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Abstract

The quantum-hmited line width of a laser cavity is enhanced above the Schawlow—Townes
value by the Petermann factor K, due to the non-oithogonality of the cavity modes We detive
the 1elation between the Petetmann factor and the 1esidues of poles of the scattering matrix and
mvestigate the statistical propeities of the Petetmann factor for cavities n which the 1adiation
1s scattered chaotically For a single scattering channel we determine the complete probability
distitbution of XK and find that the avelage Petctmann factor (K) depends non-analytically on
the area of the openming, and gieatly exceeds the most piobable value For an aibittairy number
N of scattering channels we calculate (K) as a function of the decay 1ate I' of the lasing mode
We find for N> 1 that for typical values of I' the aveiage Petcrmann factor (K) oc /N> 1 1s
patametiically laiger than unity (© 2000 Elsevier Science BV All 11ghts reserved
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1. Introduction

Laser action selects a mode m a cavity and enhances the output imtensity in this mode
by a non-hnear feedback mechanmism Vacuum fluctuations of the eleciomagnetic field
ultimately himit the nattowing of the emussion spectrum [1] The quantum-limited line
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width, o1 Schawlow Townes hne width,
Scwst=AT*1, (11)

1s proportional to the square of the decay rate I" of the lasing cavity mode and mversely
proportional to the output power 7 (in units of photons/s) This 1s a lower bound for
the line width when I' 1s much less than the line width of the atomic transition and
when the lower level of the transition 1s unoccupied Many years after the work of
Schawlow and Townes 1t was 1ealized [2—4] that the true fundamental himit 1s laiger
than Eq (11) by a factor K that characterizes the non-orthogonality of the cavity
modes This excess noise factor, or Petermann factor, has geneiated an extensive
[iterature [4-10]

Apart from 1ts importance for cavity lasers, the Petermann factor 1s of fundamental
significance 1 the more general context of scattering theory A lasing cavity mode 1s
associated with a pole of the scattering matiix 1n the complex fiequency plane We
will show that the Petermann factor 1s proportional to the squared modulus of the
1estdue of this pole Poles of the scattering matrix also determme the position and
height of resonances of nucle1, atoms, and molecules [11] Powerful numerical tools
that give access to poles even deep mn the complex plane have been developed recently
[12] They can be used to determine the residues of the poles as well Our work 1s
of relevance for these more general studies, beyond the origmal application to cavity
lasers

Existing theories of the Petermann facto1 deal with cavities in which the scattering 1s
essentially one-dimensional, because the geometry has a high degree of symmetty For
such cavities the framework of 1ay optics provides a sumple way to solve the problem
mn a good approximation [6,7] This approach breaks down 1f the light propagation
m the cavity becomes chaotic, either because of an wrregular shape of the boundaries
(like for the cavity depicted i Fig 1) or because of randomly placed scatterers The
method of random-matrix theory 1s well-suited for such chaotic cavities [13,14] Instead
of considering a single cavity, one studies an ensemble of cavities with small variations
m shape and stze, or position of the scatterers The distribution of the scattering matrix
m this ensemble i1s known Recent work has provided a detailed knowledge on the
statistics of the poles [15-19] Much less 1s known about the residues [20-22] In this
work we fill the remaining gap to a considerable extent

The outline of this paper 1s as follows In Section 2 we derive the connection between
the Petermann factor and the residue of the pole of the lasmg mode The residue 1n
turn 1s seen to be characteristic for the degree of non-orthogonality of the modes In
this way we make contact with the existing literature on the Petermann factor [9,10]

In Section 3 we study the single-channel case of a scalar scattering matrix This
applies to a cavity that 1s coupled to the outside via a small opening of atea &/ < A%/2n
(with A the wavelength of the lasing mode) For pieserved time-reveisal symmetry
(the relevant case n optics) we find that the ensemble average of K — 1 depends
non-analytically oc TInT~! on the transmission probability 7 thiough the opening,
so that 1t 1s beyond the reach of perturbation theory even 1f 7<€1 We present a
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Fig 1 Chaotic cavity that 1adiates light from a small opening

complete resummation of the pertutbation series that overcomes this obstacle We detive
the conditional distribution P(K) of the Petermann factor at a given decay rate I” of
the lasing mode, valid for any value of T The most probable value of K — 1 1s oc T
Hence 1t 1s parametrically smaller than the average

