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Abstract. We extend our previous work by proving that for translation invariant Gibbs
states onZd with a translation invariant interaction potential9 = (9A) satisfying∑
A30 |A|−1[diam(A)]d‖9A‖ < ∞ the following hold: (1) the Kolmogorov-property

implies a trivial full tail and (2) the Bernoulli-property implies Følner independence. The
existence of bilaterally deterministic Bernoulli Shifts tells us that neither (1) nor (2) is, in
general, true for random fields without some further assumption (even whend = 1).

1. Introduction
The purpose of this paper is to extend some results for Markov random fields, that were
proved in [HS], to a large class of (possibly infinite range) Gibbs states. In §1 we give
some notation and definitions. In §2 we formulate our theorems. In §3 and §4 we give
proofs.

Notation and definitions. Throughout this paper we consider stationary stochastic
processesX = {Xx}x∈Zd taking values in afinite setF . We also viewX as a probability

measureµ on� = FZd that is invariant under the naturalZd -action.
We writeBn = [−n, n]d ∩ Zd to denote then-box inZd . If µ is a probability measure

onFZ
d

andA ⊆ Zd , then we letµA denote the probability measure onFA obtained by
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232 F. den Hollander and J. E. Steif

projectingµ ontoA. We also letXA denote the process restricted toA, so thatµA is just
the distribution ofXA.

In order to save space, rather than repeating verbatim a number of definitions we
will frequently refer to [HS]. In particular, the reader can find there the definitions
of the d-distance between two probability measuresµA and νA with finite A, entropy,
ergodicity, K-automorphism (K), Bernoulli (B) and very weak Bernoulli (VWB). Two
further definitions, which we also need here and which are not as standard, are trivial
full tail (TFT) and Følner independent (FI).

Definition 1.1.A stationary process{Xx}x∈Zd is said to have a TFT ifT = ∩n≥1Tn is
trivial, whereTn = σ(Xx, x ∈ Bcn).
Definition 1.2.A Zd -invariant probability measureµ is called FI if for all ε > 0 there
exists anN ∈ N such that: ifn ≥ N andS ⊆ Bcn with S finite, then

d(µBn, µBn/σ) < ε

for all σ ∈ FS except for anε-portion as measured byµ, whereµBn/σ denotesµBn
conditioned onσ .

In words, FI means that for largen and for most configurations onBcn the conditional
distribution onBn is d-close to the unconditional distribution.

For translation invariant ergodic random fields the following orderings hold (see [HS,
§1, Theorem 2.4 and references]):

FI ( VWB, TFT( K

FI ( TFT, VWB ( K

B = VWB.

A Gibbs state is defined as follows (see [G, Ch. 2]). Aninteraction potentialis a family
9 = (9A) of maps9A : FA → R satisfying∑

A : A∩36=∅
‖9A‖ <∞ for all 3 ⊆ Zd non-empty and finite,

where‖9A‖ = supη∈FA |9A(η)| and whereA runs over the non-empty finite subsets
of Zd . For a given9, a Gibbs state for9 is any random fieldµ whose conditional
probabilities on3 givenσ on3c are of the form

µ(·|σ) = 1

Z3,σ
exp[−H3(·|σ)] for all 3 ⊆ Zd non-empty and finite andσ ∈ F3c ,

whereZ3,σ is the normalizing constant (or partition sum),

H3(η|σ) = −
∑

A : A∩36=∅
9A([η ∨ σ ]A) (η ∈ F3)

is the Hamiltonian on3 givenσ on3c, and[η ∨ σ ]A is the configurationη ∨ σ restricted
toA.
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Equivalence for Gibbs states 233

The class of interaction potentials that we allow in this paper are the ones satisfying
9A = 9A+z for all A and allz ∈ Zd∑
A30

1

|A| [diam(A)]d‖9A‖ <∞, (∗)

where diam(A) = supx,y∈A |x − y|1. The second of these conditions means that for large
sets the total interaction across the boundary of the set is of the order of the surface of the
set.

Despite the fact that the interaction potential is assumed to be translation invariant, there
may—and in general will—be Gibbs states that are not translation invariant. In this paper,
however, we only consider translation invariant Gibbs states.

