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We investigate the apparent contradiction between the pressure expressions, or ‘‘mechanical
expressions,’’ and the van der Waals squared-gradient expressions for the curvature coefficients
k/R0 , k, and k̄. We show that, in the context of the mean-field theory discussed, both types of
expression are indeed equivalent, with the differences only being caused by the thermodynamic
conditions used to vary the curvature. ©2000 American Institute of Physics.
@S0021-9606~00!50713-2#

I. INTRODUCTION

The introduction of the Helfrich expression for the cur-
vature free energy1 has led to an important advancement in
the theoretical understanding of complex interfaces.2,3 In
terms of two elasticity or rigidity constants,k and k̄, as well
as the radius of spontaneous curvatureR0 , the Helfrich free
energy has been used to describe the shape, fluctuations, and
free energy of membranes, vesicles, microemulsions, etc.2 It
has the following form:

FH5E dAFs2
2k

R0
J1

k

2
J21 k̄KG , ~1.1!

where s is the surface tension of theplanar surface,J
51/R111/R2 is the total curvature,K51/(R1R2) is the
Gaussian curvature, andR1 andR2 are the principal radii of
curvature at a certain point on the surfaceA.

The Helfrich expression is, however, phenomenological
in nature: no information is provided on thevalue of the
parameterss, k/R0 , k, and k̄ and a lot of theoretical work
has therefore been devoted to the determination of these pa-
rameters in the context of a more microscopic theory.4–8 We
should mention that Eq.~1.1! can be viewed in two, equiva-
lent, ways. In the approach by Romero-Rochı´n, Varea and
Robledo,7 Eq. ~1.1! is the expression for anarbitrarily
shaped surface with curvature dependent coefficientss,
k/R0 , k, andk̄. In the approach considered here, Eq.~1.1! is
viewed as an expansion in curvature with the coefficientss,
k/R0 , k, and k̄ curvatureindependent.

Inspection of the form of the Helfrich free energy in Eq.
~1.1! shows that the theoretical determination ofk/R0 , k,
and k̄ requires the variation of the free energy withcurva-

ture. The coefficients are then related to the first and second
derivatives of the free energy with respect to the curvature.
The way one varies the curvature depends very much on the
system at hand. In the following we discuss three types of
interfaces; those made of surfactant monolayers or bilayers,
the solid–liquid interface, and the liquid–vapor interface.

We first discuss the case in which the surface is made of
surfactant~or lipid! bilayers or monolayers. This is the sys-
tem for which Helfrich originally wrote down his free en-
ergy, i.e., for the interface between two immiscible fluids
where the specific molecules at the interface~e.g., the sur-
factant or lipid molecules! are the ones responsible for the
strength of the rigidity constants. In this case one may
change, for instance, the amount (Gsurf) or chemical potential
(msurf) of the component that is predominantly adsorbed at
the interface in order to vary the curvature. In fact, Porte and
Ligoure9 investigated the influence of either changing the
chemical potential or the composition on the value of the
rigidity constants for these systems.

The result of changing only the properties of the surfac-
tant molecules at the interface is that the thermodynamic
state of the bulk regions away from the surface isunaffected.
For such a system Helfrich supplied formulas for the calcu-
lation of the curvature coefficients. Using ‘‘mechanical’’ ar-
guments he derived expressions fork/R0 and k̄ in terms of
moments of the transverse pressure profile,4 P0(z), of the
planar surface, analogous to Buff’s10 ‘‘mechanical’’ expres-
sion for the surface tension,s, as the zeroth moment of the
transverse pressure profile@see Eq.~1.2! below#. He added,
however, that the expression fork/R0 is only valid for a
tensionlessinterface (s50) and the expression fork̄ is only
valid for a tensionless, symmetric interface (s50, k/R0

50). Later, Szleifer and coworkers5 extended the analysis of
Helfrich, in the context of mean-field theory, to go beyond
the mechanical arguments by Helfrich and showed that Hel-a!Electronic mail: e.blokhuis@chem.Leidenuniv.nl
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frich’s expressions are correct also whensÞ0 and k/R0