In a cavity with such a small opening the deviations of K from unity are very small
For larger deviations we study, in Section 4, the multi-channel case of an N X N
scattering matrix, which corresponds to an opening of area .o/ ~ NA%/2n The lasing
mode acquues a decay rate I' of order I'o = NTA/2n (with A the mean spacing of
the cavity modes) We compute the mean Petermann factor as a function of I' for
broken time-1eversal symmetry, which 1s techmically simpler than the case of preserved
time-reveisal symmetry, but qualitatively similar We find a parametrically large mean
Petermann factor K oc N

Our conclusions are grven m Section 5 The main tesults of Sections 3 and 4 have
been reported m Refs [23,24], 1espectively

2. Relationship between Petermann factor and residue

Modes of a closed cavity, in the absence of absorption or amplification, ate eigen-
values w, of a Hermitian operatos H This operator can be chosen real 1if the system
possesses time-teversal symmetry (symmetry mdex ff = 1), otherwise 1t 1s complex
(f =2) For a chaotic cavity, H can be modeled by an M x M Hermitian matrix with
mdependent Gaussian distributed elements

M
P(H) oc exp {—B—ztl HZJ 21
4p
(For f =1 (2), this 1s the Gausstan oithogonal (unitary) ensemble [14] ) The mean
density of eigenvalues 1s the Wigner semicircle

(@)= 2 JaE o 22)

2mu?
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The mean mode spacing at the center =018 A =nu/M (The hmit M — oo at fixed
spacing A of the modes 1s taken at the end of the calculation )

A small openmg 1n the cavity 1s described by a 1eal, non-tandom M x N coupling
matrix W, with N the number of scatteiing channels transmitted thiough the opening
(For an openmg of area ./, N ~ 2n.e//)% at wavelength 4) Modes of the open cavity
are complex eigenvalues (with negative imagialy part) of the non-Hermitian matiix

H=H —1nWW' (23)

In absence of amplification or absotption, the scattering matiix S at fiequency w 1s
related to 7 by [11,25]

S=1-2mWi(w—-#)"'Ww (24)

The scattering matrix 18 a unitary (and symmetric, for f=1) 1tandom N x N matux,
with poles at the eigenvalues of # It enters the input output relation

N
a3 (@)= Sun(@)a(w), (25)
n—1
which 1elates the annthilation operators a5 of the scatteting states that leave the cavity
to the annihilation operators a) of states that enter the cavity The indices n, m label
the scattering channels
We now assume that the cavity 1s filled with a homogeneous amphfymng medium
(constant amphfication rate 1/t, over a large fiequency window Q,=1LA, L>N) This
adds a term 1/27, to the eigenvalues, shifting them upwards towards the real axis The

scattering matnx
S=1—-2mWl(w—H—1/2t) 'W (26)

1s then no longer unitary, and the mput—output telation changes to [26,27]

N N
A (@)= Su(@)a (@) + > Oil@)b(w) 27)

n 1 n o1

All operators fulfill the canonical bosonic commutation telations [a,(w),al(w')] =
Spmd(w — ') As a consequence,

()0 (@) = S()ST(w) ~ 1 (28)

The operators b desciibe the spontaneous emuission of photons 1n the cavity and have
expectation value

<bi(w)bm(wl)> — (3,1,,15(60 wl)f(wa T) 5 (2 9)

with f(w, T)=[exp(hw/kszT)—1]"" the Bose-Emstemn distuibution function at frequency
o and temperature T
In the absence of external illumination ({a!"™a™) = 0), the photon cwent per fre-
quency nterval,
1 o outt out
(o)== (@ (@), (210)

m |
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1s related to the scattering matrix by Kirchhoff’s law [22,23]
1
H{w) = f(o, T)_ZEU [1— ST()S(w)]. (2.11)

For w near the laser transition we may replace f by the population inversion factor
Nup/(Mow — Nyp), where Ny, and Ny, are the mean occupation numbeis of the upper
and lower levels of the transition In this way the photon current can be written 1n the
foim

1 Nyp

Ho)= ———
(w) 2n Nup - NIOW

that 1s suitable for an amplifying medum. (Alternatively, one can associate a negative
temperature to an amplifying medium )

The lasing mode 1s the eigenvalue 2 —1I7/2 closest to the real axis, and the laser
threshold 1s reached when the decay rate I' of this mode equals the amplification rate
1/1, Near the laser threshold we need to retain only the contribution from the lasing
mode (say mode number /) to the scattering matrix (2 6),

(WrU)n/(U_l W)/m
w—-Q+1IJ2—1/2z,°
where U 1s the matrix of right eigenvectors of 3 (no summation over / 1s mmplied)
The photon current near threshold takes the form

