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To study the vesicle-substrate unbinding transition and the onset of microemulsion aggregation, we
calculate the curvature free energy of a vesicle adhered to a substrate and of two microemulsion
droplets forming a dimer. Analytical expressions are derived in the small bending rigidity regime in
which the length k/ )2, constructed from the rigidity constant of bendik@nd surface tension

o, is small compared to the typical size of the vesi¢tBopled, (k/o)¥><R. The leading
contribution to the curvature free energy is shown to be proportionattoThe formulas derived

are used to understand the experimentally observed aggregation of microemulsion droplets
occurring in the direction of vanishing spontaneous curvature. In this way we intend to bridge the
gap between the liquid state theories used to describe aggregation processes in microemulsion
systems and the bending energy concept originally introduced by Helfrich to describe vesicles
shapes and fluctuations as well as phase diagrams of microemulsion systerh899@merican
Institute of Physicg.S0021-960809)71739-3

I. INTRODUCTION stantk is small® Specifically, the lengthk/ o) ¥ constructed
from the rigidity constant and surface tensienwill be as-
The introduction of Helfrich's eXprESSion for the curva- sumed to be small Compared to the typ|ca| size of the System,
ture free energypresented an important step in the theoret-(/;)12<R. The leading order contribution in smétto the
ical understanding of complex interfaces. In terms of the tW@ee energy of the adhered vesicle is calculated and formulas
elasticity or rigidity constants andk, as well as the radius are presented describing vesicle adhesion under different
of spontaneous curvatuiRy, the Helfrich free energy was ¢onditions of constant volume and constant pressure. Since
able to describe the shape, fluctuations and free energy @fie free energy in the case of a single vesicle adhered to a
interfaces covered by a monolayer or bilayer of surface acghstrate can be calculated numerically exact, the compari-
tive molecules such d)soluble surfactants and lipids. The son with our formulas performed in Sec. Il is done mainly as

Helfrich energy has,_therefore_, been used to describe MEM numerical check of our results. Our main motivation for the
branes, vesicles, microemulsion systems and to calculate

their respective phase diagrafSeifert and Lipowsky® present cglcglation lies in the applica.ltion.of ogr formula's to
were the first to apply the Helfrich free energy for the de-the description Of. droplet gggrggatlon In_microemulsions
scription of the shape and free energy of a vesicle adhered lv(s‘here such numerllcal work is difficult due to the large num-
a solid substratésee Fig. 1 In particular they calculated P€r Of parameters involved. _ _

phase diagrams of the unbinding transition in which the AtPresent, acomplete understanding of aggregation pro-
vesicle desorbs from a substrate. Unfortunately, the differerc®SSes and shape transformations in microemulsion systems
tial equations describing the shape of the adhered vesici§ lacking® Certain aspects, however, appear to be well un-
cannot, in general, be solved analytically so that Seifert anglerstood. It seems well established by, among others, the
Lipowsky had to resort to solving these shape equationwork of Safran and co-workefs, that the curvature energy
numerically>~® The large number of parameters such as theof the interfacial surfactant layer, as described by the Hel-
prescribed surface ared, vesicle volumeV, the rigidity  frich free energy, plays an important role in the description
constants as well as the adhesion energy makes numericail shape fluctuations and the mastyucturaltransitions that
work rather tedious, however, and the need arises for limitare encounterediThese include transitions from spherical to
ing analytical results. In this article we derive such a limiting cylindrical micelles’ their ordering into crystallingle.g.,
solution by calculating the shape and free energy of a vesiclaexagonal arrays, transitions from cylindrical micelles to
adhered to a substrate, or of two microemulsion dropletsamellar liquid crystalline phase, as well as transitions from
forming a dimer, under the condition that the rigidity con- cylindrical micelles to bicontinuous monolayer phases and
from bicontinuous bilayer phase4.3) to lamellar liquid
dElectronic mail: edgar@chemfcb.leidenuniv.nl crystalline phases.
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able is not the rigidity constant, but rather the radius of spon-
A taneous curvatur¥.

/ The outline of this article is as follows. In Sec. Il we
introduce the necessary ingredients for the calculation of the
shape and free energy of a vesicle adhered to the substrate.
The calculation of the leading contribution to the free energy
in small k is calculated leaving most of the details of the
calculation to the Appendix. At the end of the section ex-
plicit formulas for the free energy of the vesicle adhered to a
substrate are presented and compared to numerical solutions

~ of the shape equations. In Sec. Il we apply the free energy

V4 / obtained in Sec. Il to study the dimerization of microemul-
FIG. 1. Vesicle adhered to a substrate locater=ad, A is the surface area sion droplets. The merits and limitations of our calculation

of the whole droplet including the surface a@ahat is in contact with the are discussed in Sec. IV.
substrate.

O

Il. HELFRICH FREE ENERGY

In this section we concentrate on the problem of a
Also observed is a liquid—vaporlike transitigwith two  yesicle adhered to a solid substréég. 1). Different contri-
coexisting microemulsion droplet phasegich, however, is  pytions to the free energy describe its shape. The first con-
usually described theoretically in terms of liquid state theo+yipution is the Helfrich free enerdydescribing thebending
ries treating the microemulsion droplets lasrd spherer  energy of the vesicle membrane in terms of the radius of
sticky hard sphere¥ These theories, therefore, do no takespontaneous curvatui,, the rigidity constant associated

into account the elastic properties of the surfactant layer, noyith bending,k, and the rigidity constant associated with
do they account for the observéemperature directiorin Gaussian curvaturé,

which phase separation takes place. Experiments have
showrt! that aggregation processéshich may ultimately B 2k k_, —
lead to the observed phase separation microemulsions FH_I dAl o= g+ 3 7 kK, 2.3

Ry 2
occur both with increasing and decreasing temperature de- . .
. . . L whereo is the surface tension of th@anar membrane sur-
pending on the microemulsion system studfedy., ionic or

L . L ) face. The above free energy features an integral over the
nonionic surfactant, water-in-oil or oil-in-water microemul- gy 9

siong. In all cases, however, aggregation takes place in th(\évhoIe surface area@, of the total curvature,J=1/R,

direction of vanishing spontaneous curvatfesy., with in- 1R, and Gaussian curvaturé=1/(R;R;) with R, and

. . o . .R, the principal radii of curvature at a certain point on the
creasing temperature in water-in-oil microemulsions stabi-

lized by an ionic surfactant To understand the role played surfaceA. The above form for the free energy is the most