Þ0. Furthermore, Szleifer and coworkers provided an ex-
pression for the rigidity constantk. The expressions by
Helfrich4 and Szleiferet al.5 read

s52E
2`

`

dzP0~z!,
2k

R0
5E

2`

`

dz zP0~z!,

~1.2!

k̄52E
2`

`

dz z2 P0~z!, k52
1

2 E2`

`

dz zPs,1~z!,

wherez is the coordinate normal to the interface. Since these
expressions are derived using arguments beyond the me-
chanical arguments by Helfrich, we will refer to these ex-
pressions as thepressure expressions11 ~rather than the
‘‘mechanical expressions’’!. The expression fork features
Ps,1(z), the first order coefficient of the lateral pressure pro-
file of a spherical interface,Ps(r ;R), in an expansion in
1/R, the reciprocal radius,

Ps~r ;R!5P0~z!1
1

R
Ps,1~z!1¯ , ~1.3!

where the radial distancer[R1z. Ps,1 is the leading order
change in the lateral pressure profile due to bending of the
interface. Here it is expressed in terms of the lateral pressure
profile of thesphericalinterface, but we should keep in mind
that we could equally well have expressed it in terms of the
lateral pressure profile of acylindrical interface replacing
Ps,1 by 2 Pc,1 , or in general replacePs,1 by 2(]P/]J). In
the following the subscripts refers to the spherical surface
and the subscriptc to the cylindrical surface. The additional
number tos and c ~e.g.,s,1! refers to the coefficient in an
expansion in 1/R to that order.

A second class of systems, for which the Helfrich free
energy has been used, are those in contact with a solid
curved wall. Several authors12–15have calculated the electro-
static contribution to the curvature coefficients using double
layer theory for a charged solid wall,16 while recently Clem-
ent and Joanny17 calculated the curvature energy associated
with polymer adsorption onto a curved substrate. In these
systems the curvature of the interface is varied simply by
changing the radius of the solid wall. As in the case de-
scribed above, the thermodynamic state of the system away
from the surface isunaffectedby the variation of the curva-
ture of the interface. The result is that the curvature coeffi-
cients can be calculated using the pressure expressions in Eq.
~1.2! with the only difference that the integration overz runs
from the hard wall~at z50! to infinity.

A third route to the calculation of the curvature coeffi-
cients has used van der Waals’ squared-gradient expression
for the surface free energy8,18,19 of a simple liquid–vapor
interface,

F@r#5E drW@mu¹W r~rW !u21 f ~r!2Dmr~rW !#, ~1.4!

wherem is the usual coefficient of the squared-gradient term,
f (r) is the free energy density for a fluid constrained to have
uniform densityr, andDm is the chemical potential differ-
ence between the chemical potential of the curved surface
and that of the planar surface (Dm5m2mcoex). Using the

above expression for the free energy, Gompper and
Zschocke8 and Blokhuis and Bedeaux19 derived the follow-
ing formulas for the curvature coefficients:

s52mE
2`

`

dz@r08#2,

2k

R0
522mE

2`

`

dz z@r08#2

1
1

2
Dms,1E

2`

`

dz@r02r0,bulk#,

~1.5!

k̄52mE
2`

`

dz z2@r08#2

1~4 Dmc,22Dms,2!E
2`

`

dz@r02r0,bulk#,

k52mE
2`

`

dzr08rs,12
1

4
Dms,1E

2`

`

dz@rs,12rs,1,bulk#

2Dms,1E
2`

`

dzz@r02r0,bulk#

22 Dmc,2E
2`

`

dz@r02r0,bulk#.

