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Abstract We extend our previous work by proving that for translation invariant Gibbs
states onZ¢ with a translation invariant interaction potenti# = (W,) satisfying
ZA90|A|*1[dian(A)]d||\IJA|| < oo the following hold: (1) the Kolmogorov-property
implies a trivial full tail and (2) the Bernoulli-property implies Fglner independence. The
existence of bilaterally deterministic Bernoulli Shifts tells us that neither (1) nor (2) is, in
general, true for random fields without some further assumption (even avieh).

1. Introduction

The purpose of this paper is to extend some results for Markov random fields, that were
proved in HS], to a large class of (possibly infinite range) Gibbs states. In §1 we give
some notation and definitions. In 82 we formulate our theorems. In 83 and 84 we give
proofs.

Notation and definitions. Throughout this paper we consider stationary stochastic
processeX = {X,},.z« taking values in dinite set . We also viewX as a probability
measurg. onQ = FZ that is invariant under the naturaf -action.

We write B, = [—n, n]? N Z4 to denote the-box inZ4. If i is a probability measure
on F2* and A c 74, then we letu, denote the probability measure @i obtained by
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232 F. den Hollander and J. E. Steif

projectingu onto A. We also letX 4 denote the process restricted4pso thatu 4 is just
the distribution ofX 4.

In order to save space, rather than repeating verbatim a number of definitions we
will frequently refer to HS]. In particular, the reader can find there the definitions
of the d-distance between two probability measures and v, with finite A, entropy,
ergodicity, K-automorphism (K), Bernoulli (B) and very weak Bernoulli (VWB). Two
further definitions, which we also need here and which are not as standard, are trivial
full tail (TFT) and Fglner independent (FI).

Definition 1.1.A stationary proces$X,}, .z« is said to have a TFT if’ = N,>17, is
trivial, whereT,, = (X, x € B}).

Definition 1.2.A Z“-invariant probability measurg is called FI if for alle > 0 there
exists anV e N such that: ifz > N andS € By, with S finite, then

d(ug,, 4, /0) < €

for all 0 € FS except for ane-portion as measured by, whereup, /o denotesup,
conditioned orv .

In words, FI means that for largeand for most configurations oBS the conditional
distribution onB,, is d-close to the unconditional distribution.

For translation invariant ergodic random fields the following orderings hold {48¢ [
81, Theorem 2.4 and references]):

FICVWB, TFTCK
FICTFT, VWB CK
B = VWB.

A Gibbs state is defined as follows (s&& [Ch. 2]). Aninteraction potentials a family
W = (W,) of maps¥,: F4 — R satisfying

> lwal <oo forall A € Z¢ non-empty and finite
A: ANAAD

where ||Wall = sup,cra [Wa(n)| and whereA runs over the non-empty finite subsets
of Z4. For a given¥, a Gibbs state for¥ is any random fieldx whose conditional
probabilities onA giveno on A€ are of the form

exp—Ha(-|o)] forall A € Z% non-empty and finite andl € F*°,

y= 1
uilo) = —

Nea

whereZ, , is the normalizing constant (or partition sum),

Hy(nlo)=— Y Wa(nvolad) (eF"
A: ANA#D

is the Hamiltonian om\ giveno on A€, and[n Vv o4 is the configuratiom v o restricted
to A.
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Equivalence for Gibbs states 233

The class of interaction potentials that we allow in this paper are the ones satisfying
W, =W, forallAandallz ez

3 I%[diam(A)]”ln\IfA|| <, (*)

A30
where dianfA) = SUR yea IX — yl1. The second of these conditions means that for large
sets the total interaction across the boundary of the set is of the order of the surface of the
set.

Despite the fact that the interaction potential is assumed to be translation invariant, there

may—and in general will—be Gibbs states that are not translation invariant. In this paper,
however, we only consider translation invariant Gibbs states.

2. Main theorems

The goal of this paper is to show that the converses of ‘Fl implies VWB’ and ‘TFT implies
K’, though not true in general (se&l§] for a discussion), are true for ali?-invariant
Gibbs states for interactions satisfyit¥). That is, we prove the following two theorems.