2nN,,  (UTwwioy(u—'wwiu=1ty,
Nop = Niow (0= QP+ 3(I' = 1/7,)

tr [ST(w)S(w) — 1], (2.12)

Snm =-2m

(2 13)

I(w) = (2.14)

This 1s a Lorentzian with full width at half maximum ow =T — 1/7, The coupling
matrix W can be eliminated by writing

r
~Tc(U'WW*U),/:Im(UTJ[’U),,:—E(UTU)//, (2 15a)
—1 frr—1t Aprrtty, L

—n(UT WU Dy =Im(U™' XU )y = ~E(U U™y (2.15b)

The total output current 1s found by mtegrating over frequency,

N r

I=Utuyuv "y, —2— —. 216
(UTU)u( )//Nup N 5 (216)

Comparison with the Schawlow—Townes value (1 1) shows that

N

dw = 2K ——2—Sagr, 217
Nup - Nlow ST ( )

where the Petermann factor K 1s identified as
K=UU)(U™'u "My, =1 (2 18)

For time-reversal symmetty, we can choose U~' = UT, and find K = [(UUT);;]*. The
factor of 2 n the relation between ow and Swgr occurs because we have computed
the laser linc width mn the linear regime just below the threshold, mstead of far above
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the threshold The effect of the non-linearties above threshold 1s to suppress the am-
plitude fluctuations while leaving the phase fluctuations intact [28], hence the simple
factor of two reduction of the line width The factor Nyp/(Nyp — Now) accounts for
the extra noise due to an mcomplete population wnveision The remaining factor X 1s
due to the non-orthogonality of the cavity modes [3,4], since K =1 1f U 1s unitary

3. Single scattering channel

Relation (2 18) serves as the starting pomnt for a calculation of the statistics of the
Petermann factor mn an ensemble of chaotic cavities In this section we consider the
case N =1 of a single scattering channel, for which the coupling matrix # 1educes
to a vector a = (Wi, Wa1, ,Wyn) The magmtude |a)*> = (MA/n?)w, where w €
[0,1] 1s related to the transmission probability 7 of the single scattering channel by
T =4w(l +w)™? [29] We assume a basis mn which & 15 diagonal (eigenvalues g,
night ergenvectors |g), left eigenvectors (¢f) In this basis the entries a, remam 1eal
for f =1, but become complex numbers for f =2 Since the eigenvectors |g) pomt
mto random directions, and since the fixed length of a becomes an irrelevant constraint
mn the limit M — oo, each real degree of freedom m o, 1s an mdependent Gaussian
distributed number [14] The squaied modulus |a,|* has probability density

B/2
Py = 5 (L) oxp [ 2] G

27|y |? wa

Eq (31) 1s a y2-distribution with f§ degrees of freedom and mean Aw/n?

We first determine the distribution of the decay rate I” of the lasing mode, follow-
mg Ref [30] Since the lasing mode is the mode closest to the real axis, its decay
rate 18 much smaller than the typical decay rate of a mode, which 18 ~ 74 Then
we calculate the conditional distribution and mean of the Petermann factor for given I’
The unconditional distribution of the Petermann factor 1s found by folding the condi-
tional distribution with the distribution of I', but will not be considered here

31 Decay rate of the lasing mode

The amplification with rate 1/t, 15 assumed to be effective over a window €, =L4
containing many modes The lasing mode 1s the mode within this window that has the
smallest decay rate I" For such small decay rates we can use first-order perturbation
theory to obtain the decay rate of mode g,

Iy =2nfa,|? (32)

The »* distribution (3 1) of the squared modult |x,|* translates nto a »? distribution
of the decay rates

Py oc T3=B2 exp (-%) (33)
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Ignoting correlations, we may obtain the decay rate of the lasing mode by considering
the L decay rates as independent random variables diawn from the distribution P(I)
The distribution of the smallest among the L decay rates 1s then given by

r L—1

P (I)y=LP(I') {1 —/ dF’P(F’)J (34)
0

For small rates I" we can msert distribution (3 3) and obtain
1 Lrl ar \1!
Pl ~ — - fl— =1 >
o o) ow
Lnl’
PAF)%exp(—m), f=2 (3 5b)

Here erf(x) = 2n~ 2 [fdyexp(—y?) 1s the error function The decay 1ate of
the lasmng mode decreases with increasing width of the amplification window as
I~ wA(Qy/4) 2P < wa