In the above formulas isr05r0(z) the density profile of the
planar interface andrs,1(z) the first order correction to the
density profile of the spherical interface in an expansion in
1/R. The subscript ‘‘bulk’’ refers to the bulk value extrapo-
lated to the surface atz50 so that for exampler0,bulk

5r0,l u(2z)1r0,v u(z).
Comparing the expressions in Eqs.~1.2! and ~1.5! it is

not obvious that the pressure expressions and the expressions
derived from van der Waals theory are in agreement. Yet the
validity of both expressions seems well established. The van
der Waals expressions in Eq.~1.5! were derived indepen-
dently by Gompper and Zschocke8 and by Blokhuis and
Bedeaux.19 Furthermore the result fork/R0 agrees with an
earlier expression by Fisher and Wortis.18 Also, these expres-
sions can be derived from the virial expressions for the cur-
vature coefficients6 by making a mean-field approximation to
the pair density.19,20

On the other hand, it is well established by various
authors12–15 that the expressions for the electrostatic contri-
bution to the curvature coefficients in double layer theory
calculated directly via the free energy are the same as when
the pressure expressions are used. This was shown by Win-
terhalter and Helfrich12 using the Debye–Hu¨ckel theory, by
Lekkerkerker13 and by Mitchell and Ninham14 using
Poisson–Boltzmann theory in excess salt, and by Fogden,
Daicic, and coworkers15 using Poisson–Boltzmann theory
with an arbitrary amount of added salt. Our object in this
article is to establish in more detail the correspondence be-
tween the expressions in Eqs.~1.2! and ~1.5!. It will be
shown that, keeping the thermodynamic conditions under
which the surface is bend in mind, that Eqs.~1.2! and ~1.5!
are indeed equivalent.
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When we compare Eqs.~1.2! and~1.5! some similarities
are apparent. Suppose that we setDms5Dmc50 so that
Dms,15Dmc,150 and Dms,25Dmc,250, and, furthermore,
identify P0(z) as P0(z)522m(r08)

2, then already we see
that the pressure expressions fors, k/R0 , and k̄ reduce ex-
actly to the squared-gradient expressions. The correspon-
dence between the two expressions fork is less clear but
still, this is very encouraging and we now first wonder
whether we can understand why there is no contribution
from the change in chemical potential in the pressure expres-
sions. In order to do this we first need to consider the ther-
modynamic circumstances.

II. THERMODYNAMIC CONDITIONS

In the van der Waals squared-gradient theory as used by
Gompper and Zschocke,8 Fisher and Wortis,18 and Blokhuis
and Bedeaux,19 a spherical~cylindrical! drop of liquid is con-
sidered surrounded by a vapor phase. The two phases are not
in coexistence when the radiusR,`, and the distance to
two-phase coexistence is determined by the chemical poten-
tial differenceDms[ms2mcoex ~or Dmc for the cylindrical
interface!. The droplet radius is determined byDms and
when we consider the variation of the free energy with the
radius wereally are considering the variation of the free
energy with the chemical potential. The Laplace equation
enables us to relate directly the expansion coefficients of the
chemical potential (Dms,1 ,Dms,2 ,...) to theradius. In order
to show this a bit more explicitly, we need to consider the
Laplace equation for a spherical and cylindrical interface:

Dp5
2s

R
2

4k

R0

1

R2 , spherical interface,

Dp5
s

R
2

k

2

1

R3 , cylindrical interface,
~2.1!

which are both derived from the generalized Laplace equa-
tion,

Dp5sJ2
4k

R0
K2

k

2
J312kJK2kDsJ. ~2.2!

In this equationDp[pl2pv is the pressure difference be-
tween the liquid inside the droplet~cylinder! and the vapor
outside, andDs is the surface Laplacian which is important
when the curvature varies from point to point on the surface.
For the spherical and cylindrical interface we consider in this
analysis, the curvature is constant along the surface so that
DsJ50.

Since the pressure difference is directly related to the
chemical potential, one can show that19

Dms,152 Dmc,1 5
2s

Dr0
,

Dms,252
s

~Dr0!2 Drs,12
4k

R0

1

Dr0
, ~2.3!

Dmc,252
1

4

s

~Dr0!2 Drs,1 ,

with Dr5r l2rv the density difference between the liquid
and the vapor phase.