2. Main theorems
The goal of this paper is to show that the converses of ‘FI implies VWB’ and ‘TFT implies
K’, though not true in general (see [HS] for a discussion), are true for allZd -invariant
Gibbs states for interactions satisfying(∗). That is, we prove the following two theorems.

THEOREM 2.1. If µ is aZd -invariant Gibbs state for an interaction satisfying(∗) and is
VWB, thenµ is FI.

THEOREM 2.2. If µ is aZd -invariant Gibbs state for an interaction satisfying(∗) and is
K, thenµ is TFT.

The proofs of these theorems are given in §3 and §4. Thus, for the class(∗) we obtain
the following ordering:

FI = VWB ⊆ TFT= K. (∗∗)
Remarks.(1) Ford = 1, (∗) precisely coincides with the well known sufficient condition
for uniqueness of the Gibbs state [G, p. 166]. Being the unique Gibbs state, the measure
is necessarily TFT [G, Theorem 7.7(a)]. So Theorem 2.2 is of no interest for this case. In
fact, ford = 1, (∗) is known to imply that the unique Gibbs state is weak Bernoulli [G,
p. 461], which is stronger than FI. Therefore Theorem 2.1 is also of no interest in this case.

(2) Theorem 2.2 is trivial, for anyd ≥ 1, if all (!) Gibbs states for the given interaction
areZd -invariant. In fact, then ergodicity is already enough to imply TFT. The reason for
this is that any such ergodic Gibbs state cannot be decomposed as a convex combination of
two Gibbs states for the same interaction, since these would necessarily beZd -invariant and
by ergodicity would be identical. Hence, any such ergodic Gibbs state is extremal within
the class of all Gibbs states, and therefore must be TFT (again by [G, Theorem 7.7(a)]).

(3) In [OW1] it is proved that for the Ising model with ferromagnetic nearest-neighbor
interaction both the ‘+ state’ and the ‘− state’ are B. So for this case all four properties
in (∗∗) hold. The proof shows that the same is true for all interactions satisfying the FKG
lattice condition [G, p. 445], the technical reason being that then the conditional measure
in a finite set is stochastically increasing as a function of the configuration outside the set.

(4) As will become clear from the proofs, both Theorem 2.1 and Theorem 2.2 are
statements of the type: if a certain property holds ‘one-sided’ then it also holds ‘two-
sided’ (i.e. if the property holds with respect to the lexicographic past of a large box, then

https:/www.cambridge.org/core/terms. https:/www.cambridge.org/core/product/757C560942EDBC259CAE802AB92D2051
Downloaded from https:/www.cambridge.org/core. Library African Studies Centre, on 21 Jun 2017 at 12:23:40, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https:/www.cambridge.org/core/product/757C560942EDBC259CAE802AB92D2051
https:/www.cambridge.org/core


234 F. den Hollander and J. E. Steif

it holds with respect to the entire outside of the large box). In the theory of Gibbs states
similar types of statements occur, for instance, for the notions of Markov property [G,
Section 10.1] and entropy [E].

(5) An open question is whether TFT= VWB for the class(∗). In [H] an example is
constructed of a Markov random field onZ2 that is K but not VWB. Since [HS] shows
that K = TFT for Markov random fields in general, this example violates TFT= VWB.
However, it is not Gibbsian (because it is not strictly positive on all cylinder sets). Perhaps
a Gibbsian counterexample can be found in the class of nearest-neighbor ‘clock models’
[FS], where Gibbs states are known to exist that are unique and yet have arbitrarily slow
decay of correlations.

(6) Another open question is whether(∗∗) also holds for the larger class of interactions
where the second condition in(∗) is weakened to

∑
A30 ‖9A‖ < ∞, i.e., the usual

summability condition.

3. Proof of Theorem 2.1
3.1. Key lemma. We will need the following property of a Gibbs state for an interaction
satisfying (∗), which plays an important role in the proofs of both Theorem 2.1 and
Theorem 2.2.

LEMMA 3.1. Fix an interaction satisfying(∗) and letµ be aZd -invariant Gibbs state for
this interaction. Then, giveǹ,m ∈ N andδ > 0, there exists aC(`,m, δ), satisfying

lim
`→∞C(`,m, δ) = 1 for fixedm andδ,

such that for anyk ∈ [`,m`] ∩ N, anyσ, σ ′ ∈ FBck that agree onBk+bδ`c\Bk , and any
η ∈ FBk , the following bounds hold a.s.:

1

C(`,m, δ)
≤ µBk(η|σ)
µBk (η|σ ′)

≤ C(`,m, δ).