32 Fust-oider perturbation theory

If the opening 1s much smaller than a wavelength, then a perturbation theory m o
seems a natural starting pomt We assign the index / to the lasing mode, and write
the perturbed right eigenfunction [/)’ =3~ dy|q) and the perturbed left eigenfunction
ay'=> g e4{g|, m terms of the eigenfunctions of H The coeflicients are d, = U,/Uy;
and e, = U, ,;I /Uy, 1e, we do not normalize the pertubed eigenfunctions but rather
choose d;=¢; =1

To leadmg order the lasing mode remains at Q = w; and has width

I =2n|oy)? (3 6)
The coeflicients of the wave function are
T, ok oL 0y
dy=1—1- = 1—1 37
a)q — Wy Wy — wy

The Petermann factor of the lasmg mode follows from Eq (2 18),
A+ |dy )1+ 37, legl?)
|14 2> 0u daeql?
M1+ Jdy — el (38)
q#1

where we lmearized with tespect to I' because the lasing mode 1s close to the real
axis From Eq (3 7) one finds

g |
K=1+Qnrley)?) —L—
; (wr — Wy )?
We seek the distubution P(K) and the aveiage (K)o r of K for a given value of Q
and I

(39)
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For =1, the probability to find an eigenvalue at w, given that theie 1s an eigenvalue
at w; vamshes limearly for small |w, — w,|, as a consequence of eigenvalue repulsion
constramed by time-1eversal symmetry Since expression (3 9) for K diverges quadrat-
wcally for small |, — |, we conclude that (K)o r does not exist i perturbation
theory ' This severely complicates the problem
33 Summation of the perturbation series

To obtamn a finite answer for the average Petermann factor we need to go beyond
perturbation theory By a complete summation of the perturbation series we will m this
section obtain results that are valid for all values 7'<1 of the transmission probability
Our starting pomnt ate the exact relations

dyz) = wydy — 1Moy Z adp, (3 10a)
v

egz1 = Wyey — 1Mol Z Upep (3 10b)
p

between the complex eigenvalues z, of # and the real eigenvalues w, of 4 Distin-
guishing between ¢ =/ and ¢ s [, we obtain thiee recursion telations

z = — 17t|OC/|2 — 1700y Z oc;dq , (3 11a)
g#!
. TCt‘/q * *
1d, = el Ky dand, | (3 11b)
p#
o)
1eq:-Z/—_%q oc,—i—;ape,, (3 11c)

We now use the fact that z; 1s the eigenvalue closest to the real axis We may there-
fore assume that z; 1s close to the unperturbed value w; and replace the denominator
z1—wy; m Eq (3 11c) by w; — w, That decouples the recursion 1elations, which may
then be solved in closed form

z; = o — oy P (1 4+ md) ! (3 12a)

dy = —2% (1 4 md) !, (3 12b)
W) — Gy
ot o

ey = —2L(1 + 1mA)"! (3 12¢)
W — Wy

' For broken time-reversal symmelry thete 1s no divergence We can use thc known two-point conelation
function R(wy, wy) of the Gaussian unitary ensemble to obtain (K)p; =1+ %nTF/A for T<1



H Schomcrus ¢t al | Physica A 278 (2000) 469496 477

We have defined

A= o (0 — o)™ (313)
g#!

The decay 1ate of the lasing mode 1s

I'=-2Imz =2n|o|*(1 + ©?4%)"" (3 14)
From Eq (3 8) we find
2l B
K=1+2"—_"—__ 315
+ A 14 m242”° (315
with
B=4Y" o (01— wy)™ (3 16)
q#l

The problem 1s now reduced to a calculation of the jomnt probability distribution
P(A4,B) This problem 1s closely 1elated to the level curvature ptoblem of random-matrix
theory [31-33] The calculation 1s presented in Appendix A The result 1s

B2 . 2 42 2\f 2 42
i 8 (m°A” +w*) pw [ A
ras=5 (o) o oo [ (T ) G170

34 Piobability distiibution of the Petermann factor

From Eqs (31), (314), (315), and (317) we can compute the probability
distribution

o ol B
P(K) = (Z) <5 <K R n2A2> z> , (3 184)
7 =5(Q — w))o <r—~2ﬂ°‘—"i) (3 18b)
! 1+ m24z )

of K at fixed I' and Q by averaging ove1 |a|?, 4, and B In prnciple one should also
requite that the decay rates of modes ¢ # [ aie bigger than I', but this extra condition
becomes 1rtelevant for I' — 0 The average of Z over |o/]? with Eq (3 1) yiclds a
factor (1 + w24%)"2 (Only the behavior of P(|oy|*) for small |oy|? matters, because
we concentiate on the lasing mode ) After mtegration over B the disttuibution can be
expressed as a ratio of mtegials over 4,

