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Abstract

The quantum-limited line width of a lasei cavity is enhanced above the Schawlow-Townes
value by the Petermann factoi K, due to the non-oithogonality of the cavity modes We deuve
the lelation between the Peteimann factoi and the lesidues of poles of the scattering matrix and
investigate the statistical propeities of the Peteimann factoi for cavities m which the ladiation
is scatteied chaotically For a smgle scattenng channel wc determine the complete probabihty
distnbution of K and find that the aveiage Peteimann factoi (K) depends non-analytically on
the aiea of the openmg, and gieatly exceeds the most piobable value For an aibitiaiy numbei
N of scattering channels we calculate (K} äs a function of the decay late Γ of the lasing mode
We find foi N^>\ that for typical values of Γ the aveiage Peteimann factor (K) cc ^/Nξ>l is
paiametncally laigei than unity © 2000 Eisevier Science B V All nghts reserved

PACS 42 50 Lc, 42 50 AI, 42 60 Da
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1. Introduction

Laser action selects a mode m a cavity and enhances the Output mtensity m this mode

by a non-lmeai feedback mechanism Vacuum fluctuations of the electiomagnetic field

ultimately limit the nanowing of the emission spectrum [1] The quantum-limited line
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width, 01 Schawlow Townes line width,

(11)

is proportional to the square of the decay rate Γ of the lasmg cavity mode and mversely
pioportional to the output power / (m units of photons/s) This is a lower bound for
the line width when Γ is much less than the Ime width of the atomic transition and
when the lower level of the transition is unoccupied Many years after the work of
Schawlow and Townes it was leahzed [2-4] that the true fundamental hmit is laiger
than Eq (l 1) by a factoi K that charactenzes the non-orthogonahty of the cavity
modes This excess noise factor, or Petermann factor, has geneiated an extensive
hterature [4-10]

Apart from its importance for cavity lasers, the Petermann factor is of fundamental
sigmficance in the more general context of scattermg theory A lasmg cavity mode is
associated with a pole of the scattermg matnx m the complex fiequency plane We
will show that the Petermann factor is proportional to the squared modulus of the
lesidue of this pole Poles of the scattermg matnx also determme the position and
height of resonances of nuclei, atoms, and molecules [11] Powerful numencal tools
that give access to poles even deep in the complex plane have been developed recently
[12] They can be used to determme the residues of the poles äs well Our work is
of relevance for these more general studies, beyond the onginal apphcation to cavity
lasers

Existing theones of the Petermann factoi deal with cavities in which the scattenng is
essentially one-dimensional, because the geometry has a high degree of symmetiy For
such cavities the framework of lay optics provides a simple way to solve the prob lern
in a good approximation [6,7] This approach breaks down if the hght propagation
m the cavity becomes chaotic, either because of an irregulär shape of the boundanes
(hke for the cavity depicted in Fig 1) or because of randomly placed scatteiers The
method of random-matnx theory is well-suited for such chaotic cavities [13,14] Instead
of considenng a smgle cavity, one studies an ensemble of cavities with small vanations
in shape and size, or position of the scatterers The distnbution of the scattermg matrix
m this ensemble is known Recent work has provided a detailed knowledge on the
statistics of the poles [15-19] Much less is known about the residues [20-22] In this
work we fill the remaming gap to a considerable extent

The outline of this paper is äs follows In Section 2 we denve the connection between
the Petermann factor and the residue of the pole of the lasmg mode The residue in
turn is seen to be charactenstic for the degree of non-orthogonahty of the modes In
this way we make contact with the existmg literature on the Petermann factor [9,10]

In Section 3 we study the smgle-channel case of a scalar scattermg matnx This
apphes to a cavity that is coupled to the outside via a small openmg of aiea j/ < λ2/2π
(with λ the wavelength of the lasmg mode) For pieserved time-reveisal symmetry
(the relevant case m optics) we find that the ensemble average of K - l depends
non-analytically oc T \iiT~1 on the transmission probability T thiough the openmg,
so that it is beyond the reach of perturbation theory even if Τ<ξ1 We present a
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Fig l Chaotic cavity that ladiatcs hght from a small openmg

complete resummation of the pertmbation senes that overcomes this obstacle We denve
the conditional distnbution P (K) of the Petermann factor at a given decay rate Γ of
the lasing mode, valid for any value of T The most probable value of K — l is oc T
Hence it is parametrically smaller than the average

In a cavity with such a small openmg the deviations of K from unity are very small
For largei deviations we study, m Section 4, the multi-channel case of an N χ 7V
scatteimg matnx, which corresponds to an openmg of area j/ w Νλ2/2π The lasmg
mode acqunes a decay rate Γ of order ΓΌ = ΝΤΑ/2π (with Δ the mean spacmg of
the cavity modes) We compute the mean Petermann factor äs a function of Γ for
broken time-ieversal symmetry, which is techmcally simpler than the case of preserved
time-reveisal symmetry, but quahtaüvely similar We find a parametrically large mean
Petermann factor K oc V/V

Om conclusions are given in Section 5 The mam lesults of Sections 3 and 4 have
been reported m Refs [23,24], lespectively

2. Relationship between Petermann factor and residue

Modes of a closed cavity, m the absence of absorption or amphfication, aie eigen-
values ω,, of a Hermitian operatoi H This operator can be chosen real if the System
possesses time-ieversal symmetry (symmetry index β = 1), otherwise it is complex
(ß = 2) For a chaotic cavity, H can be modeled by an M χ Μ Hermitian matnx with
mdependent Gaussian distnbuted elements

exp [φ«, ff'J ( 2 , )

(For β = l (2), this is the Gaussian oithogonal (unitary) ensemble [14] ) The mean
density of eigenvalues is the Wigner semicircle

M '- - (22)
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The mean mode spacing at the center ω = 0 is Δ = ημ/Μ (The hmit M — -> oo at fixed

spacmg Δ of the modes is taken at the end of the calculation )