Proof. Fix m ∈ N andδ > 0. Fork, ` ∈ N, letAk,`,δ denote the collection of finite setsA
satisfyingA ∩ Bk 6= ∅ andA ∩ Bck+bδ`c 6= ∅. Given any finite setA, letTA(k, `, δ) denote
the number of translates ofA that are contained inAk,`,δ. Some elementary combinatorial
geometry (left to the reader) shows that there exists aC1(m, δ) such that

sup
A

sup
l∈N

sup
k∈[`,m`]∩N

TA(k, `, δ)

[diam(A)]d ≤ C1(m, δ).

Next, for anyl ∈ N, anyk ∈ [`,m`] ∩ N, anyσ, σ ′ ∈ FBck that agree onBk+bδ`c\Bk , and
anyη ∈ FBk , we have

|HBk(η|σ)−HBk(η|σ ′)| ≤
∑

A∈Ak,`,δ
‖9A‖

=
∑
A30

TA(k, `, δ)

|A| ‖9A‖

≤ C1(m, δ)
∑

A30,diam(A)≥bδ`c

1

|A| [diam(A)]d‖9A‖.
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Equivalence for Gibbs states 235

By assumption(∗), the sum in the right-hand side tends to zero as` → ∞. Hence there
exists aC2(`,m, δ), satisfying lim̀→∞ C2(`,m, δ) = 1 for fixedm andδ, such that

1

C2(`,m, δ)
≤ e−HBk (η|σ)

e−HBk (η|σ ′)
≤ C2(`,m, δ)

for any l, k, σ, σ ′, η as above. These inequalities being true for allη, the ratio of the
corresponding partition functions also satisfies the exact same inequalities. This proves the
claim withC(`,m, δ) = C2(`,m, δ)

2. 2

3.2 Proof of Theorem 2.1.If a process is VWB, then it is B (see §1). The latter is in turn
equivalent to the following condition, called extremality (see [HS, §3 and references]).

Definition 3.2.A Zd -invariant probability measureν is called extremal if for allε > 0
there exist anN ∈ N and aδ > 0 such that: for alln ≥ N and for all decompositions of
νBn of the form

νBn =
M∑
i=1

piνi

with (p1, . . . , pM) a probability vector andM ≤ 2δ|Bn|, most of theνi ’s ared-close toνBn
in the sense that ∑

i : d(νBn ,νi)<ε
pi > 1− ε.

In words, any ‘not too large’ decomposition of the measure on large blocks must have
almost all components close to the original measure.

To show that ‘µ is B’ implies ‘µ is FI’, let ε > 0 and pickN1, δ from Definition 3.2.
Next, chooseγ > 0 sufficiently small and pickN2 such that|F ||Bn+bγ nc\Bn| ≤ 2δ|Bn| for
all n ≥ N2. Next, pickN3 from Lemma 3.1 such thatC(n,1, γ ) ≤ 1+ ε for all n ≥ N3.
For suchn, it follows readily from the bounds in Lemma 3.1 that, for anyσ, σ ′ ∈ FBcn that
agree onBn+bγ nc\Bn, the measuresµBn(·|σ) andµBn(·|σ ′) are withinε in total variation
distance.

By Lemma 3.2 in [HS], to verify the FI condition in Definition 1.2 it suffices to
considern ≥ max{N1, N2, N3} and finite setsS ⊆ Bcn that containBn+bγ nc\Bn. Since
|F ||Bn+bγ nc\Bn| ≤ 2δ|Bn|, extremality yields that there exist configurationsη1, . . . ηM on
Bn+bγ nc\Bn, with M ≤ |F ||Bn+bγ nc\Bn|, such that their total measure is at least 1− ε and
such that alsod(µBn, µBn/ηi) < ε for eachηi .

Now consider all configurationsσ onS such that the restriction ofσ toBn+bγ nc\Bn is
ηi for somei ∈ {1, . . . ,M}. Clearly, these configurations have total measure at least 1−ε,
and so we need only show that for each suchσ ,

d(µBn, µBn/σ) < 2ε.