Qry Aw (K — 14\ TP
3B T( wl’ )

oo dA(1+n2A2/w2)ﬁ Browl (1 + m24%/w?)
/0 (1 + A+ {‘(K—l)A(HnZAZ)

I~ 2 42\B/2 -1
« g rA) (319)
0 (1 +n2A2/w2)[’ﬁ/2

P(K)=
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15 T ) T I T

Fig 2 Probability distribution of the 1escaled Petetmann factor i = (K — 1)4/I'T for T=1 and T <1, n
the presence of time-reversal symmetry The solid curves follow fiom Eqgs (3 20) (with f=1) and (3 2la)
The data pomts follow from a numetical simulation of the random-matrix model The nset shows the 1esults
(320) (with f=2) and (3 21b) for broken time-reversal symmetry

We introduce the rescaled Petermann factor x = (K — 1)4/I'T. A simple result for
P(ic) follows for T =1,

b i
P(x) = EPEEET [—?} , (3.20)
and for 7 < 1,
T T TC
P =——11 —_ - — '
() 122 ( + 2IC> exXp [ 4ICJ s /3 1, (3.21a)
T 2n n? T
W 3. T 32 = =2. i
PO 8v/2ic <1 T 31c2> exp { 27(:\ > P (3.21b)

As shown in Fig. 2, the distributions are very broad and asymmetric, with a long tail
towards large «.

To check our analytical results we have also done a numerical simulation of the
random-matrix model, generating a large number of random matrices # and computing
K from Eq. (2.18). As one can see from Fig. 2, the agreement with the theoretical
predictions is flawless.
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Fig 3 Aveiage of the 1escaled Petermann factor « as a function of tiansmussion probability 7 The solid
cutve 1s the tesult (3 22) mn the presence of time 1eveisal symmetry, the dashed curve 1s the 1esult (324)
for broken time 1evaisal symmetty For small 7 the solid cutve diverges oc In7 ! while the dashed curve
has the finite limit of 7/3 For 7 =1 both cuves 1cach the valuc 2m/3

35 Mean Petermann factoi

The distitbution (3 19) gives for preserved time-revetsal symmetry (f=1) the mean
Petermann factot

G%GM
2z
(Kyagr=1-—== = (322)

A3
chw

n terms of the 1atio of two Meyjer G-functions We have plotted the result in Fig 3,
as a function of 7 = 4w(l + w)~?

It 1s remarkable that the aveiage K depends non-analytically on T, and hence on
the atea of the opening (The tiansmussion probability 7' 1s related to the area .7 of
the openmng by T ~ «7°/A% for T < 1 [34] ) For T < 1, the average appioaches the
form

w16
K =14 ="TIn— 323
(Khar=1+c—In (323)

The most piobable (or modal) value of X — 1 ~ TT'/A 1s parametiically smaller than
the mean value (3 23) for 7 < 1 The non-analyticity 1esults from the relatively weak
eigenvalue repulsion 1n the piesence of time-reversal symmetry If time-reversal sym-
metry 18 broken, then the stronger quadiatic 1epulsion 1s sufficient to overcome the
w2 divergence of perturbation theory (3 9) and the average K becomes an analytic
function of 7 For this case, we find fiom Eq (3 19) the mean Petermann factor

. I A4nw
A3(1+w?)’
shown dashed n Fig 3

(K)o r= (3 24)
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4. Many scattering channels

For arbitrary number of scattering channels N the coupling matux W 1s an
M x N rectangular matiix The square matrix T W has N eigenvalues (MA/m)w,
The transmussion coefficients of the eigenchannels ate

4w,
(1 +w,)?

A single hole of area .7 > J? (at wavelength A) corresponds to N ~ 2m.e//A2 fully
transmitted scattering channels, with all 7;, =w, = 1 the same

As 1n the single-channel case, we first determine the distribution of the decay rate I’
of the lasing mode This decay rate 1s smaller than the typical decay rate I'y=7TNA/2x
of the non-lasing modes Then we calculate the mean Petermann factor (K) for given
I' and nvestigate 1ts behavior for the atypically small decay rates of the lasmg mode

T, = 41

41 Decay rate of the lasing mode

The distribution of decay rates P(I') has been calculated by Fyodoiov and Sommers
For broken time-reversal symmetry the result 1s [17,18]