To summarize, in the derivation of the van der Waals
expressions the radiusR is varied by varying the chemical
potential. The variation of the chemical potential leads to the
presence of additional terms in the squared-gradient expres-
sions in Eq.~1.5! with the explicit value of the coefficients of
these terms given in Eq.~2.3!.

Next, we now consider the thermodynamic conditions
that are used in the calculation of the curvature coefficients
of a fluid in contact with a hard wall. Here the situation is
somewhat simpler. A rigid sphere~colloidal particle! is con-
sidered with a certainfixed radius R. The variation of the
radius does notinfluence the thermodynamic state of the
fluid outside with fixed densityr l and pressurepl . Terms
connected with the expansion of the chemical potential in the
radius are therefore not present so that as a consequence,

Dms,15Dmc,150,
~2.4!

Dms,25Dmc,250.

To show the correspondence between the van der Waals ex-
pressions and pressure expressions in more detail, we calcu-
late the curvature coefficients with the only assumption that
the free energy density is some function of the densityr(rW)
and the gradient of the density¹W r(rW) ~to keep the calcula-
tion as general as possible!. This is done under the conditon
that the chemical potential is varied to vary the curvature
~Sec. III! and under the condition that the chemical potential
is constant~Sec. IV!.

III. VARIABLE CHEMICAL POTENTIAL

The surface free energy is written in the following gen-
eral way:

F@r#5E drW@2P~r,¹W r!2Dm r~rW !#, ~3.1!

where it is supposed that the free energy in the bulk region is
subtracted so that the above free energy is anexcessfree
energy. FurthermoreP(r,¹W r) is the ~grand! free energy
density and is some function ofr(rW) and¹W r(rW). In van der
Waals’ squared-gradient theory, for instance, it has the fol-
lowing form @cf. Eq. ~1.4!#:

P~r,¹W r!52mu¹W r~rW !u22 f ~r!1mcoexr~rW !, ~3.2!

but we leave it unspecified in the remainder of this section.
Several authors7,8,19 have included besides a squared-
gradient term a squared Laplacian term to the above free
energy. The inclusion of such a term in Eq.~3.1! leads to the
presence of additional terms in the Euler–Lagrange equa-
tions below with the consequence that the identification in
Eqs. ~3.8! and ~3.10! below needs to be modified. In the
following it should therefore be realized that the conclusions
drawn only apply to mean-field theories whose free energy is
of the form of Eq.~3.1!.20,21

The Euler–Lagrange equation to the surface free energy
in Eq. ~3.1! reads

6025J. Chem. Phys., Vol. 112, No. 13, 1 April 2000 Pressure and van der Walls theories



]

]r
P~r,¹W r!5¹W •

]

]¹W r
P~r,¹W r!2Dm. ~3.3!

In the following, we expand the surface free energy around
the planar interface and compare the results with the surface
free energy expression by Helfrich@Eq. ~1.1!# which for a
spherical and cylindrical geometry read

Fs

A
5s2

4k

R0

1

R
1~2k1 k̄!

1

R2 ,

~3.4!
Fc

A
5s2

2k

R0

1

R
1

k

2

1

R2 .

Expanding the surface free energy for the spherical and cy-
lindrical interface to second order in 1/R gives

Fs

A
5E

2`

`

dzS 11
z

RD 2F2P02
1

R
P1 rs,12

1

R
P2 rs,18

2
1

R2 P1 rs,22
1

R2 P2 rs,28 2
1

2R2 P11rs,1
2

2
1

R2 P12rs,1rs,18 2
1

2R2 P22~rs,18 !22
1

R
Dms,1 r0

2
1

R2 Dms,1 rs,12
1

R2 Dms,2 r02B.T.G ,
~3.5!