A small opemng m the cavity is descnbed by a leal, non-iandom M χ Ν couplmg

matnx W, with N the number of scatteimg channels transmitted thiough the opemng

(For an opemng of area stf , N ~ 2iis//)2 at wavelength λ ) Modes of the open cavity

are complex eigenvalues (with negative imagtnaiy part) of the non-Hermitian matnx

/f = H-mWW^ (23)

In absence of amphfication or absoiption, the scatteimg matnx S at fiequency ω is

related to J^ by [11,25]

S = l-2mW\(o-Jf) 1W (24)

The scattermg matnx is a umtary (and Symmetrie, foi β — 1) landom N χ Ν matnx,

with poles at the eigenvalues of 3f It enters the mput Output relation

N

·?™(ωΚ(ω) , (25)

which lelates the anmhilation operators a°,ut of the scatteimg states that leave the cavity

to the anmhilation operators a™ of states that entei the cavity The indices n, m label

the scattermg channels

We now assume that the cavity is filled with a homogeneous amphfymg medium

(constant amphfication rate 1/τσ over a large fiequency wmdow Q„=LA, L^>N) This

adds a term ι/2τα to the eigenvalues, shiftmg them upwards towards the real axis The

scattermg matnx

~,/f -ι/2τβ) 1W (26)

is then no longer umtary, and the mput-output lelation changes to [26,27]

N N

<UV) = Σ ^«(ω)«:Γ(ω) + Σ 0™(ω)*ί(ω) (2 7)
n l n l

All operators fulfill the canomcal bosomc commutation lelations [αη(ω\α}η(ω'}\ —

δ,νηδ(ω — ω') As a consequence,

Ο(ω)β1'(ω) = ̂ (ω)^(ω)-1 (28)

The operators b desciibe the spontaneous emission of photons m the cavity and have

expectation value

(bl(<o)bm((o')) = δηι,,δ(ω ω') /(ω, Τ) , (2 9)

with /(ω, r)=[exp(Ä(y//cÄr)-l]"' the Böse-Ernstem distnbution function at frequency
ω and temperature T

In the absence of external Illumination ({a"l"Vn} = 0), the photon cuiient pei fre-

quency mterval,

/(«) = -^£{a°uVKu»)» (210)
m l
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is related to the scattenng matnx by Kirchhoff's law [22,23]

/(ω) = /(ω, Τ )— ti [l - S\<o)S((ü)} . (2.11)
2π

For ω near the laser traiisition we may replace f by the population Inversion factor

Nap/(N\ow — ΛΊ,ρ), where 7Vup and A^ow are the mean occupation numbeis of the upper

and lower levels of the transition In this way the photon current can be wntten m the

foim

, 1], (2.12)
π up - Λ/ίο»

that is suitable for an amphfymg medium. (Altematively, one can associate a negative

temperature to an amphfymg medium )

The lasmg mode is the eigenvalue Ω — ιΓ/2 closest to the real axis, and the laser

threshold is reached when the decay rate Γ of this mode equals the amplification rate

\/τα Near the laser threshold we need to retam only the contnbution from the lasmg

mode (say mode number /) to the scattermg matnx (2 6),

(2 13)

where U is the matnx of nght eigenvectors of Jff (no summation over / is imphed)

The photon current near threshold takes the form

φ
(CO) Nup - N]ov (ω - Ω)2 + \(Γ - 1/τ0)2 ' ( ' '

This is a Lorentzian with füll width at half maximum δω — Γ — 1/τα The couplmg

matnx W can be ehminated by wntmg

(2 15a)

(U-lU-]^„ . (2.15b)

The total Output current is found by integrating over frequency,

. (216)
ip - N\ow δω

Companson with the Schawlow-Townes value ( 1 1 ) shows that

δω = 2Κ Ν\ δω$Ί, (217)
«up - Λ/low

where the Petermann factoi K is identified äs

1 i / - l t ) / /> l (218)

For time-reversal symmetiy, we can choose U~] = UT, and find K = [(UU^)n] . The
factor of 2 in the relation between οω and δω$·γ occurs because we have computed

the lasei hnc width m the hneai regime just below the threshold, mstead of far above
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the threshold The effect of the non-lmeanties above threshold is to suppress the am-
plitude fluctuations while leavmg the phase fluctuations mtact [28], hence the simple
factor of two reduction of the hne width The factor Nup/(Nup - N\ow) accounts foi
the extra noise due to an incomplete population inveision The lemammg factor K is
due to the non-orthogonahty of the cavity modes [3,4], smce K = l if U is unitary

3. Single scattering channel

Relation (2 18) serves äs the startmg pomt for a calculation of the statistics of the
Petermann factor in an ensemble of chaotic cavities In this section we consider the
case N = l of a smgle scattering channel, for which the coupling matnx W leduces
to a vector a. = (W\\,Wi\, ,WM\) The magmtude α 2 = (MA/n2)w, where w 6
[0,1] is related to the transmission probabihty T of the smgle scattenng channel by
T = 4w(\ + w)~2 [29] We assume a basis in which H is diagonal (eigenvalues coq,
nght eigenvectors \q), left eigenvectors (q\) In this basis the entnes a? remain leal
for β = l, but become complex numbers for β = 2 Smce the eigenvectors \q) pomt
mto random directions, and smce the fixed length of α becomes an irrelevant constramt
m the hmit M —» oo, each real degree of freedom in a? is an mdependent Gaussian
distnbuted number [14] The squaied modulus \aq

 2 has probabihty density

Eq (3 l) is a χ2-αιεΐΓΛυΐιοη with β degrees of freedom and mean Aw/π2

We first determme the distnbution of the decay rate Γ of the lasmg mode, follow-
mg Ref [30] Smce the lasmg mode is the mode closest to the real axis, its decay
rate is much smaller than the typical decay rate of a mode, which is ~ ΤΔ Then
we calculate the conditional distnbution and mean of the Peteimann factoi foi given Γ
The unconditional distnbution of the Petermann factor is found by foldmg the condi-
tional distnbution with the distnbution of Γ, but will not be considered here