T i T
P =L (—r)ff(*r), 42
=27 (5r) 7 (2 (422)
1 A
F —_ dxe™ 1 42b
=5 [ dxe I, (42b)
e al
T =5 [ dee V[l +). (4 2¢)
=1 n=1
where ¢, = —1 4+ 2/T, For identical g, = g the two functions %, and Z, simplify to
1
Fi(y) = yV eV 43
=gy e (430)
l N d" (sinhy
)= (1Y ( )gN—"cT; ( ) (43b)
n=0 " Y Y
and a convenient form of the distribution function 1s
A NT/Ty .
Py = ———/ dxx"e™ 44
2n2(N — ' ya—ryrr,

The behavior of P(I") for various numbers N of fully transmitted (7 = 1) scattering
channels 1s 1illustrated n Fig 4

The tesult for preserved time-reversal symmetry 1s a bit more mvolved [19] Fortu-
nately, we can draw all important conclusions from the results for broken time-reversal
symmetry, on which we will concentrate here
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N=12
o 04
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=
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02 Ned
0
0 1 2 3 4 5
/T,

Fig 4 Decay 1ate distribution P(I") of a chaotic cavity with an opening that suppoits N—2 4 6 8 10 12 ful
ly tiansmutted scattering channels Computed from Eq (4 2) for the case of bioken tume 1cversal symmetry

Foi large &, the distribution P(I") becomes non-zero only in the mterval Iy < T <

I'o/(1 — T), where 1t 15 equal to [35,36]
P(F):TI;%, Fo< I <Tp/(1=T) “45)

This Imut 1s f-independent The smallest decay rate I'y coriesponds to the inverse
mean dwell time 1n the cavity

We aie interested 1 the “good cavity” regime, whete the typical decay rate Iy
18 small compaied to the amplification bandwidth @, From I'g = TNA/2w 1t follows
that the number L ~ Q,/4 of amplified modes 1s then much larger than TN In this
tegime the decay 1ate of the lasing mode (the smallest among the L decay rates n the
fiequency window Q) drops below I'y; The asymptotic 1esult (4 5) cannot be used
m this case, since 1t does not desciibe accurately the taill I' < I'g Going back to the
exact result (4 2) we find for the tail of the distribution the expression
P(D) =~ [+ af()] + OV 2), (46)
where we have defined u= \/]W(F /I'o—1) The distribution P, (I") of the lasing mode
follows fiom P(I") by means of Eq (3 4) We find that 1t has a pronounced maximum
at a value uy,y determined by

exp(ﬁuimx) _ L— 1 \/E(g + 1)
[1+ef(umax)* V2N 4

For L > /N (and hence also m the good cavity regime) we find up, ~ —viIn L <0,
and the deviation of I" fiom I'q 1s of order AV/N < I'y (as long as L <e”)

(47)

42 Mean Petermann factor

Eigenfunction correlations of non-Hermitian operators have been studied 1n
Refs [20 22] The eigenfunction autocorielator consideied 1n these studies 1s directly
connected to the Petermann factor K Ref [20] provides a convenient expression of
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the mean Petermann factor,

2
€
Mnr{K = 1 48
m{K)a rp(w) = lm << (0 — A" — yﬂ)+p2) > 48)
In Ref [20] this average has been calculated pertwibatively for N > 1, with the result
r (1 -1mr

K ~ —N —1 -1 4

Klar = <F 0 ) ( I'o ) “9

for I'o < I <1Iy/(1 —7T) This result 15 at the same level of appioximation as
Eq (45) for the distribution of the decay rates, 1e, 1t does not describe the range
I' < I'y of atypically small decay rates Since that 1s precisely the range that we need
for the Petermann factoi, we cannot use the existing perturbative iesults We have
calculated the mean Petermann factor non-perturbatively for any I' and N, assuming
broken time-reversal symmetry The derivation 1s given in Appendix B The final result
for the mean Petermann factor 15

B 28(rl/A)
Krar =14 N Fa) (4 102)
Y 0
S =— | dy A7), 4 10b
== [ &/ A0 (4 100)

with & and %, given 1n Eq (42) For 1dentical g, = g we can use Eq (4 3) and
obtain by successive ntegrations by parts
NI

(=" ,d _gy 4 [sinhy
S)=> Y e (411)
e nt 7 dy dy \ »

For N=1 and I < 4 we recover the single-channel result (3 24) of the previous section
In what follows we will continue to assume for simphlicity that all g,’s are equal to a
common value ¢

The large-N behavior can be conveniently studied from the expiession

»(g+1)

1 - —X
S(y):—m/y(g_l) dxx™ e x — (g = Dyllx — (g + D],

(412)

because the integral permits a saddle-pomnt approximation For I' > Iy we tecover
Eq (49), but now we can also study the precise behavior of the mean Petermann
factor for I' < Iy, hence also for decay rates relevant for the lasing mode The results
will again be presented 1n terms of the rescaled parameter u = \/JW(F /Ty — 1) We
expand the integrands in Eqs (4 4) and (4 12) around the saddle pont at x=N (which
comcides with the upper mtegration himit at I' = I'y) and keep the first non-Gaussian
correction This yields