: . ¢f3neral form in an expansion up to second order in curva-
by the spontaneous curvature and to achieve a consiste

. . o . 1ure, and can be viewed as defining the four coefficients
picture of the various phenomena observed in microemulsion

systems, the Helfrich curvature free energiyould be in- k/IRg, K, and& The rigidity constant associated with Gauss-
cluded in any description of microemulsion dropletian curvaturek is a measure of the energy cost for topologi-
aggregatiort? cal changes of the surface. In our case the topology is fixed
In this work we present the necessary first step in theand the term proportional tk can be dropped.
description of droplet aggregation by calculating the curva-  The second contribution to the free energy describes the
ture free energy of two microemulsion droplets forming ainteraction energy between the vesicle and the substrate. We
dimer. One can view the formation of dimers as the onset ofwill assume that the range of the interaction between the
the observed aggregation phenomena and the main questisnbstrate and the vesicle is much smaller than the typical
that we set ourselves out to answer in this article is whethedimension of the vesicle, so that the interaction is described
we are able to understand the formationdifnersin the by an adhesion energy integrated over the area of cdntact
direction of vanishing spontaneous curvature. The calcula-
tion of the dimerization free energy is essentially the same as F = f dO[Ao—0], (2.2
in the case of vesicle adhesion when instead of a vesicle
adhered to a substrate one then describes the adhesion of twhere O is the area of substrate-vesicle contact and where
microemulsion droplets. For two reasons the small bendingo=0g,— o is the difference in surface tension of the
rigidity regime seems appropriate for this calculation. First,substrate-vesicle surface and the bare substrate. Since the
experimentally it seems well establish&dhat the free mi- integration in Eq.(2.1) is over thewhole surface areaA
croemulsion droplets are spherical or nearly spherical. ThigincludingO), we need to subtraet from Ac in the equation
can only be the case when the influence of the rigidity conabove. Later, when we apply our formulas in Sec. Il to the
stant is small compared to that of the surface tension. Furcase of two microemulsion droplets forming a dimer, we
thermore, as discussed above, it seems that in the descriptioeed to replacéo by o/2, with o}, the surface tension of
of microemulsion aggregation, the important curvature varithe bilayer formed in between the two droplets.
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The final contribution to the free energy (minus the
pressure differencAp between the inside and the outside of
the vesicle times the volumé of the vesicle

Fp=f dV[—Ap], 2.3
so that the total free energy reads
- 2k k,
Q—fdA O'—R—OJ-FEJ
+ | dO[Ac—a]—Ap | dV. 2.4 : /
J aotso—o-sp] 24 T 7777777777777

The above free energy is minimal when we fix the surface r r, —
tensiono and the pressure differenég. This would not be

the case when, for instance, instead of the surface tensioRIG. 2. Height profilel (r), with r the radial distance to the axis, of the
the surface area is fixed, or when instead of the pressure vesicle in the region close to the substrégee dashed circle in the inget

. — engths are in units of/ o) 2. r, is the radial distance at which the profile
difference, the volume is fixed. In these examples the fre%ﬁeets the substratér —r )= 0 andr,=R(1—x?)*? is the radius at which

(—‘T‘nergies to be minimized ate— OjA andQ+ApV, FESPEC-  the asymptotic spherical-cap-profildashed line and insemeets the sub-
tively. Below we address the different ensembles in morestrate with contact anglé.

detail, but for now it suffices to know that in all these differ-

ent ensembles the functional form of the free energy to be

minimized is that given in Eq2.4), with eitherc andAp as

fixed constants or as Lagrange multipliers fixing the surface  The number of parameters makes numerical work rather

area and volume. tedious. Furthermore, it is difficult to gain physical insight
The shape of the vesicle can be determined by functionghto the role played by the different parameters in vesicle

minimization of ) with respect to the shape. This leads tounbinding. In order to be able to proceed analytically we

the so-called shape equatfdri need to make certain physically reasonable assumptions. One
4k K such assumption, the one that we will adopt in the rest of the
Ap=0l— R_K_ §J3+ 2kJK—kAJ, (2.5 article, is to assume that the rigidity constant of bending is
0

small. In particular, the lengthk(o)¥? will be assumed
where A, denotes thesurfaceLaplacian. This equation can small compared to the typical size of the vesicle, Bayin

also be seen as the generalized Laplace equation sinceatder to make a systematic expansion o) YR, we first
reduces to the Laplace equation of a sphérp=oJ assume thak=0 and therk=+0 but small.

=20/R when one insertd=2/R, and sets the coefficients

k/Ry andk equal to zero. The shape equatidy. (2.5]is  A. No bending rigidity

equal to the shape equation describing the shape fofea Before we focus on determining the shape of the adhered

vesicle:® The vesicle adhesion energy is only present in the egjcle we first need to address a point of possible confu-
boundary conditiongor the curvature at the substrate. They sion. When we sét=0, i.e., neglect the second order term in

are given by
1

Ry

the expansion in the curvature in E@.1), this does not
imply that we will also assume that the coefficient of finst
=[2(c=A0)/K]?, (2.0  order termk/Ry, is equal to zero. Historically, the first order

substrate term is defined to contain the rigidity constant, but it is clear
whereR, is the radius of curvature along the meridians ofthat the two coefficientk andk/R, areindependent
the vesicle andR; the radius of curvature perpendicular to it. In the absence of bending rigidity, the minimization of
The first equation indicates that whke 0, the contact angle the free energy in Eq2.4) is easiest done in two steps. First,
with which the vesicle meets the substrate is always equal tave note that whek=0 the solution of the shape equation in
zero. Through the second equation, first derived by Seiferq. (2.5) is that of a spherical cafsee the inset of Fig.)2
and Lipowsky® the value ofAo enters the description of the We know this to be the case when alstR, is taken to be
shape of the adhered vesicle. zero so that the shape equation reduces to the well-known

Unfortunately, the shape equations cannot be solved an&aplace equation, but also with the spontaneous radius of
lytically in general. In practice one solves the shape equaeurvature term present the shape is that of a spherical cap.
tions numerically for given values af, k/Ry, k, Ao, and  Second, we insert the spherical-cap-profile, which is fully
Ap. With the shape of the vesicle thus obtained one is thewlescribed by the radiuR and contact angl®, into the ex-
able to calculate the volum¥ and areaA of the vesicle pression for the free energy, and then minimize with respect
together with the appropriate free energies. In this way, onéo R and 6.
can compare the free energy with the free energy of the For the spherical-cap-profile the integration of the free
unbound vesicle and locate unbinding transitions. For a morenergy over the surface areAsandO and over the volume
elaborate discussion we refer to a recent review by Séifert.V in Egs.(2.1)—(2.3) can be carried out to yield

