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To study the vesicle-substrate unbinding transition and the onset of microemulsion aggregation, we
calculate the curvature free energy of a vesicle adhered to a substrate and of two microemulsion
droplets forming a dimer. Analytical expressions are derived in the small bending rigidity regime in
which the length (k/s)1/2, constructed from the rigidity constant of bendingk and surface tension
s, is small compared to the typical size of the vesicle~droplet!, (k/s)1/2!R. The leading
contribution to the curvature free energy is shown to be proportional tok1/2. The formulas derived
are used to understand the experimentally observed aggregation of microemulsion droplets
occurring in the direction of vanishing spontaneous curvature. In this way we intend to bridge the
gap between the liquid state theories used to describe aggregation processes in microemulsion
systems and the bending energy concept originally introduced by Helfrich to describe vesicles
shapes and fluctuations as well as phase diagrams of microemulsion systems. ©1999 American
Institute of Physics.@S0021-9606~99!71739-3#

I. INTRODUCTION

The introduction of Helfrich’s expression for the curva-
ture free energy1 presented an important step in the theoret-
ical understanding of complex interfaces. In terms of the two

elasticity or rigidity constants,k and k̄, as well as the radius
of spontaneous curvatureR0 , the Helfrich free energy was
able to describe the shape, fluctuations and free energy of
interfaces covered by a monolayer or bilayer of surface ac-
tive molecules such as~in!soluble surfactants and lipids. The
Helfrich energy has, therefore, been used to describe mem-
branes, vesicles, microemulsion systems and to calculate
their respective phase diagrams.2 Seifert and Lipowsky3,4

were the first to apply the Helfrich free energy for the de-
scription of the shape and free energy of a vesicle adhered to
a solid substrate~see Fig. 1!. In particular they calculated
phase diagrams of the unbinding transition in which the
vesicle desorbs from a substrate. Unfortunately, the differen-
tial equations describing the shape of the adhered vesicle
cannot, in general, be solved analytically so that Seifert and
Lipowsky had to resort to solving these shape equations
numerically.3–5 The large number of parameters such as the
prescribed surface areaA, vesicle volumeV, the rigidity
constants as well as the adhesion energy makes numerical
work rather tedious, however, and the need arises for limit-
ing analytical results. In this article we derive such a limiting
solution by calculating the shape and free energy of a vesicle
adhered to a substrate, or of two microemulsion droplets
forming a dimer, under the condition that the rigidity con-

stantk is small.6 Specifically, the length (k/s)1/2 constructed
from the rigidity constant and surface tensions, will be as-
sumed to be small compared to the typical size of the system,
(k/s)1/2!R. The leading order contribution in smallk to the
free energy of the adhered vesicle is calculated and formulas
are presented describing vesicle adhesion under different
conditions of constant volume and constant pressure. Since
the free energy in the case of a single vesicle adhered to a
substrate can be calculated numerically exact, the compari-
son with our formulas performed in Sec. II is done mainly as
a numerical check of our results. Our main motivation for the
present calculation lies in the application of our formulas to
the description of droplet aggregation in microemulsions
where such numerical work is difficult due to the large num-
ber of parameters involved.

At present, a complete understanding of aggregation pro-
cesses and shape transformations in microemulsion systems
is lacking.6 Certain aspects, however, appear to be well un-
derstood. It seems well established by, among others, the
work of Safran and co-workers,2,7 that the curvature energy
of the interfacial surfactant layer, as described by the Hel-
frich free energy, plays an important role in the description
of shape fluctuations and the manystructural transitions that
are encountered.8 These include transitions from spherical to
cylindrical micelles,9 their ordering into crystalline~e.g.,
hexagonal! arrays, transitions from cylindrical micelles to
lamellar liquid crystalline phase, as well as transitions from
cylindrical micelles to bicontinuous monolayer phases and
from bicontinuous bilayer phases~L3! to lamellar liquid
crystalline phases.a!Electronic mail: edgar@chemfcb.leidenuniv.nl
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Also observed is a liquid–vaporlike transition~with two
coexisting microemulsion droplet phases! which, however, is
usually described theoretically in terms of liquid state theo-
ries treating the microemulsion droplets ashard spheresor
sticky hard spheres.10 These theories, therefore, do no take
into account the elastic properties of the surfactant layer, nor
do they account for the observedtemperature directionin
which phase separation takes place. Experiments have
shown11 that aggregation processes~which may ultimately
lead to the observed phase separation! in microemulsions
occur both with increasing and decreasing temperature de-
pending on the microemulsion system studied~e.g., ionic or
nonionic surfactant, water-in-oil or oil-in-water microemul-
sions!. In all cases, however, aggregation takes place in the
direction of vanishing spontaneous curvature~e.g., with in-
creasing temperature in water-in-oil microemulsions stabi-
lized by an ionic surfactant!. To understand the role played
by the spontaneous curvature and to achieve a consistent
picture of the various phenomena observed in microemulsion
systems, the Helfrich curvature free energyshould be in-
cluded in any description of microemulsion droplet
aggregation.12

In this work we present the necessary first step in the
description of droplet aggregation by calculating the curva-
ture free energy of two microemulsion droplets forming a
dimer. One can view the formation of dimers as the onset of
the observed aggregation phenomena and the main question
that we set ourselves out to answer in this article is whether
we are able to understand the formation ofdimers in the
direction of vanishing spontaneous curvature. The calcula-
tion of the dimerization free energy is essentially the same as
in the case of vesicle adhesion when instead of a vesicle
adhered to a substrate one then describes the adhesion of two
microemulsion droplets. For two reasons the small bending
rigidity regime seems appropriate for this calculation. First,
experimentally it seems well established13 that the free mi-
croemulsion droplets are spherical or nearly spherical. This
can only be the case when the influence of the rigidity con-
stant is small compared to that of the surface tension. Fur-
thermore, as discussed above, it seems that in the description
of microemulsion aggregation, the important curvature vari-

able is not the rigidity constant, but rather the radius of spon-
taneous curvature.14

The outline of this article is as follows. In Sec. II we
introduce the necessary ingredients for the calculation of the
shape and free energy of a vesicle adhered to the substrate.
The calculation of the leading contribution to the free energy
in small k is calculated leaving most of the details of the
calculation to the Appendix. At the end of the section ex-
plicit formulas for the free energy of the vesicle adhered to a
substrate are presented and compared to numerical solutions
of the shape equations. In Sec. III we apply the free energy
obtained in Sec. II to study the dimerization of microemul-
sion droplets. The merits and limitations of our calculation
are discussed in Sec. IV.