(K)o r=TV2N[F(u)+u]l — T(g— 1)u?
+TF(u) [(3 — g)u+ $u’ + 3(1 + ) F(u)]
+ON"'?), (4 13a)
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exp (—u?)
VTl + eif(u)]
For I' =14 (u=0) this simplifies to

[2N 4
(K)ar p0:T< 7%—%) (4 14)

We see that the mean Petetmann factor vaiies on the same scale of I' as the
decay-tate distubution P(I'), Eq (4 6) However, while P(I") decays exponentially
for u € — 1, the mean Petermann factor displays an algebiaic tail

uv2

Foi an amplfication window Q, = LA with L > /N we found m Section 4 1 that
the decay rate I' of the lasing mode drops below Iy (the 1escaled parameter wuy,,x ~
—+/In L) Stll, the mean Petermann factor

N
(K)or~1\/ 17 (4 16)

1emains patametrically larger than unity (as long as L <+v/Ne")

We now compaie our analytical findings with the 1esults of numerical simulations
We genetated a large number of tandom matiices #° with dimension M =120 (M =200)
for N =2,4,6,8 (N =10,12) fully transmutted scattering channels (¢g=7=1) Fig 5
shows the mean K at given I” We find excellent agreement with our analytical result
(410)

The behavior (K) ~ /N at I' = Iy 1s shown m Fig 6 The mset depicts the
distitbution of K at I' = Iy for N =10, which only can be accessed numernically We
see that the mean Petermann factor 1s somewhat laiger than the most pirobable (o1
modal) value

F(u) = (4 13b)

(K)o r= +1=T+0w ?) (4 15)

43 Pieserved tume-teversal symmetty

In the dervation of the mean Petetmann factor for bioken time-reveisal symmetry
Appendix B) 1t turned out that the final result 1s formally connected to the expiession
for the decay-rate distuibutton P(I7), m as much as both expressions are built from
the factots 7 (1volving non-compact bosonic degrees of fieedom of the saddle-pomt
manifold) and %, (involving compact bosonic degiees of fieedom of that manifold)
We tried to translate this description to the case of preserved time-reversal symmetry
(f=1), by operating in the same way on the compact and non-compact factois of the
expression of Ref [19], but could obtain a satisfactory 1esult only for N =2,

(K) = 1 I'(I' = I'o)exp(I'/To) + I's simh(I'/T)
T 20, Icosh(I'/Tg) — I'osmh(I'/T"y)

In Fig 7 this expression 18 compated to the result of a numerical simulation

(417)
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Fig 5 Aveiage Petermann factor (K} as 2 function of the decay 1ate T for different values A of fully
transmtied scattening channels The solid curves are the analytical result (4 10) the data pomts ate obtamed
by & numerical simulation Time-teversal symmetry 1s bioken
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Fig 6 Avetage of the Petermann factor K at I’ — Fg as tunction of the number v of fully transmutted
scattering channels The analytical result (4 10} tor broken time reversal symmetry (full cunve) 15 compated
with the result of a numetial simulation (open circles for broken time reversal symmetty fifled cncles
for preserved ume reversal symmetry) The dashed lmne 1s the lasge N tesult {4 14) The mset shows the
distisbution of K at I — Iy tor ¥ = 10
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r'/T,

Fig 7 Theoretical expectation (4 17) (full curve) and the 1csult of a numetical simulation (data points) for
the average Petermann factot K 1m the presence of time-eversal symmetry, as a function of the decay rate
I' for 2 fully ttansmitted scattering channels.

T T []
9 N:lz.’,—
o 10
A= .'.08'
[ ]

o~ .... ol
5] e _©® 496

~ 5 [ ] °
e o .
[ ....0.4~
3L o ® ‘l
e ?®
11k St o=

1.-.'. . 1

T/T,

Fig 8 Results of a numetical sumulation of the aveiage Peteimann factor (K) m the presence of time-1eversal
symmetry, as a function of the decay ratc I" for N fully tiansmutted scattermg channels