1
:O, e

substrate 2
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FioRx)=

4k 1
o— — = |27R?(1+X) + omR?*(1—x?)
Ro R

k
— 47 —R(1-x%)*? arcco$x),
Ro
FsoRX)=(Ao—o)mR*(1—x?), (2.7)
T
Fp,O(R,x)z—Ap§R3(2+3x—x3),
where we have definex=cos6, and where the subscript 0

stands for the fact that we have &et0. The last term in the
expression forFy o(R,x) stems from an integration ol

Vesicle adhesion and microemulsion droplet dimerization 7065
contains a delta function. Thus, when one integrdfesone
finds that the curvature energyiisfinite. Therefore, for any
finite value ofk the surface profillhasto meet the substrate
with zero contact angle as described by the first boundary
condition in Eq.(2.6). The result is that deviations of the
spherical-cap-profile to leading order knare located in the
region where the spherical-cap-profile meets the substrate
(see Fig. 2 The precise shape of the profile near the kink
can be determined by minimizing the curvature free energy
with the condition that far away from the kink it smoothly
crosses over to the spherical-cap-profile with raduand
contact anglex. Details of the calculation are presented in
the Appendix and here we only list the resulting first order

across the line where the spherical-cap-profile meets the subentributions to the free energgtill expressed in terms of
strate(see Fig. 2 The presence of this term thus implies thatthe radiuskR and contact anglg of the asymptotic spherical-
in this case it imot correct to subdivide the integration over cap-profile

A into an integration over the spherical part and the flat part

(0).
The total free energy, still as a function Bfandx, is
thus given by

Qo(RX)=2m0oR2(1+Xx)+ AocmR?(1—x?)

k k
g A _2\(112)
87TROR(1+X) 477R0R(1 X%)

aa
xarccon)—Ap§R3(2+3x—x3). (2.9

Finally, R andx are determined by a further minimization of
Q(R,X). From dQy/dx=0 anddQ,/dR=0 one finds the
following set of equations

_20 4k 1 29
PTR TR R 29
Ao 2k 1 +2k1 arccosx) 01
T R RS Ry R (1-x3) 2" 2.10

The first equation is the well-known Laplace equatfomith
a finite size correction originally due to Tolmahln the
work by Tolman the Laplace equation is written A
=20/R—206/R?, so that the Tolman length is related to
the radius of spontaneous curvature wid=2k/R;.*® The

Fu(R,X)=Fy o(RX)+27R(1—x) Y3 ko) (12212

X[2%37 14+ x) M2 — (3+x)],

(1/2)
FS(R,X)=FS,O(R,X)—ZWR(l—x)(l’Z)(;) (2.11)

X 2Y( Ao~ o),
Fo(RX)=Fpo(R,X).

One should keep in mind thatis now not the actual contact
angle, which should be zero for any finite value kof but
rather theasymptoticcontact angle describing the shape of
the spherical cap far from the substrésee Fig. 2

It is noted from the expressions in E.11) that the
leading contribution to the free energy is proportionakt6
rather thank. Therefore, if we limit our calculation to the
leading contribution ink, which isk? we neglect all con-
tributions to the free energy proportional ko In particular

second equation determines the value of the contact angle.We neglect the contribution arising from the integration of

reduces to Young's equatibho, = o+ o cosd when one
insertsk/Ry=0.

With R andx given by Egs.(2.9 and (2.10, the free
energy(, in the absence of rigidity is now fully determined.
Next, we expand around this solution in small

B. Small bending rigidity

In order to calculate the leading order contribution to the

free energy of the adhered vesicle in smgllwe need to

the bending energy ternk{2) J? over regions where the sur-
face is not strongly curved, i.e., far away from the substrate.
We also note that to ordek*? there is no change in the
volume of the vesicle so th&,=F,,. This result can di-
rectly be deduced from Fig. 2 when one keeps in mind that
the length scale over which the actual profile differs from the
spherical-cap-profile is proportional té&/()Y? (as shown in
the Appendix so that the associated change in volume is
proportional to[ (k/o)Y?]?R, i.e., proportional tck.

We now have all the contributions to the free energy of
a single droplet adhered to the substrate expressed in terms

determine the shape of the vesicle. As shown in the previousf two parameters, the radid® and contact angl&. As in
section, the shape of the profile is that of a spherical casec. Il A, we are only left with the determination Bfandx

whenk=0 (see the inset of Fig.)2In the region where the

itself via a minimization of the free energy with respect to

spherical-cap-profile meets the substrate, the first derivativihese parameters. This will be done next consideting

of the height profile isgliscontinuousso that the curvaturé,
which is related to theecondderivative of the height profile,

ensembles in which such a minimization could take place.
First, we consider the constant pressure ensemble and the
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free energy to be minimized is simpl@(Ap)=Fy+Fg

E. M. Blokhuis and W. F. C. Sager

C. Constant pressure ensemble

+F,. Second, the constant volume ensemble is considered

in which the free energy to be minimized B(V)=Fy4
+Fs.

k
Q(R,x;Ap)=2moR?*(1+x)+ 77A0-R2(1—x2)—87-rR—R(1
0

- ApgR3(2+ 3x—=x%) +27R(1—x) M2 (ko) Y2217 2321+ x) V2 — (2+x) ~ Aol a].

The above equation is minimized with respectRcand x
yielding the following set of equations:

Ap= 20 4k 1 o1
P=R "R R (2.13
Ao 2k 1 2k 1 arcco$x)
TT T R R Ry R (1-x2) @2
ko) (12
- %[4—2@’2)(1“)(1’3], (2.14

where we have kept terms only to leading ordekiff. In
comparison with the expressions in E¢&.9) and(2.10 we

note that the rigidity constant only appears through the pres-

ence of the last term in Eq2.14). The Laplace equation
with the Tolman correction is therefotmaffectedo leading
order ink'? by the presence of rigidity.