Fc

A
5E

2`

`

dzS 11
z

RD F2P02
1

R
P1 rc,12

1

R
P2 rc,18

2
1

R2 P1 rc,22
1

R2 P2 rc,28 2
1

2R2 P11rc,1
2

2
1

R2 P12rc,1rc,18 2
1

2R2 P22~rc,18 !22
1

R
Dmc,1 r0

2
1

R2 Dmc,1 rc,12
1

R2 Dmc,2 r02B.T.G ,
where the subscripts 1 and 2 toP refer to a differentiation
with respect to the first or second argument evaluated at the
planar interface, e.g.,P1[ (]/]r0) P(r0 ,r08). P0 is simply
defined asP0[P(r0 ,r08). The abbreviation B.T. stands for
the boundary termsat z56` which are to be subtracted.

The Euler–Lagrange equation~3.3! is expanded in the
curvature for the spherical and cylindrical interface. To first
order the following equations result:

P15
]

]z
P2 ,

P1rs,12P2rs,18 52P21
]

]z
~P12rs,12P22rs,18 !2Dms,1 ,

~3.6!

P1rc,12P2 rc,18 5P21
]

]z
~P12rc,12P22rc,18 !2Dmc,1 .

The first equation determines the profiler0(z) of the planar

interface while the latter two determine the profilesrs,1(z)
and rc,1(z). One immediately notices that sinceDms,1

52 Dmc,1 one has thatrs,1(z)52rc,1(z).
Inserting the above expressions forP1 into the surface

free energy and integrating by parts gives, after some alge-
bra, the following results for the surface free energy of the
sphere and the cylinder:

Fs

A
5E

2`

`

dz@2P0#

1
1

R E
2`

`

dz@22z P02Dms,1 ~r02r0,bulk!#

1
1

R2 E
2`

`

dzF2z2P01P2rs,122 Dms,1z ~r02r0,bulk!

2
1

2
Dms,1~rs,12rs,1,bulk!2Dms,2 ~r02r0,bulk!G ,

~3.7!
Fc

A
5E

2`

`

dz@2P0#

1
1

R E
2`

`

dz@2z P02Dmc,1 ~r02r0,bulk!#

1
1

R2 E
2`

`

dzF 1
2 P2 rc,12Dmc,1z~r02r0,bulk!

2
1

2
Dmc,1 ~rc,12rc,1,bulk!2Dmc,2 ~r02r0,bulk!G .

Comparing Eqs.~3.7! and ~3.4! allows us to identify the
curvature coefficients as

s52E
2`

`

dzP0 ,

2k

R0
5E

2`

`

dzFz P01
1

2
Dms,1 ~r02r0,bulk!G ,

~3.8!

k̄5E
2`

`

dz@2z2P01~4 Dmc,22Dms,2! ~r02r0,bulk!#,

k5E
2`

`

dzF1

2
P2 rs,12Dms,1 z ~r02r0,bulk!

2
1

4
Dms,1 ~rs,12rs,1,bulk!22 Dmc,2 ~r02r0,bulk!G ,

where we have used thatDms,152 Dmc,1 and rs,152rc,1 .
As a final step we rewrite the expression fork somewhat by
using that

E
2`

`

dz zPs,15E
2`

`

dz@zPs,1 rs,11zP2 rs,18 #

5E
2`

`

dz@2P2 rs,1#, ~3.9!

so that
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k5E
2`

`

dzF2
z

2
Ps,12Dms,1 z~r02r0,bulk!

2
1

4
Dms,1 ~rs,12rs,1,bulk!22 Dmc,2 ~r02r0,bulk!G .

~3.10!

We have thus derived in Eqs.~3.8! and ~3.10! the pressure
expressions for the curvature coefficients in the case that the
chemical potential is varied to change the curvature of the
interface. The pressureP was identified as the~grand! free
energy density defined by Eq.~3.1!. One may verify that
these pressure expressions areequivalent to the van der
Waals squared-gradient expressions in Eq.~1.5! when one
inserts the explicit expressions forP0 andPs,1 ,

P052m ~r08!22 f ~r0!1mcoexr0522m ~r08!2,
~3.11!

