision evaluation of elementary functions J Assoc Comput Mach 23 (1976), 242-251
[2] Cucker, F, Korran, P, Smale, S, A polynomal time algorithm for dophantıne equations in one variable J Symbolic Comput, to appear
[3] Hajos, G, [Solution to problem 41] (in Hungarian) Mat Lapok 4 (1953), 4041
[4] Landau, S, Factoring polynomials over algebracc number fields SIAM J Comput 14 (1985), 184195
[5] Lang, S, Fundamentals of diophantine geometry Spınger, Ncw York 1983
[6] Lenstra, A K, Factorng polynomials over algebraic number fields in Computer algebra (ed by J A van Hulaen, Lecture Notes in Comput Scı 162), 245-254 Springer, Berln 1983
[7] Lenstra, A K, Lenstra, H W , Jr, Lovasz, L , Factorıng polynommals with rational coefficients Math Ann 261 (1982), 515534
[8] Lenstra, H W, Ir, Algorithms in algebraic number theory Bull Amer Math Soc (NS) 26 (1992), 211-244
[9] - On the factorization of lacunary polynomials This volume, 277291
[10] Lenstra, H W, Jr, Pomerance, C, A rigorous time bound for factoring integers J Amer Math Soc 5 (1992), 483516
[11] Montgomery, H L , Schinzel, A , Some arithmetic properties of polynomials in several variables In Transcendence theory advances and applications (cd by A Baker, D W Masser), Chapter 13, 195203 Academic Press, London 1977
[12] Voutier, P, An effective lower bound for the height of algebraic numbers Acta Arith 74 (1996), 8195