Next we need to solv® and x from the above set of
equations and insert the result in the expressior{¥an Eq.
(2.12. This is done perturbatively in an expansion in
(k/o)Y?’<R. At the same time we assume that also
k/(cRp)<R so that to zeroth order the radius and
asymptotic angle are given B§,=20/Ap andx,=Ao/a,
respectively[see Egs.(2.13 and (2.14)]. In terms of the
zeroth order radius and contact ang®, and x,, the free
energy can then be shown to be equal to

_ T 2 .3
Q(Ap)= 3aRp(2+3x0 Xp)

k
— A —

2\(1/2
Re Rp(1—x5)M? arcco$xo)

— 87 —Ry(1+Xo) +47R (ko) M2

Ro

X (1=-x5)M2[2-212(1+x0)M?].  (2.15

-60
Before we turn to the constant volume ensemble, we com-
pare the above free energy to the exact free energy obtaineu

The free energy)(R,x;Ap) is the sum of the free en-
ergies in Eq(2.1))

k
+X)— 47 R(1- x2)2 arccogx)
0

(2.12

The result is shown in Fig. 3. The circles and squares are
the numerical results fok/(o0Ry)=0 andk/(oRy)=0.05,
respectively. The dashed curvk/(o0Ry)=0) and the dot—
dashed curveld/ (aRy) =0) are the free energ§), found by
settingk=0 in Eq. (2.15. The solid curve is the full free
energy() in Eq. (2.15 for both k/(cRy) =0 andk/(oRy)
=0.05. As can be seen, it agrees well with the numerically
obtained free energy.

D. Constant volume ensemble

The free energyr(R,x;V) in the constant volume en-
semble is the sum of only the first two free energies in Eq.
(2.11
F(R,x;V)=2moR?*(1+x)+ mAoR*(1—x?)

—877£ R(l+x)—47r£R(l—x2)1/2
Ro Ro

+27R(1—x) V2 (ko) 12212
X[2%(1+x) M2~ (2+x)— Aclo].
(2.16

-200 |

—400 p,

0.5
X

O I 1
-1.0 -05 0.0 1.0

by solving the shape equations numerically. As an exampl@G. 3. Free energy, in arbitrary units, as a functiogt Ao/ o for fixed

we fix Ap/o such thaR,= 2, large compared tok(a) /2 for

pressure difference. The expansion parametéo)*>=0.1 in some arbi-

which we take k/o) 12—-0.1. in some arbitrary length unit. trary length unit. Circles and squares are the results obtained by numerical

FurthermoreAo is varied such that- 1<xy<1 for two dif-

solution of the profile fork/(oRy)=0 andk/(oR;)=0.05, respectively.
The dashed and the dot—dashed curve@rm Eq. (2.15 with k=0 for

ferent values of the spontaneous radius of curvaturysr,)=o0 andk/(oR,)=0.05, respectively. The solid curves are the full

k/(0R,)=0 andk/(oRg)=0.05.

free energy() in Eq. (2.15.
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In the minimization of the above free energy with respect tothe total amount of surface area available to the surfactant,

R andx we have to take into account that now the volume ofA,;, and the total amount of droplet volume available to the

the vesicle is kept constamt= (7/3) R*(2+3x—x%). This internal phaseV,y. If N,, and N4 denote the number of

is done by adding a term- ApV to the above free energy monomeric and dimeric droplets with radii, and Ry,

whereAp is now the Lagrange multiplier fixing the vesicle respectively, theiV;;:=NVm+NgVy and A= NpAmt NgAy

volume. The expression to be minimized is, therefore, ex-+Ny(B8—2)O4. In these expressions the volume of the indi-

actly equal toQ) in Eq. (2.12 and the resulting set of equa- vidual monomer ¥,,) and dimer {/4) are given by

tions is again given by Eq$2.13 and(2.14). Together with

the expression for the volume in terms Rfand x, these

three equations then determiRe x, and the Lagrange mul- V.= 3 V4=

tiplier Ap. mogom
Again, we can define the zeroth order radius and

(asymptoti¢ contact angle which are now equal ®,

=[3V/(7(2+3%,—x3)) ] andx,=A o/ o, respectively. In

terms ofx, and Ry, the free energy in the constant volume

2

3 R3(2+3x—x3), (3.2

while the surface areas of the individual monomay,J and
dimer (Ag , Of the monolayer and\y , of the bilayey are

iven b
ensemble can then be shown to be equal to g y
k
F(V)=wo-R\z,(2+3x0—x8)—4wR—RV(1—xS)<1’2) An=4mR2,
0
k 2 (1/2)
X areco$xo) ~8mo-Ry(1+Xo) Agm=4mR3(1+X)+47Ry(1—X)
° k\ (/2 (3.2
+47TRV(kU)(1’2)(1—x§)<1’2> x| — 2V 2121 4 x)(V2 1],
X[2—2Y41+xq)M?]. (2.17)

The above expression for the free energy is quite similar to k\ (172
Eq. (2.15, the only difference being the coefficient of the Ad,b=WRS(l—XZ)—ZWRd(l—X)(”Z)(;) 2172
surface tension term. In particular are the leading order cor-
rections ink(* to the free energy in Eq$2.15 and(2.17)
the same wherR, and Ry are defined as the zeroth order The last two expressions are derived in the Appendix in Egs.
radius. (A22) and (A23), where we have identified\y ,=2(A

One can now also investigate other ensembles for the-O) andAg ,=0. Finally, the parameteg is the ratio be-
single vesicle adhered to a substrate such as the ensembletineen the number of surfactants per unit area in the bilayer
which besides the volume also the surface akeds kept and the number of surfactants per unit area in the monolayer.
constant. This, in fact, is the ensemble for which Seifert and'he value of this parameter is unknown and has to be deter-
Lipowsky® constructed their phase diagrams of the vesiclemined independently from experiments on the monolayer
unbinding transition. In the discussion in Sec. IV we comeand bilayer surfaces similarly to the surface tension of the
back to this ensemble but we will first turn our attention tobilayer, o, , which also has to be determined independently.
the ensemble appropriate for the determination of the dimerSince B is unknown, we keep it as a variable, so that the
ization transition in a microemulsion system. phase diagram of the monomer—dimer transition is calcu-
lated in terms ofB, but realistically one expects this ratio to
be close to two.