Ps,1522m r08rs,18 2 f 8~r0!rs,11mcoexrs,1

522m r08rs,18 22m r09rs,1 ,

derived using the form forP(r,¹W r) in Eq. ~3.2!.
An important issue that we have not addressed thus far is

the fact that a certain arbitrariness exists in locating the exact
position of the dividing surface and therefore in the exact
value of the radiusR.22 The consequences hereof for the
curvature coefficients can be read off from the expressions in
Eq. ~3.8! which are derived without specifying the location
of the dividing surface. One finds that the surface tension of
the planar interfaces does not depend on the location of the
dividing surface. Also, the spontaneous curvaturek/R0 is
independentof the location of the dividing surface. This can
be checked by shifting the dividing surface over a distance
D. The first contribution tok/R0 is then changed by an
amounts D, while the second contribution changes by an
amount21/2(Dr0) D. Use of Eq.~2.3! then yields that the
net change ink/R0 of shifting the dividing surface is zero.
The rigidity constants, however,do depend on the location of
the dividing surface, and when numerical values are supplied
for k and k̄ this can be done only after a certain choice for
the location of the dividing surface has been made. For in-
stance, in the derivation of the pressure equations for mono-
layers and bilayers by Szleiferet al.,5 the location of the
dividing surface was chosen to be the ‘‘surface of inexten-
sion’’ or ‘‘neutral surface.’’ This is the surface whose area is
unchanged during the variation of the curvature. We refer to
Ref. 5 for a more elaborate discussion of this point~see also
Ref. 3!. For the evaluation of the curvature coefficients in the
van der Waals theory for a liquid–vapor droplet, the dividing
surface was located at Gibb’s equimolar surface.19 In the
next section we investigate the case of a fluid in contact with
a hard spherical~cylindrical! wall. In that case the dividing
surface is chosen at the hard wall.

It is noteworthy that Eqs.~3.8! and~3.10! reduceexactly
to the pressure expressions in Eq.~1.2! when one sets
Dms,15Dmc,150 andDms,25Dmc,250. Therefore, we next
look in more detail into the situation where the chemical
potential is kept constant.

IV. CONSTANT CHEMICAL POTENTIAL

We now investigate the situation in which the chemical
potential is fixed (Dm50) and the radius of curvature is
varied independent of the thermodynamic state. Therefore
we consider the surface free energy of a fluid in contact with
a hard spherical~cylindrical! wall with fixed radiusR,

F@r#52E drW@P~r,¹W r! #1AFw~rw!, ~4.1!

whereFw(rw) is the interaction of the fluid with the wall at
z50 and is assumed to depend only on the density at the
wall, rw. The form of the above free energy is quite general
and in the Appendix we give two examples where the free
energy indeed has this form.

The Euler–Lagrange equation to the surface free energy
in Eq. ~4.1! reads

]

]r
P~r,¹W r!5¹W •

]

]¹W r
P~r,¹W r!, ~4.2!

with the boundary condition at the wall,

]

]rw
Fw~rw!5n̂•

]

]¹W rw
P~rw,¹W rw!. ~4.3!

In this expressionn̂ is the unit vector in the direction normal
to the interface. Expanding the surface free energy for the
spherical and cylindrical interface to second order in 1/R
now gives

Fs

A
5E

0

`

dzS 11
z

RD 2F2P02
1

R
P1 rs,12

1

R
P2 rs,18

2
1

R2 P1 rs,22
1

R2 P2 rs,28 2
1

2R2 P11rs,1
2

2
1

R2 P12rs,1rs,18 2
1

2R2 P22~rs,18 !22B.T.G ,
1Fw,01

1

R
Fw,08 rs,1

w 1
1

R2 Fw,08 rs,2
w 1

1

2R2 Fw,09 ~rs,1
w !2,

~4.4!
Fc

A
5E

0

`

dzS 11
z

RD F2P02
1

R
P1 rc,12

1

R
P2 rc,18

2
1

R2 P1 rc,22
1

R2 P2 rc,28 2
1

2R2 P11rc,1
2

2
1

R2 P12rc,1rc,18 2
1

2R2 P22~rc,18 !22B.T.G
1Fw,01

1

R
Fw,08 rc,1

w 1
1

R2 Fw,08 rc,2
w 1

1

2R2 Fw,09 ~rc,1
w !2,

where we have definedFw,0[Fw(r0
w). The Euler–Lagrange

equation~4.2! is expanded to first order in the curvature for
the spherical and cylindrical interface,
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P15
]

]z
P2 ,

P1 rs,12P2 rs,18 52P21
]

]z
~P12rs,12P22rs,18 !, ~4.5!