3 l Decay i ate of the lasmg mode

The amphfication with rate \/τα is assumed to be effective over a wmdow Ωα = LA
contammg many modes The lasmg mode is the mode withm this wmdow that has the
smallest decay rate Γ For such small decay rates we can use first-order perturbation
theory to obtam the decay rate of mode q,

Γ, = 2π v,q

 2 (3 2)

The γ2 distnbution (31) of the squared moduh \ctq

 2 translates mto a γ2 distnbution
of the decay rates

P(r)cxr(2-«/2expf-^ (33)
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Ignonng correlations, we may obtam the decay rate of the lasmg mode by considermg
the L decay rates äs mdependent random variables diawn from the distribution Ρ(Γ)
The distribution of the smallest among the L decay rates is then given by

η i-l

Γ
l - / άΓ'Ρ(Γ') (34)

Jo

For small rates Γ we can msert distribution (33) and obtam

, β = l , (3 5a)

' "=2 (35b)

Here erf(x) = 2π~'/2 J0

l d.yexp( — y2*) is the error function The decay late of
the lasmg mode decreases with mcreasmg width of the amplification wmdow äs
Γ ~νοΔΩα/Δ) 2/β <wn

3 2 Fu st-ot dei perturbatwn theory

If the openmg is much smaller than a wavelength, then a perturbation theory m α
seems a natural startmg pomt We assign the mdex / to the lasmg mode, and wnte
the perturbed nght eigenfimction (/}' = Y^qdq\q} and the perturbed left eigenfunction
(/! ' = Σ eq(q\, m terms of the eigenfunctions of H The coefficients are dq = Ug!/Un

and eq = U^l/U^], l e , we do not normahze the pertuibed eigenfunctions but rather
choose d/ = e/ = l

To leadmg order the lasmg mode remams at Ω = ω/ and has width

Γ = 2π|α/| 2 (36)

The coefficients of the wave function are
*α

(37)
(üq — ω/ caq - ω/

The Petermann factor of the lasmg mode follows from Eq (2 18),

K=

« i + K - < 2, (3 8)
i¥'

where we hneanzed with lespect to Γ because the lasmg mode is close to the real
axis From Eq (37) one finds

We seek the distnbution P (K) and the aveiage (K)a p of K for a given value of Ω
and Γ
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For ß=\, the probability to find an eigenvalue at ω? given that theie is an eigenvalue
at ω/ vamshes linearly for small |co? — ω/|, äs a consequence of eigenvalue repulsion
constramed by time-ieversal symmetry Since expression (3 9) foi K diverges quadrat-
ically for small ω? — ω/|, we conclude that (K)QT does not exist in perturbation
theory ' This severely comphcates the problem

3 3 Summation of the perturbation senes

To obtam a fimte answer for the aveiage Petermann factor we need to go beyond
perturbation theory By a complete summation of the perturbation senes we will m this
section obtam results that are vahd for all values 7X1 of the transmission piobability
Our starting pomt aie the exact relations

dqZi = (Oqdq — ιπ<χ? } ^ ci*pdp , (3 lOa)
p

eqz} = <£>qeq - ιπα* ]P ccpep , (3 lOb)
p

between the complex eigenvalues zq of 2f and the real eigenvalues ω? of H Distm-
guishmg between q — l and q ^ /, we obtam thiee recursion lelations

z/ = ω/ — ιπ α/ 2 — ιπα/ VJ a*dg , (3 l la)
crfl

(311c)

We now use the fact that z/ is the eigenvalue closest to the real axis We may there-
fore assume that z/ is close to the unperturbed value ω/ and replace the denommatoi
z/ — (oq in Eq (3 l lc) by ω/ — ω? That decouples the recursion lelations, which may
then be solved m closed form

(3 12b)

πα* α/ ,
ie„ = 2_L(i+ i n /4)-i (3 12c)

ω/ - ω?

1 Foi bioken lime-reversal symmetry theie is no diveigcnce We can use thc known two-poml conelalion
function /?(ω/,α>?) of the Gaussian unitary enscmble to obtam (K)QI — ] + ^πΤΓ/Α foi T<^\
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We have defined

1 2 / \~ l /1 ι ο \(ω/ — (Oq) (3 13)

The decay late of the lasmg mode is

Γ = -2Ιι-ηζ/ = 2π|α,|2(1 + π2Α2)~] (3 14)

From Eq (38) we find

κ = ι + 2-ΐτ^Α>> (315)

with

ιχ? |
2(ω,-ω9Γ

2 (316)

The problem is now reduced to a calculation of the jomt probabihty distnbution

P(A,B) This problem is closely lelated to the level cuivature pioblem of random-matnx

theory [31-33] The calculation is presented in Appendix A The result is

P(A,B) = - ( — ̂ ß (n'A2 + W2f -- Γ ßw in'A2

24 \ π

3 4 Pi obabihty disti ibution of the Petei mann factoi

From Eqs (3 1), (3 14), (3 15), and (3 17) we can compute the probabihty

distnbution

(318a)

(318b)

of K at fixed Γ and Ω by aveiagmg ovei |a/|2, A, and B In pnnciple one should also

requne that the decay rates of modes q ^ l aie bigger than Γ, but this extra condition

becomes melevant foi Γ —> 0 The average of Z over |ον|2 with Eq (31) yields a

factoi (l + π2Α2)^2 (Only the behavioi of P( ja/ | 2 ) foi small |a/ | 2 matters, because

we concentiate on the lasmg mode ) After Integration ovei B the distubution can be

expressed äs a ratio of mtegials ovei A,

3ß Γ \ wF J

A(l+ π2 A2/w2 γ \ ßnwF( l + nl42/w2)
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Fig 2 Probabihty distnbution of the lescaled Peteimann factor κ = (K - \)Δ/ΓΤ foi T = l and T<£\, in
thc presencc of time-reversal symmetry The solid curves follow fiom Eqs (3 20) (with ß= 1) and (3 21a)
The data pomts follow from a numcncal Simulation of the random-matnx model Thc mset shows thc lesults
(3 20) (with β = 2) and (3 21b) for broken time-reversal symmetry

We introduce the rescaled Petermann factor
Ρ(κ) follows for T = l,

βπ

— (Κ- \)Δ/ΓΤ. Α simple result for

(3.20)

and for T <ξ l,

« > - · '-· (3.21a)

/2κ5 (3.21b)

As shown in Fig. 2, the distributions are very broad and asymmetnc, with a long tail
towards large κ.