II. HELFRICH FREE ENERGY

In this section we concentrate on the problem of a
vesicle adhered to a solid substrate~Fig. 1!. Different contri-
butions to the free energy describe its shape. The first con-
tribution is the Helfrich free energy1 describing thebending
energy of the vesicle membrane in terms of the radius of
spontaneous curvatureR0 , the rigidity constant associated
with bending,k, and the rigidity constant associated with
Gaussian curvature,k̄,

FH5E dAFs2
2k

R0
J1

k

2
J21 k̄KG , ~2.1!

wheres is the surface tension of theplanar membrane sur-
face. The above free energy features an integral over the
whole surface area,A, of the total curvature,J51/R1

11/R2 and Gaussian curvature,K51/(R1R2) with R1 and
R2 the principal radii of curvature at a certain point on the
surfaceA. The above form for the free energy is the most
general form in an expansion up to second order in curva-
ture, and can be viewed as defining the four coefficientss,
k/R0 , k, andk̄. The rigidity constant associated with Gauss-
ian curvaturek̄ is a measure of the energy cost for topologi-
cal changes of the surface. In our case the topology is fixed
and the term proportional tok̄ can be dropped.

The second contribution to the free energy describes the
interaction energy between the vesicle and the substrate. We
will assume that the range of the interaction between the
substrate and the vesicle is much smaller than the typical
dimension of the vesicle, so that the interaction is described
by an adhesion energy integrated over the area of contact3

Fs5E dO@Ds2s#, ~2.2!

whereO is the area of substrate-vesicle contact and where
Ds[ssv2ss is the difference in surface tension of the
substrate-vesicle surface and the bare substrate. Since the
integration in Eq.~2.1! is over thewhole surface areaA
~includingO!, we need to subtracts from Ds in the equation
above. Later, when we apply our formulas in Sec. III to the
case of two microemulsion droplets forming a dimer, we
need to replaceDs by sb/2, with sb the surface tension of
the bilayer formed in between the two droplets.

FIG. 1. Vesicle adhered to a substrate located atz50, A is the surface area
of the whole droplet including the surface areaO that is in contact with the
substrate.
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The final contribution to the free energy is~minus! the
pressure differenceDp between the inside and the outside of
the vesicle times the volumeV of the vesicle

Fp5E dV@2Dp#, ~2.3!

so that the total free energy reads

V5E dAFs2
2k

R0
J1

k

2
J2G

1E dO@Ds2s#2DpE dV. ~2.4!

The above free energy is minimal when we fix the surface
tensions and the pressure differenceDp. This would not be
the case when, for instance, instead of the surface tension,
the surface areaA is fixed, or when instead of the pressure
difference, the volume is fixed. In these examples the free
energies to be minimized areV2sA andV1DpV, respec-
tively. Below we address the different ensembles in more
detail, but for now it suffices to know that in all these differ-
ent ensembles the functional form of the free energy to be
minimized is that given in Eq.~2.4!, with eithers andDp as
fixed constants or as Lagrange multipliers fixing the surface
area and volume.

The shape of the vesicle can be determined by functional
minimization of V with respect to the shape. This leads to
the so-called shape equation4,15

Dp5sJ2
4k

R0
K2

k

2
J312kJK2kDsJ, ~2.5!

whereDs denotes thesurfaceLaplacian. This equation can
also be seen as the generalized Laplace equation since it
reduces to the Laplace equation of a sphereDp5sJ
52s/R when one insertsJ52/R, and sets the coefficients
k/R0 andk equal to zero. The shape equation@Eq. ~2.5!# is
equal to the shape equation describing the shape of afree
vesicle.15 The vesicle adhesion energy is only present in the
boundary conditionsfor the curvature at the substrate. They
are given by3

1

R1
U

substrate

50,
1

R2
U

substrate

5@2~s2Ds!/k#~1/2!, ~2.6!

whereR2 is the radius of curvature along the meridians of
the vesicle andR1 the radius of curvature perpendicular to it.
The first equation indicates that whenkÞ0, the contact angle
with which the vesicle meets the substrate is always equal to
zero. Through the second equation, first derived by Seifert
and Lipowsky,3 the value ofDs enters the description of the
shape of the adhered vesicle.

Unfortunately, the shape equations cannot be solved ana-
lytically in general. In practice one solves the shape equa-
tions numerically for given values ofs, k/R0 , k, Ds, and
Dp. With the shape of the vesicle thus obtained one is then
able to calculate the volumeV and areaA of the vesicle
together with the appropriate free energies. In this way, one
can compare the free energy with the free energy of the
unbound vesicle and locate unbinding transitions. For a more
elaborate discussion we refer to a recent review by Seifert.4

The number of parameters makes numerical work rather
tedious. Furthermore, it is difficult to gain physical insight
into the role played by the different parameters in vesicle
unbinding. In order to be able to proceed analytically we
need to make certain physically reasonable assumptions. One
such assumption, the one that we will adopt in the rest of the
article, is to assume that the rigidity constant of bending is
small. In particular, the length (k/s)1/2 will be assumed
small compared to the typical size of the vesicle, sayR. In
order to make a systematic expansion in (k/s)1/2/R, we first
assume thatk50 and thenkÞ0 but small.

A. No bending rigidity

Before we focus on determining the shape of the adhered
vesicle, we first need to address a point of possible confu-
sion. When we setk50, i.e., neglect the second order term in
the expansion in the curvature in Eq.~2.1!, this does not
imply that we will also assume that the coefficient of thefirst
order term,k/R0 , is equal to zero. Historically, the first order
term is defined to contain the rigidity constant, but it is clear
that the two coefficients,k andk/R0 are independent.

In the absence of bending rigidity, the minimization of
the free energy in Eq.~2.4! is easiest done in two steps. First,
we note that whenk50 the solution of the shape equation in
Eq. ~2.5! is that of a spherical cap~see the inset of Fig. 2!.
We know this to be the case when alsok/R0 is taken to be
zero so that the shape equation reduces to the well-known
Laplace equation, but also with the spontaneous radius of
curvature term present the shape is that of a spherical cap.
Second, we insert the spherical-cap-profile, which is fully
described by the radiusR and contact angleu, into the ex-
pression for the free energy, and then minimize with respect
to R andu.

For the spherical-cap-profile the integration of the free
energy over the surface areasA andO and over the volume
V in Eqs.~2.1!–~2.3! can be carried out to yield

FIG. 2. Height profilel (r ), with r the radial distance to thez axis, of the
vesicle in the region close to the substrate~see dashed circle in the inset!.
Lengths are in units of (k/s)1/2. r 0 is the radial distance at which the profile
meets the substratel (r 5r 0)50 andr c[R(12x2)(1/2) is the radius at which
the asymptotic spherical-cap-profile~dashed line and inset! meets the sub-
strate with contact angleu.
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FH,0~R,x!5S s2
4k

R0

1

RD2pR2~11x!1spR2~12x2!

24p
k

R0
R~12x2!~1/2! arccos~x!,

Fs,0~R,x!5~Ds2s!pR2~12x2!, ~2.7!

Fp,0~R,x!52Dp
p

3
R3~213x2x3!,

where we have definedx[cosu, and where the subscript 0
stands for the fact that we have setk50. The last term in the
expression forFH,0(R,x) stems from an integration ofJ
across the line where the spherical-cap-profile meets the sub-
strate~see Fig. 2!. The presence of this term thus implies that
in this case it isnot correct to subdivide the integration over
A into an integration over the spherical part and the flat part
(O).