In order to investigate the occurrence of a monomer to

In this section we want to discuss the onset of dropledimer transition we need to minimize the free energy
aggregation in microemulsions. With the formulas derived inFm(Nm,Rm) of Ny monomers and the free energy
Sec. Il we are able to calculate the free energy for the forFd(Na,Rq.x) of Ny dimers, with respect tdy,, Ry, Ng,
mation of dimers and construct the phase diagram for Ra. andx, keepingViy andAy, fixed. This is done by add-
droplet-dimer coexistence. Although the calculation of the ing Lagrange multipliers Ap,\) fixing the total volume
energy for dimer formation is an important first step, for a(Ap) and total surface are@). The free energy expressions
full understanding of aggregation in microemulsions the for-to be minimized, therefore, are
mation of higher aggregates needs to be considered. We
come back to this point in the discussion in Sec. IV. K

We first need to discuss what is the appropriate en- Qm(Nm,Rm)=Nm[4waR§1—l&rR—Rm
semble to perform our minimization in. In a single phase 0
microemulsion systertwo constraints are present: First, the A
total amount of surfactant is fixed and, second, the total —APTRﬁﬂL N Ré} 3.3
amount of the componerinside the microemulsion droplet
(e.g., the amount of water when we consider water-in-oil
microemulsiony is fixed. These two constraints determine for the single microemulsion droplet phase, and

Ill. DIMERIZATION OF MICROEMULSIONS DROPLETS
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Q4(Ng,Rg,X)=Ng

2 2 2 k k 2\(1/2
47aR(1+X)+ mopR5(1—x )—167TR—Rd(1+x)—87TR—Rd(1—x )2 arccosx)
0 0
2
—Ap?R§(2+3x—x3)+ZwRd(l—x)(”z)(ka)(llz)Zl’z[ 2521+ x) M2 —2(2+x)— o,/ o]

(1/2)
+ | 47R3(1+x)+ 477Rd(1—x)(1’2)( ;) [2(1+x) M2 —212]+ g7R3(1—x?)

(1/2)
— 2,377Rd(1—x)<1’2>(§) 21’2H, (3.4

for the dimer phase. oyl o, B, andR,, different solutions fox, can be found, for

Before turning to the minimization of these two free en-which the corresponding free energy can then be calculated
ergies, it should be noted that our original reason for neglecttwith Ny andR, determined from the volume and area con-
ing the rigidity constant associated with Gaussian curvaturestrainj.
k, is now no longer valid, since the topologipeschange In Fig. 4, characteristic free energy curves are drawn for
when the number of monomers or dimers vafiesit does ~ Fq together withF, (dashed curvesof the monomers for
However, sincek andk are of the same order of magnitude fixed /0 and g, but variableR,. In Fig. 4a) the case is
and contributions to the free energy proportionalkt@re
neglected, the Gaussian free energy contribution can again '
be discarded. ' ' A

In the case that onlgingle microemulsion droplets are e
present Ny=0), the radiuk,,, and number of dropletd, L (a) continuous -
are directly determined by the volume and area constraint
This leads toR,=3V,, /Ao and Np,=A2 /(367V2). The F
minimizing equations’Q,/dN,,=0 anddQ,,/IR,=0 are
then only used to determine the values of tbeimportant
Lagrange multipliersAp and\. The ratio between the pre-
scribed total volume and surface area defines the importan
length scalew=V,, /Ay SO that in units of this length scale
the radius of the dropleR,,= 3.

Next, we consider the minimization of the free energy in
Eq. (3.4) for the dimer phase N,,=0). Now we have five
equationsgQ4/dNyg=0, 9Q4/IRy3=0, anddQ y4/dx=0, to-
gether with the total volume and total area constraint. Solv-
ing these five equations determines the five unknotps
Ry, X, Ap, and\ in terms ofB, the ratioo, /o, the radius of
spontaneous curvatuf®,, and /o) The five equations e
are again to be solved perturbatively kn First we setk | (b) first order -
=0. e

A. No bending rigidity

The following formula determines the leading order con-

tact anglex, of the dimer phase: [ ML =

7 |

Bw(op— Bo)[4+ B(1-Xo)] S

- e 1

k b |

thg — 12X+ B(8+Xo—X3) // i
arccosxo) R}, R,

2 _
+{4(2x5—2%,— 1)+ 3B(1—Xo)} 10T =0.
0 FIG. 4. Characteristic curves for the free energy of the monorfigrand
(3_5) dimers Fy4, as a function ofR, when the dimerization transition &,

. . =Ry is continuous(a) or first order(b). In the latter diagram ML denotes
In order to determine the free enery C_'f the dimersxo h_as the position of themetastable limibeyond which the dimers cease to exist
to be solved from the above equation. As a function oOfas a metastable phase.
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drawn when only one solutior, exists forRy>Rj, and  and
none forRy,<Rj . The pointRy= R, denotes the location
of the dimerizationtransition, since foRy<Rj 4 only mono-

mers are present while f&,>Rj , the dimers have a lower
free energy than the monomelthe F,4 curve is below the
F., curve and will therefore be energetically preferred. The arccosxy)

k
45| —8x5 +8B+BA(1—x5)—4(2—x5)
0,0

" ) . X(1+X) —————r75|+3 —
additional subscript 0 t&®} denotes the fact that the dimer- (1+xo) [1-(xg)2]2 (0= Bo)
ization transition is calculated witk=0. .
In Fig. 4@ the dimerization transition igontinuous X[4+B(1=-x%5)]=0. 39

since the free energy curve smoothly crosses oveRat
=R3o. The reason that the dimerization transition is con-
tinuous is that aRy= R 4 the solution for the contact angle

i .
of Eq. (3.5 is x5 =1, i.e., the contact angle is zero and the Eq. (3.7) is independent ofr, /o implies that the border

;hape of the dimer is that of two touching spheres._ Thlsoetween the first order and continuous dimerization is also
implies that the shape and, therefore, the corresponding e?ﬁdependent ofr, /. One can show that Eq3.7) has one
b . .

H “ H " *
the transiton 1 continuous can, herefar, easiy be. eteZ 0 SOIUIONS Wher <4, (the transiton is continuous
) . . ' | y be and two, one or no solutions whegr™> 3. (the transition is
mined by settingco=1 into the above equation. One finds

first ordey, with 8,=2+3,3=4.30 --- .
K 30 pBo—o The results are summarized in Fig. 5 where the phase
—_=— b (3.6)  diagram of the dimerization transition is dravsolid curve

o0 8 B2 as a function of the dimensionless spontaneous curvature

In Fig. 4(b) the case is drawn where as a function of Co=k/(woRo) and B, with op/o=1. From the above
decreasingr, first only one solution fox, to Eq. (3.5 ex- analysis we have .that the dlmer!zat|0n transition is c_ontmu-
ists, then two solutions and beyond a certain point labele@Us Wheng< g [with Rj , determined by Eq(3.6)] and first
“ML,” the metastable limit, no solutions exist. In this case order wheng> g (with R, determined by Eqs(3.7) and
the dimerization transition is dirst order transition: the (3-8)]-
curve of lowest free energfF =F when Ry<Rf, and F
=F4 whenRy>Rj ) displays a discontinuous first deriva-
tive atRy=R{ . The reason is that &,=Rg , the solution
for the contact angle of Eq3.5) is x§ # 1, so that the shape
is “discontinuous.” The location of the first order dimeriza-