Το check our analytical results we have also done a numerical Simulation of the

random-matrix model, generating a large number of random matrices H and Computing

K from Eq. (2.18). As one can see from Fig. 2, the agreement with the theoretical
predictions is flawless.
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Fig 3 Aveiage of the lescaled Petermann factoi κ äs a function of tiansmission piobabihty T The solid
cuive is the lesult (3 22) m the piesence of timc leveisal symmetry, the dashed cmve is the lesult (3 24)
foi brokcn time leveisal symmetiy Foi small T the solid cuive diveiges oc In T ' while the dashed curve
has the finite hmil of π/3 Foi T = l both cuives icach the valuc 2π/3

3 5 Mean Petei mann factoi

The distnbution (319) gives for preserved time-reveisal symmetry (ß= 1) the mean
Petermann factoi

Γ2π

IT"

w2

2 2

1 0

(322)

in terms of the latio of two Meijer G-functions We have plotted the result m Fig 3,
äs a function of T — 4w(l + w)~2

It is remarkable that the aveiage K depends non-analytically on T, and hence on
the aiea of the openmg (The tiansmission piobabihty T is related to the area j/ of
the openmg by T ~ s/3/λ6 for T <s l [34] ) For T ^ l, the average appioaches the
form

πΓΓ 16
7— In—
ο Δ l

(323)

The most piobable (or modal) value of K - l ~ ΤΓ/Δ is paiametucally smaller than
the mean value (3 23) foi T <ξ l The non-analyticity lesults from the relatively weak
eigen value repulsion in the piesence of time-reversal symmetry If time-reversal sym-
metry is broken, then the stronger quadiatic lepulsion is sufficient to overcome the
ω~2 divergence of perturbation theory (39) and the average K becomes an analytic
function of T For this case, we find fiom Eq (319) the mean Petermann factor

. Γ 4nw
(324)x ' A 3(1

shown dashed in Fig 3

w2)
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4. Many scattering channels

For arbitrary number of scattering channels 7V the couphng matnx W is an

M χ 7Υ rectangular maüix The square matnx nW^W has N eigenvalues (MA/n)w„

The transmission coefficients of the eigenchannels aie

A smgle hole of area j/ > λ2 (at wavelength λ) corresponds to N ~ 2π^///12 fully

transmitted scattering channels, with all T„ = w„ = l the same

As m the smgle-channel case, we first determme the distnbution of the decay rate Γ

of the lasmg mode This decay rate is smaller than the typical decay rate ΓΟ = ΤΝΑ/2π

of the non-lasmg modes Then we calculate the mean Petermann factor (K) for given

Γ and mvestigate its behavior for the atypically small decay rates of the lasmg mode

4 l Decay rate of the lasmg mode

The distribution of decay rates Ρ(Γ) has been calculated by Fyodoiov and Sommers

For broken time-reversal symmetry the result is [17,18]

(42.)

(42b)
g„ - ix

N

(#„+*), (42c)
n=1

where q„ = — l + 2/T„ For identical g„ = g the two functions ^ and ̂  simphfy to

^l(y)=-~yN~le~~9y' (43a)

and a convement form of the distribution function is
Λ /-ΝΓ/ΓΟ

(44). Γ2(Μ ...
2πΓ2(Ν- 1)' ΛΌ

The behavior of Ρ(Γ) for vanous numbers jV of fully transmitted (T = 1) scattering

channels is illustrated m Fig 4

The lesult for preserved time-reversal symmetry is a bit more mvolved [19] Fortu-

nately, we can draw all important conclusions from the results foi broken time-reversal

symmetry, on which we will concentrate here
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0 6

04

02

N=U

Γ/Γ 0

Fig 4 Decay late distnbution Ρ(Γ) of a chaotic cavity with an openmg that suppoits N—2 4 6 8 10 12 ful
ly tiansmilted scatlenng channels Computed from Eq (42) foi the case of biokcn timc icvcisal symmetry

Foi large N, the distnbution Ρ(Γ) becomes non-zero only m the mterval FQ < Γ <

ΓΟ/(! — T), where it is equal to [35,36]

Ρ(Γ) =
ΤΓ2'

ΓΟ < Γ < Γ0/(1 - Τ) (45)

This hmit is ß-independent The smallest decay rate ΓΟ conesponds to the mverse

mean dwell time in the cavity

We aie mterested m the "good cavity" regime, wheie the typical decay rate ΓΟ

is small compaied to the amphfication bandwidth Ωα From ΓΟ = ΤΝΑ/2π it follows

that the number L ~ Ωα/Α of amplified modes is then much larger than 77V In this

legime the decay täte of the lasmg mode (the smallest among the L decay rates m the
fiequency Window Ωα) drops below ΓΟ The asymptotic lesult (4 5) cannot be used

m this case, smce it does not desciibe accurately the tail Γ < ΓΟ Gomg back to the

exact result (42) we find for the tau of the distnbution the expression

' - ' ' ' " " ,-.,,, — 3^/2\ / Λ /·\

where we have defined u = ^/Ν/2(Γ/Γο — 1) The distnbution Ρι(Γ) of the lasmg mode

follows fiom Ρ(Γ) by means of Eq (3 4) We find that it has a pronounced maximum

at a value wmax determmed by

[l+eif(wm a x)]2 V2N 4

For L > \/N (and hence also m the good cavity regime) we find Mmax

and the deviation of Γ fiom Γ0 is of ordei A VN <| Γ0 (äs long äs L

4 2 Mean Petermann factot

Eigenfunction correlations of non-Henmtian operators have been studied m
Refs [20 22] The eigenfunction autoconelator consideied m these studies is directly
connected to the Petermann factor K Ref [20] provides a convement expression of
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the mean Petermann factor,

(4 8)