For this it suffices to show that

d(µBn/η,µBn/σ) < ε

wheneverσ is a configuration onS whose restriction toBn+bγ nc\Bn is η. However,µBn/η
andµBn/σ are each averages of measures that, as we saw earlier, are all withinε in total
variation distance of each other. HenceµBn/η andµBn/σ are withinε in total variation
distance, and therefore also withinε in d-distance. 2
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236 F. den Hollander and J. E. Steif

4. Proof of Theorem 2.2
We will prove the result only ford = 2, the extension to higher dimensions being
straightforward. The proof is a variation on the proof of the analogous statement for
Markov random fields given in [HS]. The main point is to implement Lemma 3.1, which
requires some estimates.

Recall that TFT means that theσ -algebraT defined by

T = ∩m≥1Tm

Tm = σ(Xx, x ∈ Bcm)
is trivial. On the other hand, recall (see [C] or [S]) that K is equivalent to the smaller
σ -algebraT ′ defined by

T ′ = σ(∪m≥1T
′
m)

T ′m = ∩n≥1T
′
m,n

T ′m,n = σ(Xx, x ∈ {(x1, x2) : x2 ≤ −n or (x1 ≤ −n andx2 ≤ m)})
(T ′m,n is the lexicographic past of the rectangle[−n, n] × [−n,m] in Z2) being trivial (see
[HS, §1 and references]). We will show thatT = T ′ a.s., which more than implies the
claim that K = TFT.

In order to do so, we appeal to Lemma 2.10 in [BH] (which is stated there only for
d = 1, but whose proof for higher dimensions is identical). According to this lemma,
sinceT ′ ⊆ T it suffices to show that

h(XBn |T ′) = h(XBn |T ) for all n ≥ 0,

whereh(·|·) denotes conditional entropy.
Fix n ≥ 0. SinceT ′n ⊆ T ′ ⊆ T , it suffices to show that

h(XBn |T ′n) ≤ h(XBn |T ). (1)

To achieve this, we will show that there exists a function1(k, `, δ) ≥ 0, defined for
k, ` ∈ N with k > 2n and forδ > 0, satisfying

lim
`→∞

1(k, `, δ)

(2`+ 1)2
= 0 for fixedk andδ, (2)

such that

h(XBn |T ′n,k−n) ≤ h(XBn |Tk(2`+1)−n)+ αk,`,δh(X0)+ 1(k, `, δ)
(2`+ 1)2

, (3)

whereh(·) denotes entropy and

αk,`,δ = bδ`c(6r − 1)+ bδ`c(bδ`c + 1)

(2`+ 1)2
with r = k(`+ 1)− n.

Assuming the latter, we can let`→ ∞, δ → 0, k →∞ (in this order) in (3) and use (2)
to obtain (1). Note thatαk,`,δ vanishes in this limit and that, by the backwards martingale
convergence theorem, the two entropies in (3) converge to the two entropies in (1).
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To construct1(k, `, δ), we define

Ck,` = ∪x,y: |x|≤`,|y|≤`{Bn + (kx, ky)}

and note that the(2`+ 1)2 translates ofBn comprisingCk,` are disjoint and have distance
at leastk − 2n between them. Letr = k(`+ 1)− n as above and define

Er = {(i, j) : j < −r}
Dr,δ = Br+bδ`c\(Br ∪ Er).

In words,Er is the lower half plane adjacent to the bottom segment of the boundary of
Br , whileDr,δ consists ofbδ`c layers adjacent to the left, right and top segments of the
boundary ofBr . Note that the boundary ofBr enclosesCk,` and is a distancek − 2n away
from it.

We next order the(2`+ 1)2 translates ofBn in Ck,` lexicographically. Namely, we say
thatBn + (x, y) precedesBn + (x ′, y ′) if y < y ′ or (y = y ′ andx < x ′). In this way, we
get an ordering of the translates ofBn, which we enumerate asB1, B2, . . . , B(2`+1)2. The
idea of the proof is to compute the conditional entropy

(†) = h(XDr,δ ∨XCk,` |XEr )

in two different ways, to derive an upper, respectively, lower bound for the two resulting
expressions, and in this way obtain an inequality between these bounds. This inequality
will then be exploited to complete the proof.