P1rc,12P2 rc,18 5P21
]

]z
~P12rc,12P22rc,18 !,

and so is the boundary condition in Eq.~4.3!,

2P2
w5Fw,08 ,

P12
w rs,1

w 2P22
w ~rs,1

w !85Fw,09 rs,1
w , ~4.6!

P12
w rc,1

w 2P22
w ~rc,1

w !85Fw,09 rc,1
w .

Again it is noted thatrs,1(z)52rc,1(z). Using Eqs.~4.5! and
~4.6!, the surface free energy of the sphere and cylinder can
now be written as

Fs

A
5E

0

`

dz@2P0#1Fw,01
1

R E
0

`

dz@22z P0#

1
1

R2 E
0

`

dz@2z2P01P2rs,1#,

~4.7!
Fc

A
5E

0

`

dz@2P0#1Fw,01
1

R E
0

`

dz@2z P0#

1
1

R2 E
0

`

dzF1

2
P2rc,1G ,

so that one may identify the curvature coefficients as

s52E
0

`

dz@P0#1Fw,0 ,
2k

R0
5E

0

`

dz@zP0#,

~4.8!

k̄5E
0

`

dz@2z2P0#, k5E
0

`

dzF1

2
P2 rs,1G .

Notice that all the terms involving the interaction with sub-
strate,Fw , have dropped out of the expressions fork/R0 , k,
andk̄. As a final step we, again, rewrite the expression fork
somewhat by using that

E
0

`

dz zPs,15E
0

`

dz@zP1 rs,11zP2 rs,18 #

5E
0

`

dz@2P2 rs,1#, ~4.9!

so that

k5E
0

`

dzF2
z

2
Ps,1G . ~4.10!

Apart from the presence ofFw,0 in the expression for the
surface tension and the fact that the integration runs fromz
50 instead ofz52`, the expressions in Eqs.~4.8! and
~4.10! are exactly equalto the pressure expressions in Eq.
~1.2!. Starting with the general expression for the surface

free energy in Eq.~4.1! we have thus rederived all the pres-
sure expressions for the system in which the chemical poten-
tial is fixed.

V. SUMMARY

We have investigated the apparent contradiction between
the pressure expressions and van der Waals expressions for
the curvature coefficientsk/R0 , k, and k̄. In the context of
the mean-field theory expressed by the similar Eqs.~3.1! and
~4.1!, we showed that the origin of the difference between
the two types of expression lies solely in the thermodynamic
conditions used to vary the curvature. As we have seen, the
appropriate thermodynamic conditions depend very much on
the system at hand. To study, for instance, the nucleation of
liquid droplets, the curvature depends on the thermodynamic
distance to coexistence (Dm5m2mcoex) via the Laplace
equation, and the analysis in Sec. III is the appropriate one,
while for the description of the electric double layer of a
colloidal particle with fixed radius or the description of the
adsorption of a polymer onto a curved wall, the analysis in
Sec. IV is more suited. The latter analysis is also closely
related to the investigation of microemulsion systems and
systems containing membrane bilayers. In these cases one
may, for instance, change the chemical potential of the com-
ponent that is predominantly adsorbed at the interface~e.g.,
the surfactant or lipid molecules! in order to change the cur-
vature. As in the case of a system in contact with a curved
wall, the thermodynamic state of the system away from the
surface23,24 is unaffected.