In Ref [20] this average has been calculated pertmbatively foi 7V > l, with the result

p \ /n _ T\p \
J -l (49)

for ΓΟ < Γ < ΓΟ/(] — T) This result is at the same level of appioximation äs
Eq (45) for the distnbution of the decay rates, i e , it does not descnbe the ränge
Γ < Γ0 of atypically small decay rates Smce that is precisely the ränge that we need
for the Petermann factoi, we cannot use the existmg perturbative lesults We have
calculated the mean Petermann factor non-perturbatively for any Γ and 7V, assummg

broken time-reversal symmetry The denvation is given m Appendix B The final result

for the mean Petermann factor is

(4 l Ob)

with 3F\ and jF2 given in Eq (42) For identical g„ Ξ g we can use Eq (43) and

obtam by successive mtegrations by parts

N-l , , x „

y y

For 7V=1 and Γ <ζΔ we recover the smgle-channel result (3 24) of the previous section

In what follows we will contmue to assume for simphcity that all q„'s are equal to a

common value g

The large-7V behavior can be convemently studied from the expiession

i

n,- 1)' Jy(g-i)

(412)

because the integral permits a saddle-pomt approximation For Γ > ΓΟ we lecover

Eq (4 9), but now we can also study the piecise behavior of the mean Petermann

factor for Γ < Γ0, hence also for decay rates relevant for the lasmg mode The results

will agam be presented m terms of the rescaled parameter u = ν

/Ν/2(Γ/Γ0 - l ) We

expand the integrands in Eqs (4 4) and (4 12) around the saddle point at x = N (which

comcides with the upper Integration limit at Γ = ΓΟ) and keep the first non-Gaussian

correction This yields

(Κ)ΩΓ = TV2N[F(u) + u] - T (g - l ) u2

+TF(u) [(3 - g)u + f M3 + |(1 + u2)F(u)}
12), (413a)
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F(u}= (~"2) (413b)
V ; 0ϊ[1+βιί(«)] V

Foi Γ = ΓΟ (u — 0) this simphfies to

(414)

We see that the mean Peteimann factoi vanes on the same scale of Γ äs the
decay-iate disüibution Ρ(Γ), Eq (4 6) Howevei, while Ρ(Γ) decays exponentmlly
foi u <ξ — l, the mean Peteimann factoi displays an algebiaic tail

\-T + (9(u 2) (415)

Foi an amphfication wmdow Ωα — LA with L ^> \/N we found in Section 4 l that
the decay rate Γ of the lasmg mode drops below ΓΟ (the lescaled parametei wm i x ~
— ·\/1η L) Still, the mean Peteimann factor

Α

lemams paiametncally laiger than umty (äs long äs
We now compaie om analytical findmgs with the icsults of numencal simulations

We geneiated a large numbei of landom maüices ffl with dimensionM=120 (M=200)
for 7V = 2, 4, 6, 8 (N = 1 0, 12) fully tiansmitted scatteimg channels (g = T =\) Fig 5
shows the mean K at given Γ We find excellent agreement with oui analytical result
(410)

The behavior (K) ~ \/N at Γ = ΓΟ is shown in Fig 6 The inset depicts the
disüibution of K at Γ = ΓΟ for N = 10, which only can be accessed numencally We
see that the mean Petermann factoi is somewhat laiger than the most piobable (01
modal) value

43 P> esei ved time-i evei sal symmetiy

In the denvation of the mean Peteimann factor for bioken time-reveisal symmetry
Appendix B) it turned out that the final result is formally connected to the expiession
for the decay-rate disüibution Ρ(Γ\ m äs much äs both expressions are built from
the factois 2T\ (mvolving non-compact bosomc degrees of fieedom of the saddle-pomt
mamfold) and ^2 (mvolving compact bosomc degiees of fieedom of that mamfold)
We tned to translate this descnption to the case of preseived time-reversal symmetry
(/?=!), by operating in the same way on the compact and non-compact factois of the
expression of Ref [19], but could obtam a saüsfactory lesult only foi N = 2,

(K]= -
( ' 2Γ0 rcosh(r/r0)-r0sinh(r/r0)

 l '

In Fig 7 this expression is compaied to the result of a numencal Simulation
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r/r0

Fig 5 Aveiage Petermann fauor {K} äs a function of tbe docay late Γ for dtffeicnt \alucs Λ of fully
transmittcd scattering channels The solid curves are thc analytical result (4 10) the data pomts ate obtained
hy d numerictil Simulation lime-ievcisal symmetiy js btoken

f-ig 6 Ä\e<age of the Petermaan facior K at Γ — Γ o äs iunction of the numbcr V of fulty iraiiiinittcd
scattering channels The analytscai result (4 10) toi broken time rcveisa! S}inraeüy (füll cunej js compatcd
with the resuh of a numeutal Simulation (opcn circlcs foi broken time roversai symmctty filled ciicles
for presencd time rcvcrsal iymmeiry) The dashed Ime is the laige ¥ lesutt (4 14) The msct shows the
disüibuüon of K at / — Γ0 tor V = 10
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Γ /Γη

Fig 7 Theoretical expectation (4 17) (füll curvc) and the icsult of a numeiical Simulation (data points) foi
the average Peteimann factoi K in the ptcscnce of time-ieveisal symmetry, äs a function of the decay rate
Γ foi 2 fully tiansmittcd scattenng channels.

. : :

. ·ιο

::. ·. .6*
. .