The total free energy, still as a function ofR and x, is
thus given by

V0~R,x!52psR2~11x!1DspR2~12x2!

28p
k

R0
R~11x!24p

k

R0
R~12x2!~1/2!

3arccos~x!2Dp
p

3
R3~213x2x3!. ~2.8!

Finally, R andx are determined by a further minimization of
V0(R,x). From ]V0 /]x50 and]V0 /]R50 one finds the
following set of equations

Dp5
2s

R
2

4k

R0

1

R2 , ~2.9!

Ds5sx2
2k

R0

1

R
x1

2k

R0

1

R

arccos~x!

~12x2!~1/2! . ~2.10!

The first equation is the well-known Laplace equation16 with
a finite size correction originally due to Tolman.17 In the
work by Tolman the Laplace equation is written asDp
52s/R22sd/R2, so that the Tolman lengthd is related to
the radius of spontaneous curvature viasd52k/R0 .18 The
second equation determines the value of the contact angle. It
reduces to Young’s equation19 ssv5ss1s cosu when one
insertsk/R050.

With R and x given by Eqs.~2.9! and ~2.10!, the free
energyV0 in the absence of rigidity is now fully determined.
Next, we expand around this solution in smallk.

B. Small bending rigidity

In order to calculate the leading order contribution to the
free energy of the adhered vesicle in smallk, we need to
determine the shape of the vesicle. As shown in the previous
section, the shape of the profile is that of a spherical cap
whenk50 ~see the inset of Fig. 2!. In the region where the
spherical-cap-profile meets the substrate, the first derivative
of the height profile isdiscontinuousso that the curvatureJ,
which is related to thesecondderivative of the height profile,

contains a delta function. Thus, when one integratesJ2, one
finds that the curvature energy isinfinite. Therefore, for any
finite value ofk the surface profilehas to meet the substrate
with zero contact angle as described by the first boundary
condition in Eq.~2.6!. The result is that deviations of the
spherical-cap-profile to leading order ink are located in the
region where the spherical-cap-profile meets the substrate
~see Fig. 2!. The precise shape of the profile near the kink
can be determined by minimizing the curvature free energy
with the condition that far away from the kink it smoothly
crosses over to the spherical-cap-profile with radiusR and
contact anglex. Details of the calculation are presented in
the Appendix and here we only list the resulting first order
contributions to the free energy~still expressed in terms of
the radiusR and contact anglex of the asymptotic spherical-
cap-profile!

FH~R,x!5FH,0~R,x!12pR~12x!1/2~ks!~1/2!21/2

3@23/2~11x!~1/2!2~31x!#,

Fs~R,x!5Fs,0~R,x!22pR~12x!~1/2!S k

s D ~1/2!

321/2~Ds2s!,

~2.11!

Fp~R,x!5Fp,0~R,x!.

One should keep in mind thatx is now not the actual contact
angle, which should be zero for any finite value ofk, but
rather theasymptoticcontact angle describing the shape of
the spherical cap far from the substrate~see Fig. 2!.

It is noted from the expressions in Eq.~2.11! that the
leading contribution to the free energy is proportional tok1/2

rather thank. Therefore, if we limit our calculation to the
leadingcontribution ink, which is k1/2, we neglect all con-
tributions to the free energy proportional tok. In particular
we neglect the contribution arising from the integration of
the bending energy term (k/2) J2 over regions where the sur-
face is not strongly curved, i.e., far away from the substrate.
We also note that to orderk1/2 there is no change in the
volume of the vesicle so thatFp5Fp,0 . This result can di-
rectly be deduced from Fig. 2 when one keeps in mind that
the length scale over which the actual profile differs from the
spherical-cap-profile is proportional to (k/s)1/2 ~as shown in
the Appendix! so that the associated change in volume is
proportional to@(k/s)1/2#2R, i.e., proportional tok.

We now have all the contributions to the free energy of
a single droplet adhered to the substrate expressed in terms
of two parameters, the radiusR and contact anglex. As in
Sec. II A, we are only left with the determination ofR andx
itself via a minimization of the free energy with respect to
these parameters. This will be done next consideringtwo
ensembles in which such a minimization could take place.
First, we consider the constant pressure ensemble and the
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free energy to be minimized is simplyV(Dp)5FH1Fs

1Fp . Second, the constant volume ensemble is considered
in which the free energy to be minimized isF(V)[FH

1Fs .

C. Constant pressure ensemble

The free energyV(R,x;Dp) is the sum of the free en-
ergies in Eq.~2.11!

V~R,x;Dp!52psR2~11x!1pDsR2~12x2!28p
k

R0
R~11x!24p

k

R0
R~12x2!~1/2! arccos~x!

2Dp
p

3
R3~213x2x3!12pR~12x!~1/2!~ks!~1/2!21/2@23/2~11x!~1/2!2~21x!2Ds/s#. ~2.12!

The above equation is minimized with respect toR and x
yielding the following set of equations:

Dp5
2s

R
2

4k

R0

1

R2 , ~2.13!

Ds5sx2
2k

R0

1

R
x1

2k

R0

1

R

arccos~x!

~12x2!~1/2!

2
~ks!~1/2!

R
@422~3/2!~11x!~1/2!#, ~2.14!

where we have kept terms only to leading order ink1/2. In
comparison with the expressions in Eqs.~2.9! and~2.10! we
note that the rigidity constant only appears through the pres-
ence of the last term in Eq.~2.14!. The Laplace equation
with the Tolman correction is thereforeunaffectedto leading
order ink1/2 by the presence of rigidity.

Next we need to solveR and x from the above set of
equations and insert the result in the expression forV in Eq.
~2.12!. This is done perturbatively in an expansion in
(k/s)1/2!R. At the same time we assume that also
k/(sR0)!R so that to zeroth order the radius and
asymptotic angle are given byRp[2s/Dp andx0[Ds/s,
respectively@see Eqs.~2.13! and ~2.14!#. In terms of the
zeroth order radius and contact angle,Rp and x0 , the free
energy can then be shown to be equal to

V~Dp!5
p

3
sRp

2~213x02x0
3!

24p
k

R0
Rp~12x0

2!~1/2! arccos~x0!

28p
k

R0
Rp~11x0!14pRp~ks!~1/2!

3~12x0
2!~1/2!@222~1/2!~11x0!~1/2!#. ~2.15!

Before we turn to the constant volume ensemble, we com-
pare the above free energy to the exact free energy obtained
by solving the shape equations numerically. As an example
we fix Dp/s such thatRp52, large compared to (k/s)1/2 for
which we take (k/s)1/250.1, in some arbitrary length unit.
Furthermore,Ds is varied such that21,x0,1 for two dif-
ferent values of the spontaneous radius of curvature,
k/(sR0)50 andk/(sR0)50.05.