For the lower bound, we estimate

(†) ≥ h(XCk,` |XEr ) = h
( (2`+1)2∨

i=1

XBi |XEr
)

=
(2`+1)2∑
i=1

h(XBi |XEr ∨XB1∪...∪Bi−1).

Clearly, each of the terms in the sum is bounded below byh(XBn |T ′n,k−n), because the

distance between the translatesBi is k − 2n and so is the distance between∪iBi andEr .
Hence

(†) ≥ (2`+ 1)2h(XBn |T ′n,k−n). (4)

For the upper bound, we write

(†) = h(XDr,δ |XEr )+ h(XCk,` |XEr ∨XDr,δ ).

The first term is at most|Dr,δ|h(X0), where|Dr,δ| =∑bδ`ci=1 (6r − 1+ 2i) = bδ`c(6r − 1)
+ bδ`c(bδ`c + 1). We express the second term ash(XCk,` |XBcr )+1(k, `, δ) with

1(k, `, δ) = h(XCk,` |XEr ∨XDr,δ )− h(XCk,` |XBcr ) ≥ 0
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238 F. den Hollander and J. E. Steif

(the inequality coming fromEr ∪Dr,δ ⊆ Bcr ). We developh(XCk,` |XBcr ) as

h(XCk,` |XBcr ) = h
( (2`+1)2∨

i=1

XBi |XBcr
)

≤
(2`+1)2∑
i=1

h(XBi |XBcr )

≤ (2`+ 1)2h(XBn |T2r−(k−n)),
using the fact that the largest distance between the boundary ofBr and the center of a
translateBi is 2r − (k − n). Thus

(†) ≤ (2`+ 1)2h(XBn |T2r−(k−n))+ |Dr,δ|h(X0)+1(k, `, δ). (5)

Comparing (4) and (5), noting that 2r− (k−n) = k(2`+1)−n and dividing by(2`+1)2,
we obtain (3). Hence we need only verify (2) with the above definition of1(k, `, δ).

To achieve the latter, we need the following trivial lemma.

LEMMA 4.1. Letp = {pi}i∈I andq = {qi}i∈I be two finite probability vectors satisfying
1

C
≤ pi
qi
≤ C for all i ∈ I.

Thenh(q) ≥ − logC + (1/C)h(p), whereh(·) denotes entropy.

Proof. Write

h(p) =
∑
i

pi log

(
1

pi

)
≤
∑
i

Cqi log

(
C

qi

)
= C logC + Ch(q). 2

We want to apply Lemma 4.1 whenp is the conditional law ofXCk,` givenXEr ∨XDr,δ
andq is the conditional law ofXCk,` givenXBcr . Fix k andδ. Applying Lemma 3.1 and
averaging over the configuration inBr \ Ck,`, we find that there exists aC(`) (namely,
C(`) = C(`,2k, δ) in the notation of Lemma 3.1 becausekl ≤ r ≤ 2kl), satisfying

lim
`→∞C(`) = 1,

such that for anỳ ∈ N, anyη ∈ FCk,` , anyσ ∈ FEr∪Dr,δ and anyσ ′ ∈ FBcr whose
restriction toEr ∪Dr,δ is σ , the following bounds hold a.s.:

1

C(`)
≤ µ(XCk,` = η|XEr ∨XDr,δ = σ)

µ(XCk,` = η|XBcr = σ ′)
≤ C(`)

(use thatBr+bδ`c\Br ⊆ Er ∪ Dr,δ ⊆ Bcr ). Using Lemma 4.1, we now obtain (integrate
overη, σ, σ ′)

h(XCk,` |XBcr ) ≥ − logC(`)+ 1

C(`)
h(XCk,` |XEr ∨XDr,δ )

and so

0 ≤ 1(k, `, δ) = h(XCk,` |XEr ∨XDr,δ )− h(XCk,` |XBcr )
≤ logC(`)+

(
1− 1

C(`)

)
h(XCk,` |XEr ∨XDr,δ ).

However,h(XCk,` |XEr ∨ XDr,δ ) can be bounded above by(2` + 1)2 h(XBn). Hence (2)
follows because lim̀→∞ C(`) = 1.
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