Γ/Γ 0

Fig 8 Rcsults of a numeiical Simulation of the aveiage Peteimann factor (K) in the presencc of time-ieversal
syrametry, äs a function of the decay latc Γ foi N fully tiansmitted scattenng channels

For larger numbers of channels we can draw our conclusions from the numerical
results that are presented in Fig. 8. Interestingly enough the data points for N channels
are close to the results for broken time-reversal symmetry with N/2 channels, when
the decay rate is given in units of Γ0. This is illustrated for N = 8 in Fig. 9. Such

a rule of thumb (motivated by the number of real degrees of freedom that enter the

non-Hermitian part of iff) was already known for the decay rate distribution (inset in
Fig. 9). Hence the Petermann factor for the lasing mode should again display a sub-

linear growth with increasing channel number N. This expectation is indeed confirmed
by the numerical simulations, see the filled circles in Fig. 6.
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Γ/Γ 0

Fig 9 Average Petermann factoi (K) foi N = 4, β = 2 [open circles lesult of a numencal Simulation,
curve Eq (4 10)] and for N = 8, β = l (fillcd circles· result of a numencal Simulation) The patametci Γ0

equals ΝΑ/2π m both cases, so it is twicc äs laigc foi β = 1 äs for β = l The inset depicts the piobabihty
distnbution of Γ

5. Discussion

The Petermann factor K enters the fundamental lower limit of the laser Ime width

due to vacuum fluctuations and is a measure of the non-orthogonality of cavity modes.
We related the Petermann factor to the residue of the scattering-matrix pole that pertains
to the lasmg mode and computed statistical properties of K in an ensemble of chaotic
cavities. The technical complications that had to be overcome anse from the fact that
laser action selects a mode which has a small decay rate Γ, and hence belongs to a
pole that lies anomalously close to the real axis. Parametrically large Petermann factors

cc \/N arise when the number 7V of scattering channels is large. For a single scatter-
ing channel the mean Petermann factor depends non-analytically on the transmission
probability T.

The quantity K is also of fundamental significance in the general theory of scat-
tering resonances, where it enters the width-to-height relation of resonance peaks and

determines the scattering strength of a quasi-bound state with given decay rate Γ. If
we write the scattering matrix (2.6) in the form

S„m = <5„„, + σησ'ηι(ω -Ω + ίΓ/2)-1 , (5.1)

then the scattering strengths σ,,, a'm are related to Γ by a sum rule. For resonances
close to the real axis (Γ <ζ A) the relation is

'/ = Γ*. (5.2)El
For poles deeper in the complex plane, however, the sum rule has to be replaced by

'„\2=ΚΓ2, Ä>1. (5.3)Σ
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The method of filter diagonahzation (or harmomc mveision) that was used m Ref [12]
to obtam for the H^ molecular ιοη the location of poles even deep m the complex
plane can also be employed to determme the correspondmg residues, and hence K

The paiameter K defined in Eq (2 18) appears äs a measme of mode non-
orthogonahty also in problems outside of scattermg theory These pioblems mvolve
non-Hermitian operators that are not of the form (23) [21,22] Many applications
share the common feature that they can be addressed statistically by an ensemble de-
scnption, and that the physically relevant modes he at the boundary of the complex
eigenvalue spectrum The non-perturbative statistical methods reported m this paper
should piove useful in the mvestigation of some of these pioblems äs well
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Appendix A. Joint distribution of A and B

We calculate the jomt distribution P(A,B) [Eq (3 17)] of the quantities A
[Eq (3 13)] and B [Eq (3 16)] by generahzmg the theory of Ref [33] We give
the lasing mode ω/ the new mdex M and assume that it lies at the centei of the
semicucle (2 2), ω« = 0 Other choices just lenormahze the mean modal spacmg Δ,
which we can set to A — l The quantities A and B are then of the form

M-\ , ,2 Λ/-1 ι |2

A=y\^L B=y^4~ ( A I )
έί ω-' έΐ <

The jomt piobability distribution of A and B,

~l 2 \ \

is obtamed by averagmg over the variables {|α,,,|2,ω,π} The quantities cc„, 2 are mde-
pendent numbers with probability distribution (31) The jomt probability distribution
of the eigenfrequencies {ω,,,} of the closed cavity is the eigenvalue distribution of the
Gaussian ensembles (2 l ) of random-matnx theory,

P ({ω,,,}} oc fj|cü, -cu^exp

Our choice Δ = 1 üanslates into μ = M/n

(A3)
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The jomt probabihty distnbution of the eigenvalues {ω,,,} (m=l, ,M— 1) is found
by settmg ω,ν/ =0 m Eq (A3) It factonzes mto the eigenvalue distnbution of M — l
dimensional Gaussian matnces H' [agam distnbuted accordmg to Eq (2 1)], and the

term ff T' \^,\ß = \detH' l'1

In the first step of oui calculation, we use the Founer repiesentation of the <5-functions
m Eq (A 2) and wnte

/ ί·οο IOC M l „oo

P(A,B)ac dx dye^+^ d|a,„ 2P(\am\2)
/ — 00

M 1 9y^ a.m

. ",71 ω'«

,»=1 J°

M-\ ( T

i V~^ αί«Γ

"7 ̂  ω2m

\ /" \ '" \ / A /l \x e x p -«>^-_-^>^—^ } , (A4)

where the average refers to the variables {ω,,,} The Integrals ovei |a,„|2 can be per-
formed, resultmg in

detH'2'1
P(A,B) oc (A 5)

where the average is now over the Gaussian ensemble of H' -matnces It is our goal to
relate this average to autocorrelators of the seculai polynomial of Gaussian distnbuted
random matnces, given m Refs [37,38]

The determmant m the denommator can be expressed äs a Gaussian integral,

P(A,B)az dx

xexp -

dz dH' det Haß

- zt H'2 (A 6)

where the M - l dimensional vector z is real (complex) for β = l (2) Smce our
original expression did only depend on the eigenvalues of H', the foimulation above
is invariant under orthogonal (unitary) transformations of H', and we can choose a
basis in which z points mto the direction of the last basis vectoi (index M — l ) Let
us denote the Harmltoman m the block form

Here V is a (M -2) χ (M — 2) matnx, q a number, and h a (M — 2) dimensional
vector In this notation,

P(A,B)cr i dx f dyelxA+>yB j dz l dg j d V j dh
J J J J J J

4M

xexp g2 + [h
2iw

~ßtf-( y) (A 8)
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The mtegials over χ and y give <5-functions,

P(A,B)az f dz f dg l aV l dhdet[V2ß(g -

489

xexp ~~(92 + 2|h|2 + tr K2) - z 2(g2 + |h|2)

χδ(Α ~ cjB)ö(B - 2w ζ|2//?π2)