THEOREM2.1. If i is aZ?-invariant Gibbs state for an interaction satisfyirig) and is
VWB, theru is FI.

THEOREM2.2. If i is aZ?-invariant Gibbs state for an interaction satisfyirig) and is
K, thenu is TFT.

The proofs of these theorems are given in 83 and 84. Thus, for the(elas® obtain
the following ordering:

FI = VWB C TFT =K. (%)

Remarks.(1) Ford = 1, (x) precisely coincides with the well known sufficient condition
for uniqueness of the Gibbs statg,[p. 166]. Being the unique Gibbs state, the measure
is necessarily TFTG, Theorem 7.7(a)]. So Theorem 2.2 is of no interest for this case. In
fact, ford = 1, (x) is known to imply that the unique Gibbs state is weak Berno@li [
p. 461], which is stronger than Fl. Therefore Theorem 2.1 is also of no interest in this case.
(2) Theorem 2.2 is trivial, for any > 1, if all (!) Gibbs states for the given interaction
areZ%-invariant. In fact, then ergodicity is already enough to imply TFT. The reason for
this is that any such ergodic Gibbs state cannot be decomposed as a convex combination of
two Gibbs states for the same interaction, since these would necesséiflyitneariant and
by ergodicity would be identical. Hence, any such ergodic Gibbs state is extremal within
the class of all Gibbs states, and therefore must be TFT (agai@ byt{eorem 7.7(a)]).
(3) In[OW1] it is proved that for the Ising model with ferromagnetic nearest-neighbor
interaction both the+ state’ and the—~ state’ are B. So for this case all four properties
in (x*) hold. The proof shows that the same is true for all interactions satisfying the FKG
lattice condition (5, p. 445], the technical reason being that then the conditional measure
in a finite set is stochastically increasing as a function of the configuration outside the set.
(4) As will become clear from the proofs, both Theorem 2.1 and Theorem 2.2 are
statements of the type: if a certain property holds ‘one-sided’ then it also holds ‘two-
sided’ (i.e. if the property holds with respect to the lexicographic past of a large box, then
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234 F. den Hollander and J. E. Steif

it holds with respect to the entire outside of the large box). In the theory of Gibbs states
similar types of statements occur, for instance, for the notions of Markov prop@rty [
Section 10.1] and entrop¥].

(5) An open question is whether TF VWB for the class(x). In [H] an example is
constructed of a Markov random field @&f that is K but not VWB. SinceHS] shows
that K= TFT for Markov random fields in general, this example violates BE=VWB.
However, it is not Gibbsian (because it is not strictly positive on all cylinder sets). Perhaps
a Gibbsian counterexample can be found in the class of nearest-neighbor ‘clock models’
[FS], where Gibbs states are known to exist that are unique and yet have arbitrarily slow
decay of correlations.

(6) Another open question is whethes«) also holds for the larger class of interactions
where the second condition if¥) is weakened tQ)_,. o W4l < oo, i.e., the usual
summability condition.

3. Proof of Theorem 2.1

3.1. Keylemma. We will need the following property of a Gibbs state for an interaction
satisfying (), which plays an important role in the proofs of both Theorem 2.1 and
Theorem 2.2.

LEMMA 3.1. Fix an interaction satisfying«) and letu be aZ“-invariant Gibbs state for
this interaction. Then, givety m € N andé§ > 0, there exists & (¢, m, §), satisfying

elim C(,m,8) =1 forfixedm ands,
—00
such that for any € [¢,mf] NN, anyo, o’ € FBi that agree onBy|s¢)\ Bk, and any

n € F5% the following bounds hold a.s.:

1
< HBk(nlg/) < C(Z,m,S)
C(,m,8) — up,(nlo’)

Proof. Fix m € Nand$ > 0. Fork, £ € N, let A ¢ s denote the collection of finite se#s
satisfyingA N By # ¥ andA N By 5, # . Given any finite sefl, let T4 (k, ¢, §) denote
the number of translates df that are contained il ¢ s. Some elementary combinatorial
geometry (left to the reader) shows that there exigts@:, §) such that

S S N / m, .