The result is shown in Fig. 3. The circles and squares are
the numerical results fork/(sR0)50 and k/(sR0)50.05,
respectively. The dashed curve (k/(sR0)50) and the dot–
dashed curve (k/(sR0)50) are the free energyV0 found by
settingk50 in Eq. ~2.15!. The solid curve is the full free
energyV in Eq. ~2.15! for both k/(sR0)50 andk/(sR0)
50.05. As can be seen, it agrees well with the numerically
obtained free energy.

D. Constant volume ensemble

The free energyF(R,x;V) in the constant volume en-
semble is the sum of only the first two free energies in Eq.
~2.11!

F~R,x;V!52psR2~11x!1pDsR2~12x2!

28p
k

R0
R~11x!24p

k

R0
R~12x2!1/2

12pR~12x!~1/2!~ks!~1/2!21/2

3@23/2~11x!~1/2!2~21x!2Ds/s#.

~2.16!

FIG. 3. Free energy, in arbitrary units, as a function ofx05Ds/s for fixed
pressure difference. The expansion parameter (k/s)1/250.1 in some arbi-
trary length unit. Circles and squares are the results obtained by numerical
solution of the profile fork/(sR0)50 and k/(sR0)50.05, respectively.
The dashed and the dot–dashed curve areV in Eq. ~2.15! with k50 for
k/(sR0)50 andk/(sR0)50.05, respectively. The solid curves are the full
free energyV in Eq. ~2.15!.
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In the minimization of the above free energy with respect to
R andx we have to take into account that now the volume of
the vesicle is kept constantV5 (p/3) R3(213x2x3). This
is done by adding a term2DpV to the above free energy
whereDp is now the Lagrange multiplier fixing the vesicle
volume. The expression to be minimized is, therefore, ex-
actly equal toV in Eq. ~2.12! and the resulting set of equa-
tions is again given by Eqs.~2.13! and~2.14!. Together with
the expression for the volume in terms ofR and x, these
three equations then determineR, x, and the Lagrange mul-
tiplier Dp.

Again, we can define the zeroth order radius and
~asymptotic! contact angle which are now equal toRV

5@3V/(p(213x02x0
3))#1/3 andx0[Ds/s, respectively. In

terms ofx0 and RV the free energy in the constant volume
ensemble can then be shown to be equal to

F~V!5psRV
2~213x02x0

3!24p
k

R0
RV~12x0

2!~1/2!

3arccos~x0!28p
k

R0
RV~11x0!

14pRV~ks!~1/2!~12x0
2!~1/2!

3@2221/2~11x0!~1/2!#. ~2.17!

The above expression for the free energy is quite similar to
Eq. ~2.15!, the only difference being the coefficient of the
surface tension term. In particular are the leading order cor-
rections ink(1/2) to the free energy in Eqs.~2.15! and ~2.17!
the same whenRp and RV are defined as the zeroth order
radius.

One can now also investigate other ensembles for the
single vesicle adhered to a substrate such as the ensemble in
which besides the volume also the surface areaA is kept
constant. This, in fact, is the ensemble for which Seifert and
Lipowsky3 constructed their phase diagrams of the vesicle
unbinding transition. In the discussion in Sec. IV we come
back to this ensemble but we will first turn our attention to
the ensemble appropriate for the determination of the dimer-
ization transition in a microemulsion system.

III. DIMERIZATION OF MICROEMULSIONS DROPLETS

In this section we want to discuss the onset of droplet
aggregation in microemulsions. With the formulas derived in
Sec. II we are able to calculate the free energy for the for-
mation of dimers and construct the phase diagram for
droplet-dimercoexistence. Although the calculation of the
energy for dimer formation is an important first step, for a
full understanding of aggregation in microemulsions the for-
mation of higher aggregates needs to be considered. We
come back to this point in the discussion in Sec. IV.

We first need to discuss what is the appropriate en-
semble to perform our minimization in. In a single phase
microemulsion systemtwo constraints are present: First, the
total amount of surfactant is fixed and, second, the total
amount of the componentinside the microemulsion droplet
~e.g., the amount of water when we consider water-in-oil
microemulsions! is fixed. These two constraints determine

the total amount of surface area available to the surfactant,
Atot , and the total amount of droplet volume available to the
internal phase,Vtot . If Nm and Nd denote the number of
monomeric and dimeric droplets with radiusRm and Rd ,
respectively, thenVtot5NmVm1NdVd and Atot5NmAm1NdAd

1Nd(b22)Od . In these expressions the volume of the indi-
vidual monomer (Vm) and dimer (Vd) are given by

Vm5
4p

3
Rm

3 , Vd5
2p

3
Rd

3~213x2x3!, ~3.1!

while the surface areas of the individual monomer (Am) and
dimer ~Ad,m of the monolayer andAd,b of the bilayer! are
given by

Am54pRm
2 ,

Ad,m54pRd
2~11x!14pRd~12x!~1/2!

3S k

s D ~1/2!

21/2@21/2~11x!~1/2!21#,
~3.2!

Ad,b5pRd
2~12x2!22pRd~12x!~1/2!S k

s D ~1/2!

21/2.

The last two expressions are derived in the Appendix in Eqs.
~A22! and ~A23!, where we have identifiedAd,m52(A
2O) andAd,b5O. Finally, the parameterb is the ratio be-
tween the number of surfactants per unit area in the bilayer
and the number of surfactants per unit area in the monolayer.
The value of this parameter is unknown and has to be deter-
mined independently from experiments on the monolayer
and bilayer surfaces similarly to the surface tension of the
bilayer,sb , which also has to be determined independently.
Since b is unknown, we keep it as a variable, so that the
phase diagram of the monomer–dimer transition is calcu-
lated in terms ofb, but realistically one expects this ratio to
be close to two.

In order to investigate the occurrence of a monomer to
dimer transition we need to minimize the free energy
Fm(Nm ,Rm) of Nm monomers and the free energy
Fd(Nd ,Rd ,x) of Nd dimers, with respect toNm , Rm , Nd ,
Rd , andx, keepingVtot andAtot fixed. This is done by add-
ing Lagrange multipliers (Dp,l) fixing the total volume
(Dp) and total surface area~l!. The free energy expressions
to be minimized, therefore, are

Vm~Nm ,Rm!5NmH 4psRm
2 216p

k

R0
Rm

2Dp
4p

3
Rm

3 1l4pRm
2 J , ~3.3!

for the single microemulsion droplet phase, and
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Vd~Nd ,Rd ,x!5NdF4psRd
2~11x!1psbRd

2~12x2!216p
k

R0
Rd~11x!28p

k

R0
Rd~12x2!~1/2! arccos~x!

2Dp
2p

3
Rd

3~213x2x3!12pRd~12x!~1/2!~ks!~1/2!21/2@ 25/2~11x!~1/2!22~21x!2sb /s#

1lF4pRd
2~11x!14pRd~12x!~1/2!S k

s D ~1/2!

@2~11x!~1/2!221/2#1bpRd
2~12x2!