We then mtegrate over g and z,

Hoc fdVdhdet

(A.9)

ß(ß/2)(M-\)-2

xexp
βπ2 2Β

(A.10)

We already anticipated B g> l/M and omitted m the exponent a term —βπ2Α2/4ΜΒ2

The mtegial over h can be mterpreted äs an average over Gaussian random variables
with vanance

9 / 1 ι 19 \ J A T w

π 2 β Λ ν + 1 / Μ ' ~ π 2 β V 1 MßJ ' (A11)

For the stochastic Interpretation one also has to supply the normahzation constants
proportional to

(A 12)

The integral over K is another Gaussian average, and thus

= ( det

After averagmg over h, one has now to consider for β = l

Öi = (det
B

(A13a)

(A 13b)

(A.14)

where only the even terms in V have been kept. The ratio of coefficients m this
polynomial m A/B can be calculated from the autocorrelator [38]

Gi((o,co") =
(det F2)

3 d smnx
π2χ αχ πχ

(A.15)
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of the secular polynomial of Gaussian distributed real matrices V. This is achieved
by expressing the products of traces and detemiinants through secular coefficients, and
these then äs derivatives of the secular determinant,

{detF^trF-1)2 d2

(det V2) οωοω =ω'— Ο

_ π 2

~ 5 '
(A.loa)

{detF2} Οω2~η '

[We used the translational invariance of G(a),ω').] Eqs. (A. l l ) and (A. 15) yield

,,2

(A.löb)

01 ^ £2 + π2^2 '

For β = 2, the average over h yields the expression

n ^4 zX_L ,«
02 CC ^Τ+φ/Γ-^τ +<?2Α ,

(A.17)

(A.18a)

= 6{det F4[(tr F'1 )2 + tr

= {det J/4[(tr F)^4 + 6tr F~2(tr V~1)2

+ 8tr tr + 6tr F~4 + 3(tr F"2)2]} .

(A.18b)

(A.18c)

The coefficients can now be computed from the four-point correlator of the Gaussian
unitary ensemble [37]:

{det F4)

2π4

+ 7-

— ω3 - ω4)

- α>4)

- ω2)(ωι - ~ω4)

ι - ω2)(ω4 - ω3)(ω4 -

02(ω, 0,0,0) = —τ—r (sin πω — πω cos πω),

(?2(ω,ω,0,0)= —--;-(οο82πω- 1 +2π2ω2).
LTTdT

(A.19a)

(A.19b)

(A.19c)
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In this case

d2

q\ = -̂ -r [6G2(co, ω, 0, 0) - 1 8(?2(ω, 0, 0, 0)]

= 2π 2, (A.20a)

= π

which gives

02 (Χ β? ·

(A.20b)

(A.21)

Collecting results we obtain Eq. (3.17), where we also included the normalization

constant.

Appendix B. Derivation of Eq. (4.10) for the mcan Petermann factor

The computation of the mean Petermann factor from expression (4.8) is facilitated

by the fact that it can be obtained from the same generating function [18,39],

/det[(cu - - ίε)]

\det[(co- ^)(ω*-Jft)-

as the distribution function

p(co) = lim ( tr
(ω* - Jft χω - W) + e2 (ω - M)(co* -

, (B.l)

(B.2)

of poles in the complex plane. (The distribution of poles is related to the distribution

of decay rates by Ρ(Γ) = \Δρ(ο))\ω=α^\π2·) The relations are

π/?(ω) = lim
l d2 l d2

χ Φ(ω,,ω2>0>0>β)|α, ι=(Β2=ιο , (Β.3)

Μπ(Κ)ΩΓρ(ω) = - lim ~^-r—·
c^O1 4 ÖM| ÖU2

(Β.4)

Most of the analysis runs therefore in parallel with the calculation of ρ(ω) in

Ref. [18]. We restrict ourselves to the case of broken time-reversal symmetry, where

the algebra is less involved.
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The ratio of determmants in Eq (B l) can be written äs a superdetermmant, which
m tuin can be expiessed äs a Gaussian integral over bosomc and fermiomc vanables

d»F

(B 5)

The matnx A is

A =
0

— IC — t/2

\ 0

0
j- jr

0
•ιέ + M2

/ f- ι ΐ π

IC + MI

0

-ω* + M

0

Πff — (§
2J

0

— ιέ + MI

'1 0

ω* - ,/f]

)σ ζ£

E® <JXL (B 6)

The vector Ψ — ψ[ φ Ψ2 φ Ψ3 θ *?4 is a 4M-dmiensional supeivectoi consistmg

of two M-dimensional bosomc entnes Ψ« with α = l and 3, supplemented by two

M-dimensional fermiomc entnes with α = 2 and 4 We encounter the four-dimensional

supermatnces L = diag(l, l, — l, l), M = diag(—ΜΙ,ΜΙ, —1/2,1/2), and σ, = σ, ® Ü2, where
σ, aie the usual Pauli matnces [e g σζ = diag(l, l , — l , — 1 ) ]

The linear appearance of H in the exponent of Eq (B 5) facihtates the ensemble

average with the distribution function (2 l), since the integial over the independent

components of H factonzes, and each single integral is Gaussian The result is

(exp[ - ιΨ1// ® UV}} = exp - (B7a)

= Ψ, Ψ (B Tb)
M α ^

The order of ^ in the exponent is leduced from quadratic to hneai by a Hubbai d—

Stratonovich transformation, based on the identity

12M
= l d^exp

/ "2

-M Str i y-

The integral over Ψ and Ψ' is agam Gaussian and results in

Ψ= dSexp -M Str i +\nS Sdet~'(l

(Β 8)

(B9a)

(B9b)

One now can wnte Sdet ' (l + C) = exp[ - Str ln( l + C)] and expand the loganthm

to first oider in Γ, t, and the source teim J, in addition we set Ω = 0 and pass from the
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geneiatmg function to the mean Petermann factor accordmg to Eq (B 4) This gives
s2 \

Μπ(Κ}ΩΓρ(ω) = --— / dSexp In S

) (B 10)