Next, for any/ € N, anyk € [¢, m¢] NN, anyo, ¢’ € F5 that agree OBy |s¢) \ Bk, and
anyn € FB, we have

|Hp, (nlo) — Hp,(nlo)| < > [[Wal

AeAk,m
Ta(k. L. 9)
= vl
A30 A
1 .
<Cimd) Y —ldiamA) | Wall.
AaO,dian(A)zLSZJI |
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Equivalence for Gibbs states 235

By assumptior(x), the sum in the right-hand side tends to zerd as co. Hence there
exists aCz(¢, m, §), satisfying lim_, o, C2(¢, m, §) = 1 for fixedm ands, such that
1 o~ Ha, (l0)

Colm ) = g Ha i) = Ca(€,m, 8)

for anyl, k, 0, 0’,n as above. These inequalities being true forglthe ratio of the
corresponding partition functions also satisfies the exact same inequalities. This proves the
claim withC (¢, m, §) = Ca(L, m, §)2. O

3.2 Proof of Theorem 2.1If a process is VWB, then it is B (see §1). The latter is in turn
equivalent to the following condition, called extremality (se¥S[ 83 and references]).

Definition 3.2.A Z“-invariant probability measure is called extremal if for ale > 0
there exist arv € N and a$ > 0 such that: for alh > N and for all decompositions of
v, of the form

M
vp, = Z Pivi
i=1

with (p1, ..., py) a probability vector ands < 2°!B:l most of thev;’s ared-close tovp,
in the sense that
Z pi >1—e.
i: 3(1}3”,1;[)<e

In words, any ‘not too large’ decomposition of the measure on large blocks must have
almost all components close to the original measure.

To show that [v is B’ implies ‘u is FI’, let ¢ > 0 and pickN1, § from Definition 3.2.
Next, chooses > 0 sufficiently small and pickv, such that F|!Brtiyn\Bal < 231Bal for
alln > Na2. Next, pick N3 from Lemma 3.1 such th&(n,1,y) < 1+ ¢ foralln > Ns.
For suchn, it follows readily from the bounds in Lemma 3.1 that, for any’ € F5: that
agree onB, x|\ By, the measureg g, (-|o) andup, (-|c”) are withine in total variation
distance.

By Lemma 3.2 in HS], to verify the FI condition in Definition 1.2 it suffices to
considern > max{N1, N2, N3} and finite setsS C By, that containB, |, \B,. Since
|F|1Brtiyn\Bal < 2081Bal - extremality yields that there exist configurations . .. 7 on
By yn)\ By, With M < |F|!Brriyn\Bal " such that their total measure is at least & and
such that alsd (i, , g, /ni) < € for eachn;.

Now consider all configurations on S such that the restriction of to B, |, \B, is
n; forsomei € {1, ..., M}. Clearly, these configurations have total measure at least 1
and so we need only show that for each suach

d(jp,, 1B, /0) < 2€.
For this it suffices to show that

d(is,/n, 18,/0) < €
whenevew is a configuration oi§ whose restriction t@, |, \ B, isn. Howeverug, /n
andup, /o are each averages of measures that, as we saw earlier, are allaniithiotal
variation distance of each other. Heneg, /n andup, /o are withine in total variation
distance, and therefore also withirin d-distance. O
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236 F. den Hollander and J. E. Steif

4. Proof of Theorem 2.2
We will prove the result only fod = 2, the extension to higher dimensions being
straightforward. The proof is a variation on the proof of the analogous statement for
Markov random fields given irHS]. The main point is to implement Lemma 3.1, which
reguires some estimates.

Recall that TFT means that tkealgebral’ defined by

T :nmlem
Ty =0(Xy,x € By,)

is trivial. On the other hand, recall (se€][or [§]) that K is equivalent to the smaller
o-algebral”’ defined by

T'= U(Umle,;,)
Tn/1 = ﬁ'121Tn/1,n

T =0(Xy,x € {(x1,x2):x2 <—nor(x<—nandxy <m)})

m,n
(T, , is the lexicographic past of the rectangten, n] x [—n, m]in 72) being trivial (see
[HS, 81 and references]). We will show that= T’ a.s., which more than implies the
claim that K = TFT.