With these two thermodynamic conditions, expressions
for the curvature coefficients were derived. In Sec. III the
curvature was varied by varying the chemical potential,
while in Sec. IV the chemical potential is kept constant and
the curvature is varied by varying the radius of the spherical
or cylindrical substrate that is in contact with the system. The
resulting expressions from the former analysis were shown
to reduce to those obtained in van der Waals theory, while
the results from the latter analysis were shown to be equal to
the pressure expressions identifying the lateral pressure pro-
file as the excess~grand! free energy density.
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APPENDIX: EXAMPLES OF THE FREE ENERGY
AS GIVEN IN EQ. „4…

We now discuss two recent examples from the literature
in which the surface free energy has the form of Eq.~4.1!. In
the first example, the adsorption of polymers onto a curved
surface is considered, while in the second example the elec-
tric double layer theory is discussed.
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1. Polymer adsorption

In the recent description of polymer adsorption onto a
curved substrate by Clement and Joanny,17 the surface free
energy is a functional ofc, which is related to the local
monomer concentrationc by c25c. It has the following
form:

F@c#5E drWF u¹W c~r !u21
1

2
n~c22cb

2!2G2A
1

d
~cw!2, ~A1!

where d is the extrapolation length which measures the
strength with which polymers are adsorbed at the wall,n is
the excluded volume parameter, andcb

25cb , the local
monomer concentration in the bulk. Lengths are scaled with
a/A6, with a the monomer size, and energies bykBT, with
kB Boltzmann’s constant andT the absolute temperature.

When Eq.~A1! is compared to Eq.~4.1! we can identify
P andFw as

P~c,¹W c!52u¹W c~r !u22 1
2 n~c22cb

2!2,

~A2!

Fw~cw!52
1

d
~cw!2.

The Euler–Lagrange equation, Eq.~4.2!, and boundary con-
dition, Eq. ~4.3!, now read as

Dc5n c~c22cb
2!,

~A.3!

n̂•¹W cw52
1

d
cw.

With the identification in Eq.~A2! and after solving the
Euler–Lagrange equation in Eq.~A3!, one is then able to
calculate the curvature coefficients using the expressions in
Eqs.~4.8! and ~4.10!.

2. Electrostatic double layer

The electrostatic contribution to the free energy of the
double layer immersed in a 1–1 electrolyte has the following
form:13,25

Fel5E drWH 2
1

2
e0e r u¹W c~rW !u2

22nelkBT FcoshS ec

kBTD21G J 1As cw, ~A4!

wheree r is the dielectric of the aqueous medium,e0 is the
permittivity of vacuum,nel is the electrolyte number density,
e is the elementary charge, ands ~not to be confused with
the surface tension! is the surface charge density.

The electrical free energy above is written in terms of
the electrostatic potentialc(rW), which is to be determined by
solving thePoisson–Boltzmannequation,

DC5k2 sinh~C!, ~A5!

where the dimensionless potentialC[ ec/kBT and inverse
Debye lengthk[(2e2nel /e0e rkBT)1/2 have been introduced.
The requirement of constant surface charge density leads to
the following boundary condition to the Poisson–Boltzmann
equation:

n̂•¹W Cw522pk, ~A6!

wherep[ 2pQs/ke, with Q[ e2/4pe0e rkBT the Bjerrum
length.

In this case, the differential equation determining the
profile of the order parameter, the Poisson–Boltzmann equa-
tion, is derived from electrostatics~the Poisson equation!
rather than from the minimization of the free energy in Eq.
~A4!. In fact, in the derivation of the electrical free energy in
Eq. ~A4! one has already made use of the Poisson–
Boltzmann equation.25 However, the Poisson–Boltzmann
equation, Eq.~A4!, and boundary condition, Eq.~A5!, both
do result from the Euler–Lagrange equation treatingFel as if
it were a functional ofc; Fel5Fel@c#. The result is that if we
now identify

P~c,¹W c!5
1

2
e0e r u¹W c~rW !u212 nelkBT FcoshS ec

kBTD21G ,
~A7!

Fw~cw!5s cw,

we can again calculate the curvature coefficients using the
expressions in Eqs.~4.8! and~4.10! as noted by Winterhalter
and Helfrich,12 Lekkerkerker,13 and by Fogden, Daicic, and
coworkers.15
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