The tiaces tillA=Au+AJJ opeiate only on the indicated subspaces We introduced the

lescaled vanables y = —2nlmco/A = πΓ/Α and ε' = 2πε/Α In what follows we will

wnte i, mstead of ε'

The condition M>1 justifies a saddle-pomt appioximation The mam contiibution

to the piecedmg integral comes from pomts for which the first pari of the exponent is

minimal, that is from the Solutions of

-+§ = 0<=>$2 = -1 (B 11)

n. Λ Λ 7 n

With S = \Q, the Solutions fulfill Q = l As mherited fiom the defimtion of R in

Eq (B 7b), QL is a Hermitian matnx and Q = f Qaa&f can be diagonahzed by a

pseudounitary supermatnx f G U(l, 1/2) (these matrices fulfill f Lf = L) The laigest

mamfold which lespects the defimteness lequirements on Q is obtamed by the choice

ßdng = ^z Howevei, rotations m the block α = 1,3 and m the block α = 2,4 leave Q

mvaiiant, the saddle-pomt mamfold is hence coveied exactly once if we take the f

matiices from the coset space U(l, l/2)/U(l/l) χ U(l/ l )

A convement parameteiization of the coset space has been given by Efetov [40],

0

0 K-V^V2 d i a g(°i ' l 0 2) 0 J\0 V,
(B 12a)

n l - M (l+PP*/2 P \ r R i 9 M
U=^ &)( p* l + P * P / 2 j ' (B12b)

(B 12c)

with bosomc vanables θ\, 02, φ\, and </>2, and feimiomc vanables p, p*, σ, and σ*

We mtioduce λ\ =coshöi and λ2 =cos02 In this paiametenzation

Strazß = 2(li-12), (B 13a)

- σσ*/2) - ιρσ*]

- σσ*/2) - ισρ*]

sm02e"/'2[(l +ρ>/2)(1 - σ*σ/2) - ipV]

- σ*σ/2) - ισ>] , (B 13b)
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tru σχύ = -sinh 0ie'*' [(l + pp*/2)(l - σσ*/2) - ϊσ*ρ]

-ismö2eK/)2[(l + p*p/2)(l - σ*σ/2) - ίσρ*] , (B.13c)

tr34 oxQ = sinh Ο,β-'*1 [(l + pp*/2)(l - σσ*/2) - ίρ*σ]

+isinö2e~"/'2[(l +p*p/2)(l - σ*σ/2) - ίρσ*] , (B.13d)

l[l4+w„azQ]=^^ . (B.13e)

The Integration measure is

- αλί άλ2 άφι άφ2 dp* dp άίσ* άίσ

In order to integrale over the fermionic variables we have to expand in these
quantities and only keep the term in which all four variables appear linearly. The

angle φι appears in the pre-exponential factor äs well äs in the exponential term
exp(— ε sin 02 8ΐηφ2). We expand the exponential and integrate over φ2. Only terms of
order ε" sinh'" Θ ι with «<w survive the limit ε — > 0. We discard all other tenns and
obtain

-4~(Κ)Ω,ΓΡ(ω)

oo Λ l ι /·2π j /

άλι <U2
-

; (B.15a)

, ό'» ι AI
n= l

sin 0i (2 sin2 Ö2 + |sinh2Ö!)

e2

H -- sinh2 0] [sinh2 0\ cos2 (/>] — (3 cos2 φ\ + 5 sin2 φι )sin2

+ ic3 sinh3 0\ sin 0i sin2 02(-·γξ sin2 0i - |f cos2 ̂ t)
2 2

] sin (/)! sin2 02 - (B.15b)

It is convenient to bring the factor D into a form which involves φ\ only in the
combination z\ = — i s inhOi sin φι, because such terms can be expressed äs derivatives
with respect to e of the exponential exp(ezi) appearing in Eq. (B.15a). This goal can be
achieved by integrating by parts all terms that involve cos φι. Effectively this amounts

to the substitutions c sinh öj sin φ\ cos2 φ\ — > i(sin2 φ\ —cos2 φ\ ) and ε sinh 0\ cos2 φ\ — >
i sin φι, resulting in

D = εζι(| sin2 02 + 2 sinh2 0, ) + |ε2ζ2 sin2 02 - js3^3 sin2 02 . (B. 16)

Mathematically these expressions are quite similar to those obtained for the decay-rate
distribution in Ref. [18]. By a simple Substitution rule that relates to each other the
tenns of different order in c, we now rewrite D in a way that allows to make direct
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contact to Ref [18], yieldmg a result m teims of the two functions ^\ 2 given m
Eq (42) As m Ref [18] we express the factors (q„ + A j ) " 1 äs an mtegial of expo-
nential functions

l r°°
= / dinexp[-sn(öfn + Ai) ] (B 17)

9„ + M Jo

We also wnte (λ\ - λ2)
2 = /0°° dz* exp[ - \(λ\ - λ2)] Then the mtegiations ovei 0\

and φι can be performed, and ε only appears in a factoi

(BIS)

with y' = y — χ — Ση

 s» The hmitmg value for ε —* 0 of the derivatives

ε" —#(fc)/) = c„<5(/), Ci = -C2 = C3/2 = -2 , (B 19)

amounts m Eq (B 16) to the substitutions ε3ζ3 -—> 2εζι and ε2ζ2 —» —εζ\, which gives
D = 2εζγ(λ\ — λ\) As a lesult, we obtam

-Ρ(Γ)} (Κ)ΩΚ= Ι0(πΓ/Α) + 27, (πΓ/Λ), (Β 20)
π J

1 rl Γ°° Γ1 J1

ί- ,Λ— * 1 , / Α Ι . Α Ι . Α1

.

- 12)] Π ̂ ^ , (B 21)

where JQ is a Bessel function By compaimg expiessions with Ref [18], we recogmze
that IQ(y) = .^\(y)^2(y) = (Δ/π)Ρ(Γ = Δ^/π) [cf Eq (4 2)], while

Γ ' *7 ' 9 Ϊ7 l

Jo ' dy'
This concludes the denvation of the final lesult (4 10)
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