22bpRd~12x!~1/2!S k

s D ~1/2!

21/2G G , ~3.4!

for the dimer phase.
Before turning to the minimization of these two free en-

ergies, it should be noted that our original reason for neglect-
ing the rigidity constant associated with Gaussian curvature,
k̄, is now no longer valid, since the topologydoeschange
when the number of monomers or dimers varies~as it does!.
However, sincek and k̄ are of the same order of magnitude
and contributions to the free energy proportional tok are
neglected, the Gaussian free energy contribution can again
be discarded.

In the case that onlysingle microemulsion droplets are
present (Nd50), the radiusRm , and number of dropletsNm

are directly determined by the volume and area constraint.
This leads toRm53Vtot /Atot and Nm5Atot

3 /(36pVtot
2 ). The

minimizing equations]Vm /]Nm50 and]Vm /]Rm50 are
then only used to determine the values of the~unimportant!
Lagrange multipliersDp and l. The ratio between the pre-
scribed total volume and surface area defines the important
length scalev[Vtot /Atot so that in units of this length scale
the radius of the dropletRm53.

Next, we consider the minimization of the free energy in
Eq. ~3.4! for the dimer phase (Nm50). Now we have five
equations,]Vd /]Nd50, ]Vd /]Rd50, and]Vd /]x50, to-
gether with the total volume and total area constraint. Solv-
ing these five equations determines the five unknownsNd ,
Rd , x, Dp, andl in terms ofb, the ratiosb /s, the radius of
spontaneous curvatureR0 , and (k/s)1/2. The five equations
are again to be solved perturbatively ink. First we setk
50.

A. No bending rigidity

The following formula determines the leading order con-
tact anglex0 of the dimer phase:

3v~sb2bs!@41b~12x0!#

14
k

R0
F212x01b~81x02x0

2!

1$4~2x0
222x021!13b~12x0!%

arccos~x0!

~12x0
2!~1/2!G50.

~3.5!

In order to determine the free energyFd of the dimers,x0 has
to be solved from the above equation. As a function of

sb /s, b, andR0 , different solutions forx0 can be found, for
which the corresponding free energy can then be calculated
~with Nd andRd determined from the volume and area con-
straint!.

In Fig. 4, characteristic free energy curves are drawn for
Fd together withFm ~dashed curves! of the monomers for
fixed sb /s andb, but variableR0 . In Fig. 4~a! the case is

FIG. 4. Characteristic curves for the free energy of the monomersFm and
dimers Fd , as a function ofR0 when the dimerization transition atR0

5R0,0* is continuous~a! or first order~b!. In the latter diagram ML denotes
the position of themetastable limitbeyond which the dimers cease to exist
as a metastable phase.
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drawn when only one solutionx0 exists for R0.R0,0* and
none forR0,R0,0* . The pointR05R0,0* denotes the location
of thedimerizationtransition, since forR0,R0,0* only mono-
mers are present while forR0.R0,0* the dimers have a lower
free energy than the monomers~the Fd curve is below the
Fm curve! and will therefore be energetically preferred. The
additional subscript 0 toR0* denotes the fact that the dimer-
ization transition is calculated withk50.

In Fig. 4~a! the dimerization transition iscontinuous
since the free energy curve smoothly crosses over atR0

5R0,0* . The reason that the dimerization transition is con-
tinuous is that atR05R0,0* the solution for the contact angle
of Eq. ~3.5! is x0* 51, i.e., the contact angle is zero and the
shape of the dimer is that of two touching spheres. This
implies that the shape and, therefore, the corresponding en-
ergy is also ‘‘continuous.’’ The value ofR0,0* in the case that
the transition is continuous can, therefore, easily be deter-
mined by settingx051 into the above equation. One finds

k

R0,0*
5

3v

8

bs2sb

b22
. ~3.6!

In Fig. 4~b! the case is drawn where as a function of
decreasingR0 first only one solution forx0 to Eq. ~3.5! ex-
ists, then two solutions and beyond a certain point labeled
‘‘ML,’’ the metastable limit, no solutions exist. In this case
the dimerization transition is afirst order transition: the
curve of lowest free energy~F5Fm when R0,R0,0* and F
5Fd when R0.R0,0* ) displays a discontinuous first deriva-
tive at R05R0,0* . The reason is that atR05R0,0* the solution
for the contact angle of Eq.~3.5! is x0* Þ1, so that the shape
is ‘‘discontinuous.’’ The location of the first order dimeriza-
tion transition is determined by the requirement that atR0

5R0,0* we have thatFd5Fm . One can show thatx0* andR0,0*
are determined by the following set of equations:

4x0* 2bx0* ~12x0* !1b2~12x0* !2@4@12x0* 1~x0* !2#

13b~12x0* !#
arccos~x0* !

@12~x0* !2#~1/2! 50 ~3.7!

and

4
k

R0,0* F28x0* 18b1b2~12x0* !24~22x0* !

3~11x0* !
arccos~x0* !

@12~x0* !2#~1/2!G13v~sb2bs!

3@41b~12x0* !#50. ~3.8!

For given value ofb the first equation@Eq. ~3.7!# can be
solved to determinex0* which can then be inserted into the
second equation@Eq. ~3.8!# to determineR0,0* . The fact that
Eq. ~3.7! is independent ofsb /s implies that the border
between the first order and continuous dimerization is also
independent ofsb /s. One can show that Eq.~3.7! has one
or no solutions whenb,bc ~the transition is continuous!
and two, one or no solutions whenb.bc ~the transition is
first order!, with bc521 4

3A354.30 ¯ .
The results are summarized in Fig. 5 where the phase

diagram of the dimerization transition is drawn~solid curve!
as a function of the dimensionless spontaneous curvature
C0[k/(vsR0) and b, with sb /s51. From the above
analysis we have that the dimerization transition is continu-
ous whenb,bc @with R0,0* determined by Eq.~3.6!# and first
order whenb.bc ~with R0,0* determined by Eqs.~3.7! and
~3.8!#.

B. Small bending rigidity

Next we include rigidity and expand the radius of spon-
taneous curvature at the transition ink1/2: k/R0* 5k/R0,0*
1(k/v2s)1/2k/R0,1* . It turns out that the presence of rigidity
does not affect the location of thecontinuoustransition to
leading order ink1/2, k/R0,1* 50. It can furthermore be shown
that the leading order contributionk/R0,1* for the first order
transition is determined by the following equation in terms of
x0* andk/R0,0*

3
k

R0,1* ~12x0* !@41b~12x0* !#2F28x0* 18b1b2~12x0* !24~22x0* !~11x0* !
arccos~x0* !

@12~x0* !2#~1/2!G
132

k

R0,0* ~22x0* !2~11x0* !~12x0* !~1/2!@4~11x0* !~1/2!223/2221/2b#F21~12x0* !
arccos~x0* !