For given value ofg the first equatiofEq. (3.7)] can be
solved to determineg which can then be inserted into the
second equatiofEqg. (3.8)] to determineR(’)‘yo. The fact that

B. Small bending rigidity

tion transition is determined by the requirement thaRgat Next we include rigidity and expand the radius of spon-
=Rjowe have thaF 4=F,. One can show thag andRj,  taneous curvature at the transition k¥% k/R§=k/R},
are determined by the following set of equations: +(k/w?a) YIRS . It turns out that the presence of rigidity
does not affect the location of th®ntinuoustransition to
4x5 = Bxg (1=xg) + BA(1—x5) —[4[ 1= x5 +(x5)?] leading order irk?, k/R% ;=0. It can furthermore be shown

* that the leading order cbntributiddR31 for the first order
arccos$xg ) L . D -
(3.7)  transition is determined by the following equation in terms of

+3B8(1—X3)] o =
PA=I (e x4 andk/R¥

k . .12 . 5 . . .. arccosxy)
(1—xp)[4+B(1—x5)]7 —8x; +8B8+ B (1—x0)—4(2—x0)(1+x0)W

3
R0

k
+32—- (2 x§)A(1+x5) (1—x5) M2 4(1+x5) M2 — 23221281 2+ (1—x§

arcco$xg ) }
RO,O

=667
—6w (0= B0)(2-x5)[ 1= (x5) 2] 2[4+ B(1—x5) M2V 1+x5) M2+ 2(1-x5)]
+6w0(2-x5)[1—(x§) 21 M4+ B(1-x§) 17224 1+x5) 2] =0. 3.9

The presence of rigidity shifts the first order transition tomers to dimers indeed occurs witlecreasingl/R, (increas-

lower C, as illustrated by the dashed curve in Fig. 5 whiching w). Keeping in mind the assumptions made in our calcu-

was calculated takingk{o)?=0.1w. lation, this seems to proof that curvature energy is the driv-
One observes from Fig. 5 that the transition from mono-ing force behind the attraction between droplets that
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0.65 - - : Fig. 5 which was calculated wittkgT/o=0.50? and ¢
C \ =0.1. The presence of mixing entropy is seen to have
o “\ Monomers effects on the dimerization transition. First, the dimerization
0.60 transition is shifted to lowe€, because the addition of en-
tropy will disfavor the formation of dimers. Second, the tran-
sition is now always dirst ordertransition(although weakly
055 k first order whenB< ;). The reason is that, although the
curvatureenergy of two separated microemulsion droplets is
the same as when they form a dimer of two touching spheres
(x=1), theentropicfree energy of these two configurations
0-50 is always different.
AssumingkgT/(w?0)<1 we calculated the leading or-
der shift in the location of the continuous dimerization tran-
0.45 2 4 ' 5 5 7 sition (8< B.) with the above form of the entropy. It can be
B B—o shown that the dimerization transition is given by
FIG. 5. Phase diagram of the dimerization transitisolid curve as a L_ 3_“’ M_ i 3k_BT m
function of the r_eduqed _spontanggus _curvalc_((pzk/(waRo) and B, for 3 8 B—2 48| @ (B— 2)3
op/o=1. The dimerization transition is continuogsecond ordgrwhen
B<pB. and first order wherB> 8. . The presence of rigidity shifts the first 1/2

order transition to loweC, as illustrated by the dashed curve which was X (4+128—3p%)In
calculated with k/o)?=0.1w. The presence of mixing entropy shifts the

2¢
dimerization transition to lowe€, as illustrated by the dot—dashed curve . . .
which was calculated WithT/o-iO.5w2 and¢=o.y1. The leading order contribution due to the presence of entropy

to the location of the dimerization isegativeand scales as
[KgT In(1/2¢) 1Y

ultimately may lead to phase separation. We now show that

this result is unaffected by the presence of mixing entropy

which we discuss next. IV. DISCUSSION

(3.12

C. Entropy of mixing In this section we want to discuss our re;ults 'in the con-
) ) text of the assumptions made throughout this article.

~ Until now we have concerned ourselves with the change e first focus on the interaction between the vesicle and

in curvatureenergy associated with dimer formation and ne-ie substratdor between two microemulsion dropletsn

glected the loss of entropy associated with dimerization. W‘E;eneral, the vesicle-substrate interaction potet@d) will

discuss qualitatively the influence of entropy by adding @gxhipit a hard-core repulsion at short distances, a minimum
Flory—Huggins-type free energy to the curvature free energya; some characteristic distantg,,, and decay to zero at

For the single droplets we add large distances. The value of the interaction potential at

kgT =l in is related tAAo via V(I ) =Ac—o [see Eq(2.2)]. In
Fmnen=y —VIoIn(4)- 4], (3.10  this article it was assumed throughout that the typical range
om of the interaction between the vesicle and the substrgie,
and for the dimers is much smaller than the dimension of the vesideopled.

This meant that the interaction potential could be approxi-
, (3.11 mated by a delta function located at the substi&te (2.2)].
Since the typical size of a vesicle lies in the micrometer
wherekg is Boltzmann’s constanfl the absolute tempera- range, this assumption seems to be quite reasonable, but in
ture,V the total available volume to the microemulsion, andthe case of microemulsion droplets the typical size is in the
¢=V,t/V<1 is the volume fraction taken in by the micro- nanometer range and the assumption might become question-
emulsion droplets. The volumg, is the volume of the unit able. Furthermore, in the context of the expansion made in
cell of the Flory—Huggins lattice. Its precise value in micro- terms of the length parametek/¢) 2, it was implicitly as-
emulsion systems has been subject of intense debate in teamed in our calculations that the interaction range is also
literature?®?! Since we are only interested in thealitative ~ much smaller thank]o)*? (I,n<(k/o)“?<R). In order to
influence of entropy on the dimerization transition, we will go beyond this condition and consider the situation where
not go into this debate and seg equal to the volume of the |,,,~(K/0)*?, it seems difficult to avoid having to solve the
individual microemulsion droplet. We thus have that,  shape equations numerically, using the full shape of the
=(47-r/3)R3m for the single droplets andyq=(7/3)(2+3x  substrate-vesicle interaction potentig(l).
—x3) RS for the dimers. Furthermore, we limit our calcula- However, in the opposite situation whek/ )< i,
tion to the case with no bending rigiditi= 0. <R the precise shape of the interaction potentiah be
With these approximations the dimerization transitiontaken into account via the addition ofliae tensionterm to
can be calculated by the minimization of the free energy ashe free energy. In this regime, the term proportionakd
before. A typical result is shown as the dot-dashed curve iin the free energy expression E§-12 is replaced by dine