In order to do so, we appeal to Lemma 2.10 BH] (which is stated there only for
d = 1, but whose proof for higher dimensions is identical). According to this lemma,
sinceT’ C T it suffices to show that

h(Xp,|T") = h(Xp,|T) foralln >0,

whereh(-|-) denotes conditional entropy.
Fixn > 0. SinceT, € T’ C T, it suffices to show that

h(Xg,|T,) < h(Xs,IT). )

To achieve this, we will show that there exists a functitvek, £, 5) > 0, defined for
k, ¢ € N with k£ > 2n and foré > 0, satisfying

Ak, 2,8 )
lim ¥ =0 forfixedk ands, (2)
t—o0 (20 + 1)2

such that

Ak, £, 8)
/

h(X, T, ) < h(XB,|Tk@20+1)—n) + Ak.e.5h(Xo0) + @iz

whereh(-) denotes entropy and

_L8e)6r—1) + [8€])([8¢] + 1)
N (2t +1)2
Assuming the latter, we can lét— oo, § — 0,k — oo (in this order) in (3) and use (2)

to obtain (1). Note thatx ¢s vanishes in this limit and that, by the backwards martingale
convergence theorem, the two entropies in (3) converge to the two entropies in (1).

with r = k(£ + 1) — n.

Ak 0,8
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Equivalence for Gibbs states 237
To constructA(k, £, 8), we define
Ck,e = Ux,y: [x|<t,|y|<e{Bn + (kx, ky)}

and note that th€2¢ + 1)2 translates of3,, comprisingCy ¢ are disjoint and have distance
at leastt — 2n between them. Let = k(¢ + 1) — n as above and define

E. ={Gj): j<-—r}
Dys = Bry50)\(Br UE}).

In words, E, is the lower half plane adjacent to the bottom segment of the boundary of
B,, while D, s consists of §¢] layers adjacent to the left, right and top segments of the
boundary ofB,. Note that the boundary df, enclose<’ ( and is a distancke — 2n away
from it.

We next order the2¢ + 1)? translates oB, in Cy_ lexicographically. Namely, we say
thatB,, + (x, y) precedesB, + (x', y) if y < y’ or (y = y’ andx < x'). In this way, we
get an ordering of the translates Bf, which we enumerate a&t, B2, ..., B2+D? The
idea of the proof is to compute the conditional entropy

(1) =h(Xp,; vV Xcr | XE,)

in two different waysto derive an upper, respectively, lower bound for the two resulting
expressions, and in this way obtain an inequality between these bounds. This inequality
will then be exploited to complete the proof.

For the lower bound, we estimate

(2¢+1)2
t = h(xck,AXE,):h( \/ XB,-|XE,)
i=1
(26+1)2
= Y h(XplXE V Xgi,_pi-1)-
i=1

Clearly, each of the terms in the sum is bounded bE|OVWlW3n|T’:’k_n), because the
distance between the transla®'sis k — 2n and so is the distance betweenB; andE, .
Hence

(h) = (2 + D)?h(Xp, T, ;) (4)
For the upper bound, we write
() = h(Xp,s|XE) +h(Xc, ,|XE, V XD, ;)-

The first term is at mostD, 5 |1:(Xo), where| Dy, 5| = Y1) (6r — 1+ 2i) = [8¢)(6r — 1)
+ [8€]([8¢] + 1). We express the second termvdX ¢, , | X gc) + A(k, £, §) with

Ak, £,8) = h(Xc, | XE, vV XD,5) — h(Xc¢, |1 XBe) >0
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(the inequality coming fronk, U D, s C By). We develop:(Xc, ,|X pc) as

(20+1)2
h(Xc | Xpg) = h( \/ Xp |XB;»>
i=1
(20+1)2
< > h(XpilXs)
i=1

< 20+ D*h(XB, | T2 —k—n)),
using the fact that the largest distance between the boundaBy ahd the center of a
translateB’ is 2r — (k — n). Thus

() < (2¢ + 1)%h(X 3, |T2r—(k—n)) + | Dy.5|h(X0) + A(k, £, 3). (5)
Comparing (4) and (5), noting that 2 (k —n) = k(2¢ + 1) —n and dividing by(2¢ + 1)2,
we obtain (3). Hence we need only verify (2) with the above definition @f, ¢, §).
To achieve the latter, we need the following trivial lemma.