@12~x0* !2#~1/2!G
26v~sb2bs!~22x0* !@12~x0* !2#~1/2!@41b~12x0* !#@21/2~11x0* !~1/2!12~12x0* !#

16vs~22x0* !@12~x0* !2#~1/2!@41b~12x0* !#2@2221/2~11x0* !~1/2!#50. ~3.9!

The presence of rigidity shifts the first order transition to
lower C0 as illustrated by the dashed curve in Fig. 5 which
was calculated taking (k/s)1/250.1v.

One observes from Fig. 5 that the transition from mono-

mers to dimers indeed occurs withdecreasing1/R0 ~increas-
ing v!. Keeping in mind the assumptions made in our calcu-
lation, this seems to proof that curvature energy is the driv-
ing force behind the attraction between droplets that
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ultimately may lead to phase separation. We now show that
this result is unaffected by the presence of mixing entropy
which we discuss next.

C. Entropy of mixing

Until now we have concerned ourselves with the change
in curvatureenergy associated with dimer formation and ne-
glected the loss of entropy associated with dimerization. We
discuss qualitatively the influence of entropy by adding a
Flory–Huggins-type free energy to the curvature free energy.
For the single droplets we add

Fm,ent5
kBT

v0,m
V@f ln~f!2f#, ~3.10!

and for the dimers

Fd,ent5
kBT

v0,d
VFf2 lnS f

2 D2fG , ~3.11!

wherekB is Boltzmann’s constant,T the absolute tempera-
ture,V the total available volume to the microemulsion, and
f[Vtot /V!1 is the volume fraction taken in by the micro-
emulsion droplets. The volumev0 is the volume of the unit
cell of the Flory–Huggins lattice. Its precise value in micro-
emulsion systems has been subject of intense debate in the
literature.20,21 Since we are only interested in thequalitative
influence of entropy on the dimerization transition, we will
not go into this debate and setv0 equal to the volume of the
individual microemulsion droplet. We thus have thatv0,m

5(4p/3)Rm
3 for the single droplets andv0,d5(p/3)(213x

2x3)Rd
3 for the dimers. Furthermore, we limit our calcula-

tion to the case with no bending rigidity,k50.
With these approximations the dimerization transition

can be calculated by the minimization of the free energy as
before. A typical result is shown as the dot-dashed curve in

Fig. 5 which was calculated withkBT/s50.5v2 and f
50.1. The presence of mixing entropy is seen to havetwo
effects on the dimerization transition. First, the dimerization
transition is shifted to lowerC0 because the addition of en-
tropy will disfavor the formation of dimers. Second, the tran-
sition is now always afirst order transition~although weakly
first order whenb,bc!. The reason is that, although the
curvatureenergy of two separated microemulsion droplets is
the same as when they form a dimer of two touching spheres
(x51), theentropic free energy of these two configurations
is always different.

AssumingkBT/(v2s)!1 we calculated the leading or-
der shift in the location of the continuous dimerization tran-
sition (b,bc) with the above form of the entropy. It can be
shown that the dimerization transition is given by

k

R0*
5

3v

8

bs2sb

b22
2

1

48F3kBT

p

bs2sb

~b22!3

3~4112b23b2!lnS 1

2f D G1/2

. ~3.12!

The leading order contribution due to the presence of entropy
to the location of the dimerization isnegativeand scales as
@kBT ln(1/2f)#1/2.

IV. DISCUSSION

In this section we want to discuss our results in the con-
text of the assumptions made throughout this article.

We first focus on the interaction between the vesicle and
the substrate~or between two microemulsion droplets!. In
general, the vesicle-substrate interaction potentialV( l ) will
exhibit a hard-core repulsion at short distances, a minimum
at some characteristic distancel min , and decay to zero at
large distances. The value of the interaction potential atl
5 l min is related toDs via V( l min)5Ds2s @see Eq.~2.2!#. In
this article it was assumed throughout that the typical range
of the interaction between the vesicle and the substrate,l min ,
is much smaller than the dimension of the vesicle~droplet!.
This meant that the interaction potential could be approxi-
mated by a delta function located at the substrate@Eq. ~2.2!#.
Since the typical size of a vesicle lies in the micrometer
range, this assumption seems to be quite reasonable, but in
the case of microemulsion droplets the typical size is in the
nanometer range and the assumption might become question-
able. Furthermore, in the context of the expansion made in
terms of the length parameter (k/s)1/2, it was implicitly as-
sumed in our calculations that the interaction range is also
much smaller than (k/s)1/2 ( l min!(k/s)1/2!R). In order to
go beyond this condition and consider the situation where
l min'(k/s)1/2, it seems difficult to avoid having to solve the
shape equations numerically, using the full shape of the
substrate-vesicle interaction potentialV( l ).

However, in the opposite situation when (k/s)1/2! l min

!R the precise shape of the interaction potentialcan be
taken into account via the addition of aline tensionterm to
the free energy. In this regime, the term proportional tok1/2

in the free energy expression Eq.~2.12! is replaced by aline

FIG. 5. Phase diagram of the dimerization transition~solid curve! as a
function of the reduced spontaneous curvatureC0[k/(vsR0) and b, for
sb /s51. The dimerization transition is continuous~second order! when
b,bc and first order whenb.bc . The presence of rigidity shifts the first
order transition to lowerC0 as illustrated by the dashed curve which was
calculated with (k/s)1/250.1v. The presence of mixing entropy shifts the
dimerization transition to lowerC0 as illustrated by the dot–dashed curve
which was calculated withkBT/s50.5v2 andf50.1.
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tensionfree energyFt which is proportional to the length of
the line where the vesicle profile meets the substrate

Ft~R,x!52pR~12x2!~1/2!t. ~4.1!

The value of the proportionality constant, the line tensiont,
is determined by the precise shape of the interaction potential
betweenl 5 l min and l 5`22

t5E
l min

`

dl@$2sDV~ l !2@DV~ l !#2%~1/2!

2$2sE2E2%~1/2!#, ~4.2!

where we have definedDV( l )[V( l )2V( l min)5V(l)1s
2Ds and E[2V( l min)5s2Ds. Using the expression for
Ft(R,x) in Eq. ~4.1!, the radiusR and contact anglex can
again be determined by minimizing the free energy with re-
spect toR andx.

In this context we would like to mention recent work by
Fletcher and Petsev23 on the aggregation of microemulsion
droplets. They too took into account the curvature energy
and considered the influence of the full shape of the interac-
tion potential. However, the way in which the curvature en-
ergy was taken into account via an increased droplet deform-
ability with vanishing spontaneous curvature, differs from
our analysis.

The next important assumption that was made in this
article, is the assumption of small bending rigidity, (k/s)1/2

!R. As mentioned before, this assumption is partly made to
avoid having to resort to numerical work, and partly because
it is in line with the experimental findings concerning micro-
emulsion droplets. In the case of vesicle adhesion, neglecting
the curvature terms proportional tok has important conse-
quences, however. This is best illustrated by the calculation
of the vesicle unbinding transition in the constant volume,
constant surface area ensemble. In this ensemble the radiusR
and contact anglex of the adhered vesicle are simply deter-
mined by the geometrical constraints of total volumeV and
total surface areaA @given in Sec. II D and in Eq.~A23!,
respectively#. For example, to zeroth order we thus have that
the contact anglex0 is determined by the following algebraic
equation@see also Eq.~6.23! in Ref. 4#

V2

A3 5
~22x0!2~11x0!