keT (¢ [¢
Fd,entzv_wv[iln(5> —¢
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tensionfree energyF ; which is proportional to the length of Further approximations were made when we applied our
the line where the vesicle profile meets the substrate formulas to study the onset of microemulsion droplet aggre-
_ N gation. When we located the dimerization transition the for-
F(R.X)=27R(1-x%)""r. 4. mation of higher aggregates was completely discarded. The
The value of the proportionality constant, the line tensipn microemulsion droplets were only allowed to aggregate as
is determined by the precise shape of the interaction potentigimers or to remain as monomers. This assumption will be

between =1, and| =022 more or less valid when the droplet concentration is suffi-
ciently low. However, at high concentrations multiple drop-
r= fx di[{20AV(1)—[AV(1)]2¥2 let interaction will have to be taken into account, not only for
lmin the formation of, possibly deformed, microemulsion droplet
aggregates, but also for the formation of completely new

—{20E-E3"], 4.2 structures, such as cylinders.
where we have definedA\V()=V(l)—V(lm)=V()+o In the context of all these approximations we summarize

—Ac and E=—V(l,,)=0—Ac. Using the expression for our findings. In this work we have presented the important
F.(R,x) in Eq. (4.1), the radiusR and contact angle can first step towards a fuller understanding of aggregation phe-
again be determined by minimizing the free energy with re-nomena in microemulsion systems by calculating the curva-
spect toR andx. ture free energy for the formation of dimers. We found that
In this context we would like to mention recent work by dimerization occurs in the direction of vanishing spontane-
Fletcher and PetséVon the aggregation of microemulsion ous curvature in agreement with experiments. This seems to
droplets. They too took into account the curvature energyroof that curvature energy is the driving force behind the
and considered the influence of the full shape of the interacattraction between microemulsion droplets that may ulti-
tion potential. However, the way in which the curvature en-mately lead to phase separation.
ergy was taken into account via an increased droplet deform-
ability with vanishing spontaneous curvature, differs from
our analysis.
The next important assumption that was made in this
article, is the assumption of small bending rigiditk/¢)*? ~ ACKNOWLEDGMENTS
<R. As mentioned before, this assumption is partly made to
avoid having to resort to numerical work, and partly because  The research of E.M.B. has been made possible by a
it is in line with the experimental findings concerning micro- fellowship of the Royal Netherlands Academy of Arts and
emulsion droplets. In the case of vesicle adhesion, neglectingciences. The work of W.F.C.S. has been supported by the
the curvature terms proportional tohas important conse- Netherlands Foundation for Chemical Resed(@W) in col-
quences, however. This is best illustrated by the calculatiofboration with the Netherlands Technology Foundation
of the vesicle unbinding transition in the constant volume,(STW).
constant surface area ensemble. In this ensemble the Rdius
and contact anglg of the adhered vesicle are simply deter-
mined by the geometrical constraints of total volumend
total surface ared [given in Sec. IID and in Eq(A23),
respectively. For example, to zeroth order we thus have thatAPPENDIX: FIRST ORDER CORRECTIONS TO THE
the contact anglg, is determined by the following algebraic FREE ENERGY
equation[see also Eq(6.23 in Ref. 4]

V2 (2=X0)%(1+Xo)
A3 9m(3—xo)°

It will be convenient to express the curvatureRAnd
1/R, in terms of the surface height profilér), with r the
radial distance to the axis (see Fig. 2 Assuming rotational
symmetry around the axis, they are given by

4.3

As a function ofV andA, the contact angle, the radius of the
adhered vesicle and therefore the free energy, can thus be
determined. In order to locate the unbinding transition, the

free energy then has to be compared to the free energy of the i _ I"(r) iz 1"(r)
unboundvesicle. With rigidity neglected to orddt, how- Ry r{1+[I"(N]AM" Ry r{1+[1"(r)]3¥2”
ever, the shape of the unbound vesiclalways spherical, A

and V and A cannotbe varied independently. Fixing the

volume of the spherical vesicle necessarily fixes its surface

area. Although this problem does not show up in the enwhere the prime indicates a differentiation with respect to the
sembles considered in Sec. IIC and Il D, it is clear that im-argument. For notational conveniences we drop the explicit
portant physical aspects in the treatment of vesicle binding-dependence of the height profilér) in the remainder of
are lost by keeping the expansion only to oré&f. Never-  the Appendix.

theless, analytical expressions as given in Egsl5 and We insert the above expressions for the curvature in
(2.17 can provide platforms for calculations which cannotterms of the surface profile into the Helfrich free energy
be easily carried out numerically. expression in Eq(2.2)
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) 4k 1 1 ) = o110 2k
Fulll=omr§+| o— - 5 +2k=3|27R (1+x)+27rf drlr[1+(11)2]¥2) o— —
ROR 'R o Ro

I/ I// k I/ II/ 2 I, 5 (1/2)®
X 1+ (') + (11122 ts 1+ ()22 + (11 ()22 —r[1+(1p)“] (r=re)
2k A 5 k 15 I 2
7 R\ (971 [T 197™) " 2\ (52 ' [1r (5] | ) A2

where ©(r—r.) is the Heaviside-function and where we tracting the curvature energy of the spherical cap is that the
have defined .=R(1—x?)(Y?, The first term is the result of integration over in the last term could be extended tto
integrating the surface tension over the part of the vesicle=c where the profilé(r)—Iy(r), and the integrand goes to
that is adhered to the substrate. The integration runs from zero.