LEMMA 4.1. Letp = {p;}ic; andg = {q;}ic; be two finite probability vectors satisfying

lfﬁfc foralli e I.
C ™ g
Thenh(g) > —logC + (1/C)h(p), whereh(-) denotes entropy.
Proof. Write
1 C
h(p) = _ pilog <p—) <Y Cgilog <q—) = ClogC + Ch(q). o
i ! i !

We want to apply Lemma 4.1 whenis the conditional law oX ¢, , givenXg, v Xp,
andg is the conditional law ofX ¢, , given X gc. Fix k ands. Applying Lemma 3.1 and
averaging over the configuration B. \ C ¢, we find that there exists @(¢) (namely,
C(¢) = C(¢, 2k, §) in the notation of Lemma 3.1 becaude< r < 2kl), satisfying

lim C(¢) =1,
£— 00

such that for any € N, anyn € FCt anyo € FEYPrs and anye’ € FB whose
restriction toE, U D, 5 is o, the following bounds hold a.s.:
1 _ rXe, =nlXg vV Xp,; =0)
c)y -  puXe, =nlXp=0')
(use thatB, 1 |s¢)\Br € E, U D,s C Bf). Using Lemma 4.1, we now obtain (integrate
overn, o, c’)

=CW

1
h(Xc |1 XBg) = —logC(e) + mh(XcuIXE, vV XD, s)

and so
0 =< A(k’ L, 5) = h(XCk,g|XEy \% XDr.,s) - h(XCkgle;)
1
<logC(¢ 1-— (X Xp. vX .
< log ()+( C(Z)) ( Ck,gl E, Dr,g)
However,h(Xc, ,|XE, vV Xp,,) can be bounded above ©9¢ + 1)2 h(XB,). Hence (2)
follows because lim., o, C(¢) = 1.

Downloaded from https:/www.cambridge.org/core. Library African Studies Centre, on 21 Jun 2017 at 12:23:40, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https:/www.cambridge.org/core/product/757C560942EDBC259CAE802AB92D2051


https:/www.cambridge.org/core/terms
https:/www.cambridge.org/core/product/757C560942EDBC259CAE802AB92D2051
https:/www.cambridge.org/core

Equivalence for Gibbs states 239

Acknowledgement.The authors thank A. van Enter for critical remarks while the paper
was in progress.

REFERENCES

[BH] H. C. P. Berbee and W. Th. F. den Hollander. Tail triviality for sums of stationary random variables.
Ann. Probab17(1989), 1635-1645.

[C] J. P. Conze. Entropie d'un groupe abelien de tranformati@dndVahrscheinlichkeitstheorie verw.
Gebiete25(1972), 11-30.

[E] A. van Enter. On a question of Bratteli and Robinsbatt. Math. Phys6 (1982), 289-291.

[FS] J. Fohlich and T. Spencer. The Kosterlitz—Thouless transition in two-dimensional Abelian spin
systems and the Coulomb g&ommun. Math. Phy81 (1981), 527-602.

[G] H.-O. Georgii.Gibbs Measures and Phase Transitiode Gruyter, New York, 1988.

[H] C. Hoffman. A Markov random field which i& but not Bernoulli.Israel J. Math.112(1999), 249—
269.

[HS] F. den Hollander and J. E. Steif. On K-automorphisms, Bernoulli shifts and Markov random fields.

Ergod. Th. & Dynam. Sy4.7 (1997), 405-415.
[OW1] D.S. Ornstein and B. Weis&-actions and the Ising model. Unpublished manuscript, 1973.
[S] K. Schmidt.Dynamical Systems of Algebraic Origiirkhauser, 1995.

Downloaded from https:/www.cambridge.org/core. Library African Studies Centre, on 21 Jun 2017 at 12:23:40, subject to the Cambridge Core terms of use, available at
https:/www.cambridge.org/core/terms. https:/www.cambridge.org/core/product/757C560942EDBC259CAE802AB92D2051


https:/www.cambridge.org/core/terms
https:/www.cambridge.org/core/product/757C560942EDBC259CAE802AB92D2051
https:/www.cambridge.org/core