9p~32x0!3 . ~4.3!

As a function ofV andA, the contact angle, the radius of the
adhered vesicle and therefore the free energy, can thus be
determined. In order to locate the unbinding transition, the
free energy then has to be compared to the free energy of the
unboundvesicle. With rigidity neglected to orderk, how-
ever, the shape of the unbound vesicle isalwaysspherical,
and V and A cannot be varied independently. Fixing the
volume of the spherical vesicle necessarily fixes its surface
area. Although this problem does not show up in the en-
sembles considered in Sec. II C and II D, it is clear that im-
portant physical aspects in the treatment of vesicle binding
are lost by keeping the expansion only to orderk1/2. Never-
theless, analytical expressions as given in Eqs.~2.15! and
~2.17! can provide platforms for calculations which cannot
be easily carried out numerically.

Further approximations were made when we applied our
formulas to study the onset of microemulsion droplet aggre-
gation. When we located the dimerization transition the for-
mation of higher aggregates was completely discarded. The
microemulsion droplets were only allowed to aggregate as
dimers or to remain as monomers. This assumption will be
more or less valid when the droplet concentration is suffi-
ciently low. However, at high concentrations multiple drop-
let interaction will have to be taken into account, not only for
the formation of, possibly deformed, microemulsion droplet
aggregates, but also for the formation of completely new
structures, such as cylinders.

In the context of all these approximations we summarize
our findings. In this work we have presented the important
first step towards a fuller understanding of aggregation phe-
nomena in microemulsion systems by calculating the curva-
ture free energy for the formation of dimers. We found that
dimerization occurs in the direction of vanishing spontane-
ous curvature in agreement with experiments. This seems to
proof that curvature energy is the driving force behind the
attraction between microemulsion droplets that may ulti-
mately lead to phase separation.
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APPENDIX: FIRST ORDER CORRECTIONS TO THE
FREE ENERGY

It will be convenient to express the curvatures 1/R1 and
1/R2 in terms of the surface height profilel (r ), with r the
radial distance to thez axis ~see Fig. 2!. Assuming rotational
symmetry around thez axis, they are given by

1

R1
5

l 8~r !

r $11@ l 8~r !#2%~1/2! ,
1

R2
5

l 9~r !

r $11@ l 8~r !#2%~3/2! ,

~A1!

where the prime indicates a differentiation with respect to the
argument. For notational conveniences we drop the explicit
r -dependence of the height profilel (r ) in the remainder of
the Appendix.

We insert the above expressions for the curvature in
terms of the surface profile into the Helfrich free energy
expression in Eq.~2.1!
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FH@ l #5spr 0
21S s2

4k

R0

1

R
12k

1

R2D2pR2~11x!12pE
r 0

`

drF r @11~ l 8!2#~1/2!H s2
2k

R0

3S l 8

r @11~ l 8#2!~1/2! 1
l 9

@11~ l 8!2#~3/2!D 1
k

2 S l 8

r @11~ l 8!2#~1/2! 1
l 9

@11~ l 8!2#~3/2!D 2J 2r @11~ l 08!2#~1/2!Q~r 2r c!

3H s2
2k

R0
S l 08

r @11~ l 08!2#~1/2! 1
l 09

@11~ l 08!2#~3/2!D 1
k

2 S l 08

r @11~ l 08!2#~1/2! 1
l 09

@11~ l 08#2!~3/2!D 2J G , ~A2!

where Q(r 2r c) is the Heaviside-function and where we
have definedr c[R(12x2)(1/2). The first term is the result of
integrating the surface tension over the part of the vesicle
that is adhered to the substrate. The integration runs fromr
50 to r 5r 0 defined as the radial distance at whichl (r
5r 0)50 ~see Fig. 2!. The second term results from the in-
tegration of the curvature energy over the spherical cap to
which the surface profile smoothly crosses over to at large
distances from the substrate. This term is subtracted in the
last term of Eq.~A2! via the terms involving the height pro-
file l 0 of the spherical cap. The reason for adding and sub-

tracting the curvature energy of the spherical cap is that the
integration overr in the last term could be extended tor
5` where the profilel (r )→ l 0(r ), and the integrand goes to
zero.

It will turn out that the leading contribution to the free
energy due to the presence of rigidity scales ask1/2 so that to
leading order ink we can disregard the term proportional to
k in the expression for the curvature energy of the spherical
cap in Eq.~A2!. Furthermore, the integration over the first
term proportional tok/R0 cancels with the same term involv-
ing the spherical-cap-profilel 0 so that Eq.~A2! becomes

FH@ l #5spR2~12x2!1S s2
4k

R0

1

RD2pR2~11x!12pE
r 0

`

drFsr $@11~ l 8!2#~1/2!21%2
2k

R0

rl 9

11~ l 8!2 1
k

2
r @11~ l 8!2#~1/2!

3S l 8

r @11~ l 8!2#~1/2! 1
l 9

@11~ l 8!2#~3/2!D 2

2Q~r 2r c!H sr @~11~ l 08!2!~1/2!21#

2
2k

R0

rl 09

11~ l 08!2 1
k

2
r @11~ l 08!2#~1/2!S l 08

r @11~ l 08!2#~1/2! 1
l 09

@11~ l 08!2#~3/2!D 2J G , ~A3!

where in addition we have rewritten the surface tension term somewhat.
As noted before, the integrand in the above expression is written in such a way that it goes to zero whenr→`. The main

contribution is, therefore, located aroundr'r c5R(12x2)1/2}R. We can therefore expandr aroundr c assuming that the
length scale over which the height profilel (r ) differs from the spherical-cap-profilel 0(r ) is small compared toR. The result
is that we can insertr 5r c1O(1) in the above expression and expand in 1/R. To leading order one finds

FH@ l #5spR2~12x2!1S s2
4k

R0

1

RD2pR2~11x!24p
k

R0
R~12x2!~1/2! arccos~x!12pR

3~12x2!~1/2!E
r 0

`

drFs$@11~ l 8!2#~1/2!21%1
k

2

~ l 9!2

@11~ l 8!2#~5/2! 2Q~r 2r c!s$@11~ l 08!2#~1/2!21%G , ~A4!

where we have carried out the integration of the terms pro-
portional tok/R0 to yield the third term in the above expres-
sion. Next, we defineDF[FH2FH,0 with FH,0 given in Eq.
~2.7!,

DF@ l #52pR~12x2!~1/2!E
r 0

`

drFs$@11~ l 8!2#~1/2!21%

1
k

2

~ l 9!2

@11~ l 8!2#~5/2! 2Q~r 2r c!sS 1

x
21D G ,

~A5!

where we have used the fact that in the limit of largeR, the
spherical-cap-profilel 0 is a straight line withl 085tanu ~see
Fig. 2!. It will be convenient to define the rescaled lengths

y[S s

k D ~1/2!