=0 to r=ry defined as the radial distance at whibfr It will turn out that the leading contribution to the free
=r,)=0 (see Fig. 2 The second term results from the in- energy due to the presence of rigidity scale&%&so that to
tegration of the curvature energy over the spherical cap téeading order irk we can disregard the term proportional to
which the surface profile smoothly crosses over to at largd in the expression for the curvature energy of the spherical
distances from the substrate. This term is subtracted in theap in Eq.(A2). Furthermore, the integration over the first
last term of Eq(A2) via the terms involving the height pro- term proportional t&/R, cancels with the same term involv-
file 1, of the spherical cap. The reason for adding and subing the spherical-cap-profilly so that Eq(A2) becomes

2k rl”

FH[']:UWRz(l_X2)+ O'r{[1+(| /)2]<1/2)—1 — R_ W—F gr[1+(l ,)2](1/2)
0

4k12 R2(1+x)+2 fwd
O—_R_Oﬁ mR( X) 7Tr r

0

I’ " ? 1\2y(1/2)
X r[1+(|1)2](1/2)+ [1+(|/)2](3/2) _®(r_rc) Ur[(l+(|0) ) _1]

2k rlg
Ro 1+(14)?

k
+§r[1+(l())2](1’2)

’ | 2
0 0
+ , A3
rrL+(1g)% u+%ﬂﬁ®)” ")
where in addition we have rewritten the surface tension term somewhat.
As noted before, the integrand in the above expression is written in such a way that it goes to zere-whehhe main
contribution is, therefore, located arounetr.=R(1—x%)Y?xR. We can therefore expandaroundr, assuming that the

length scale over which the height profilg) differs from the spherical-cap-profilg(r) is small compared t&®. The result
is that we can insent=r .+ O(1) in the above expression and expand iR.1To leading order one finds

Fulll=omR2(1—x%)+

4k 1 ) k o (12
o- 5 &|27R (1+x)—47-rR—R(1—x )2 arccogx) +27R
0 0

X (1—x2)<1’2)f dr
"o

k |” 2
dH+WVW®—H+gﬁ:%%ﬁﬁ—®U—QMHH%WﬂW”4}, (A%)

where we have carried out the integration of the terms prowhere we have used the fact that in the limit of laRjethe
portional tok/R, to yield the third term in the above expres- spherical-cap-profilé, is a straight line withlj=tané (see
sion. Next, we defindF=F,—F o with F, g givenin Eq.  Fig. 2). It will be convenient to define the rescaled lengths

(2.7),

(1/2) (1/2)
YE(E) (r=ro), Ay= F) (re=ro)s

AF[I]=27TF2(1—x2)(1’2>Fdr of{[1+ (1) —1}
"o

(A6)
k (I 11)2

o\ (12
1 f(y)E(—) I(r),
+EW‘@“”C>"(%‘1”’ ‘

(A5) so that the expression for the free energy can be written as



J. Chem. Phys., Vol. 111, No. 15, 15 October 1999 Vesicle adhesion and microemulsion droplet dimerization 7073

AF[f(y)]=27R(1—x?>) Y2 (ko) 2 (2 farctanz sing

® [1 cosd cosB—sinfsinB]Y?"
XJ dy {[1+(1)"%" -1 (A13)
0
1 (12

1 Next, we define the angle=6— 8 so that Eq.(A13) be-
—®(y—Ay)a(;—1”. comes
0 sinf cosa—cosh sina
A7 =
( ) f(Z) 0— arctanzd “« [1 - COSQ’]<1/2)

(A14)

The Euler—Lagrange equation to the above free energy reads
% fm frerem This integration can be carried out to yield

[1+(fr)2](3/2)_[1+(f/)2](5/2)+1O[1+(fr)2](7/2) a . a a=46
f(z)= tan —| | +2sin 6— = .
4 2/
a= f—arctanz

(f//)S 35 (f”)?’
[1+(f,)2](7/2)+7[1+(fr)2](9/2):0- (A8) (A15)

sinfIn

—15

We have now expressed the height profil@ terms ofz. In

This can be integrated once to yield . . . :
g y order to determine the height profile as a function of the

f! " 5  f/(f")? rescaled radial distancg, we need also to expregsas a
[1+(f)2]2 - [1+(f)2]5P2 + 2 [1+(f)2]2 function of z. The calculation ofy(z) is analogous to the
. calculation off(z) and one finds

=constant=sin 6, (A9)
where the integration constant is determined by the boundary y(z)= fzdzli,= cosé In tar(g )
condition that the profile approachdgy)—tané(y—Ay) z 4
wheny— <. Multiplying the above equation bf/’ and inte- a\le=0
grating once more, yields +2 cos( 0— E) , (Al6)

(f”)2 a= f#—arctanz
[1+(f)2]2— 2 1+ (1252 sinof’ so that the density profile, parameterized by the angle
which runs from 0 tod, reads
= constant=cosé. (A10) ,
0
Defining z(y)=f'(y), we are thus finally left with the fol- f(a)=sind|In tar(z —In tar(% ”
lowing first order differential equation: p
. a .
2/ =2Y%(1 4 72) 5[ (1+ 22)(Y2 — cosh—z sin ] 12 -2 S|r< 60— > +2 S"—<§
(AL1) f(y)={ ) Wl T

We now investigate the boundary condition to the above y(a)=cosf)In tar(z —In tar(z ”
differential equation. The general boundary conditions to the a 0
shape equations are given by Eg.6). With the help of Eq. -2 co{ 0— > +2 cos{i
(A1) they are written asl’(rg)=0 and |"(rg)=[2(c \

—Ao)/k]¥2, which in terms ofz(y) reduce toz(0)=0 and (ALD)

z'(0)=[2(1—Ada/a)]"% To leading order irk, the latter  Before calculating the free energyF,,, we determine the
can be written with the help of Young’'s equation Z$0) rescaled distancAy. It is defined by the asymptotic behav-
=[2(1—cos#)]*¥2. One immediately observes that the pro- ior of the profilef(y)— (y—Ay)tand wheny— o

file z(y) indeed obeys this boundary condition when one

insertsz(0)=0 into the above differential equation. Av=lim | v— f(y)

With the help of the other boundary conditiat0)=0, y= Yoo y tané
the definition ofz(y), and the above differential equation,
the height profilef(y) is now written in terms of the follow- z(y1) * _ay)
ing integral: h I|m dyl  tané 0 dy/ 1 tand|’ (A18)
f(y)= fyd)ﬁz()’l):f )d21 le Using the differential equation EgA11) for the height pro-

0 0 Z; file, one finds, following the same procedure as before, that:
2(y) z,(1+25)~ 54 o112
_o—(112) -
2 fo dzl[(1+z§)(1’2)—cos¢9—zl sing]?- Ay= (1+x) 2 (A19)

(A12) We now return to the calculation of the Helfrich free energy.
In order to perform the integration, we define the angley  Inserting the differential equatiofEq. (A10)] into the ex-
z,=tanp and rewrite Eq(A12) as pression forAF in Eqg. (A7), one finds
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