~r 2r 0!, Dy[S s

k D ~1/2!

~r c2r 0!,

~A6!

f ~y![S s

k D ~1/2!

l ~r !,

so that the expression for the free energy can be written as

7072 J. Chem. Phys., Vol. 111, No. 15, 15 October 1999 E. M. Blokhuis and W. F. C. Sager



DF@ f ~y!#52pR~12x2!~1/2!~ks!~1/2!

3E
0

`

dyF $@11~ f 8!2#~1/2!21%

1
1

2

~ f 9!2

@11~ f 8!2#~5/2! 2Q~y2Dy!sS 1

x
21D G .

~A7!

The Euler–Lagrange equation to the above free energy reads

f 9

@11~ f 8!2#~3/2! 2
f 99

@11~ f 8!2#~5/2! 110
f 8 f 9 f-

@11~ f 8!2#~7/2!

215
~ f 9!3

@11~ f 8!2#~7/2! 1
35

2

~ f 9!3

@11~ f 8!2#~9/2! 50. ~A8!

This can be integrated once to yield

f 8

@11~ f 8!2#~1/2! 2
f-

@11~ f 8!2#~5/2! 1
5

2

f 8~ f 9!2

@11~ f 8!2#~7/2!

5constant5sinu, ~A9!

where the integration constant is determined by the boundary
condition that the profile approachesf (y)→tanu(y2Dy)
wheny→`. Multiplying the above equation byf 9 and inte-
grating once more, yields

@11~ f 8!2#~1/2!2
1

2

~ f 9!2

@11~ f 8!2#~5/2! 2sinu f 8

5constant5cosu. ~A10!

Defining z(y)[ f 8(y), we are thus finally left with the fol-
lowing first order differential equation:

z8521/2~11z2!~5/4!@~11z2!~1/2!2cosu2z sinu#~1/2!.
~A11!

We now investigate the boundary condition to the above
differential equation. The general boundary conditions to the
shape equations are given by Eq.~2.6!. With the help of Eq.
~A1! they are written asl 8(r 0)50 and l 9(r 0)5@2(s
2Ds)/k#1/2, which in terms ofz(y) reduce toz(0)50 and
z8(0)5@2(12Ds/s)#1/2. To leading order ink, the latter
can be written with the help of Young’s equation asz8(0)
5@2(12cosu)#(1/2). One immediately observes that the pro-
file z(y) indeed obeys this boundary condition when one
insertsz(0)50 into the above differential equation.

With the help of the other boundary conditionz(0)50,
the definition ofz(y), and the above differential equation,
the height profilef (y) is now written in terms of the follow-
ing integral:

f ~y!5E
0

y

dy1z~y1!5E
0

z(y)

dz1

z1

z18

522 ~1/2!E
0

z(y)

dz1

z1~11z1
2!2 ~5/4!

@~11z1
2!~1/2!2cosu2z1 sinu#~1/2! .

~A12!

In order to perform the integration, we define the angleb by
z1[tanb and rewrite Eq.~A12! as

f ~z!5E
0

arctanz

db
sinb

@12cosu cosb2sinu sinb#~1/2! .

~A13!

Next, we define the anglea[u2b so that Eq.~A13! be-
comes

f ~z!5E
u2arctanz

u

da
sinu cosa2cosu sina

@12cosa#~1/2! . ~A14!

This integration can be carried out to yield

f ~z!5Fsinu lnS tanS a

4 D D12 sinS u2
a

2 D G
a5u2arctanz

a5u

.

~A15!

We have now expressed the height profilef in terms ofz. In
order to determine the height profile as a function of the
rescaled radial distancey, we need also to expressy as a
function of z. The calculation ofy(z) is analogous to the
calculation off (z) and one finds

y~z!5E
0

z

dz1

1

z18
5Fcosu lnS tanS a

4 D D
12 cosS u2

a

2 D G
a5u2arctanz

a5u

, ~A16!

so that the density profile, parameterized by the anglea
which runs from 0 tou, reads

f ~y!55
f ~a!5sinuF lnS tanS u

4D D2 lnS tanS a

4 D D G
22 sinS u2

a

2 D12 sinS u

2D
y~a!5cosuF lnS tanS u

4D D2 lnS tanS a

4 D D G
22 cosS u2

a

2 D12 cosS u

2D
.

~A17!

Before calculating the free energyDFH , we determine the
rescaled distanceDy. It is defined by the asymptotic behav-
ior of the profile f (y)→(y2Dy)tanu wheny→`

Dy5 lim
y→`

Fy2
f ~y!

tanuG
5 lim

y→`
E

0

y

dy1F12
z~y1!

tanu G5E
0

`

dyF12
z~y!

tanuG . ~A18!

Using the differential equation Eq.~A11! for the height pro-
file, one finds, following the same procedure as before, that:

Dy5
21/2

~11x!~1/2! . ~A19!

We now return to the calculation of the Helfrich free energy.
Inserting the differential equation@Eq. ~A10!# into the ex-
pression forDF in Eq. ~A7!, one finds
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DF52pR~12x2!~1/2!~ks!~1/2!E
0

`

dyH 2@11~ f 8!2#~1/2!

212cosu2sinu f 82Q~y2Dy!S 1

cosu
21D J

52pR~12x2!~1/2!~ks!~1/2!E
0

`

dy H 2~11z2!~1/2!21

2cosu1zS 1

tanu
2

1

sinu
2sinu D J . ~A20!

Following the same procedure as before, we write the inte-
gration in terms ofz instead ofy using Eq.~A11!, definez
[tanb and then definea[u2b. This leaves us with the
following integral:

DF52pR~12x2!~1/2!~ks!~1/2!21/2

3E
0

u

daH 2~12cosa!~1/2!2
~12cosu!sina

sinu~12cosa!~1/2!J
52pR~12x!~1/2!~ks!~1/2!21/2@23/2

3~11x!~1/2!2~31x!#. ~A21!

This is our final result as presented in Eq.~2.11!. In addition
to the Helfrich free energy, we need to calculate the adhesion
energyFs . For this we need to calculate the surface area
O5pr 0

2. With the definition ofDy in Eq. ~A6! and the ex-
plicit expression forDy in Eq. ~A19!, we see that it is given
by

O5pR2~12x2!22pR~12x!~1/2!S k

s D ~1/2!

2~1/2!. ~A22!

As a final point we list the result for the calculation of the
total surface area of the vesicleA

A5O12pR2~11x!12pE
r 0

`

dr@r $@11~ l 8!2#~1/2!21%

2Q~r 2r c!r $@11~ l 08!2#~1/2!21%#

5pR2~312x2x2!12pR~12x!~1/2!S k

s D ~1/2!

21/2@21/2

3~11x!~1/2!22#, ~A23!

which we need for our calculation in Sec. III.
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