For larger numbers of channels we can draw our conclusions from the numerical
results that are presented in Fig. 8. Interestingly enough the data points for N channels
are close to the results for broken time-reversal symmetry with N/2 channels, when
the decay rate is given in units of I'g. This is illustrated for N = 8 in Fig. 9. Such
a rule of thumb (motivated by the number of real degrees of freedom that enter the
non-Hermitian part oft#”) was already known for the decay rate distribution (inset in
Fig. 9). Hence the Petermann factor for the lasing mode should agan display a sub-
linear growth with increasing channel number N. This expectation is indeed confirmed
by the numerical simulations, see the filled circles in Fig. 6.
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(K)

r/T,

Fig 9 Average Petermann factor (K) foo N =4, =2 Jopen circles 1esult of a numerical simulation,
curve Eq (410)} and for N =8, =1 (filled circles: result of a numetical simulation) The patameter Iy
equals NA/2m 1 both cases, so 1t 1s twice as laige for f=2 as for f=1 The nset depicts the probability
distitbution of I

5. Discussion

The Petermann factor X enters the fundamental lower limit of the laser line width
due to vacuum fluctuations and is a measure of the non-orthogonality of cavity modes.
We related the Petermann factor to the residue of the scattering-matrix pole that pertains
to the lasmng mode and computed statistical properties of K in an ensemble of chaotic
cavities. The technical complications that had to be overcome arise from the fact that
laser action selects a mode which has a small decay rate I', and hence belongs to a
pole that lies anomalously close to the real axis. Parametrically large Petermann factors
oc VN arise when the number NV of scattering channels is large. For a single scatter-
ing channel the mean Petermann factor depends non-analytically on the transmission
probability 7.

The quantity K is also of fundamental significance in the general theory of scat-
tering resonances, where it enters the width-to-height relation of resonance peaks and
determines the scattering strength of a quasi-bound state with given decay rate I". If
we write the scattering matrix (2.6) in the form

Snm = 511111 + 0’,,0';"(60 - Q-+ iF/Z)_l ’ (51)

then the scattering strengths o,, o), are related to I by a sum rule. For resonances
close to the real axis (I" <€ A4) the relation is

> lowon, P =17 (52)

n,m

For poles deeper in the complex plane, however, the sum rule has to be replaced by

> ooy, P =KI?, K>1. (5.3)

n,m
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The method of filter diagonalization (or harmonic mveision) that was used in Ref [12]
to obtain for the H;" molecular ion the location of poles even deep m the complex
plane can also be employed to determime the corresponding residues, and hence K

The patameter K defined m Eq (2 18) appears as a measute of mode non-
orthogonality also 1n problems outside of scattering theory These pioblems involve
non-Hermitian operators that are not of the form (2 3) [21,22] Many applications
share the common feature that they can be addressed statistically by an ensemble de-
scription, and that the physically relevant modes lie at the boundary of the complex
eigenvalue spectrum The non-perturbative statistical methods reported n this paper
should prove useful in the investigation of some of these problems as well
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Appendix A. Joint distribution of 4 and B

We calculate the joint distribution P(4,B) [Eq (3 17)] of the quantities A
[Eq (313)] and B [Eq (3 16)] by generalizing the theory of Ref [33] We give
the lasing mode w; the new index M and assume that 1t lies at the center of the
semicucle (2 2), wy =0 Other choices just 1enormalize the mean modal spacing A4,
which we can set to 4 =1 The quantities 4 and B are then of the form

ol o
A:Z‘gr B:Z*O)T (Al)

m—1 m—1 m

The jont piobability distribution of 4 and B,
Jot |
2

M—1 |am|2 M—1
P(A,B):<5<A—Zw—m>5<8—z >> (A2)

m—1 -1

18 obtaned by averaging over the variables {|u,|%, w,} The quantities |«,|?> are nde-
pendent numbers with probability distribution (3 1) The jomt probability distribution
of the eigenfrequencies {w,,} of the closed cavity 1s the eigenvalue distribution of the
Gaussian ensembles (2 1) of random-matrix theory,

P{wy}) o H lw, — ,|P exp {—% w,%] (A 3)
k

1<y

QOur choice 4 =1 tianslates mnto = M/n
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The jomt probability distribution of the eigenvalues {w,,} (m=1, ,M —1)1s found
by setting wy =0 1n Eq (A 3) It factorizes mto the eigenvalue distuibution of M — 1
dimensional Gaussian matrices A’ [again distributed according to Eq (2 1)], and the
term [} o,/ = |det 7’|/

In the first step of owt calculation, we use the Fourter repiesentation of the d-functions
m Eq (A 2) and write

P(4,B) oc </ dx/ dyendis H / dfotn > P(Jotn[*)

m=1

X exp [—Uc Z | | Z 12 ]> (A4)

m 1 m—1 ’ n

where the average refers to the variables {w,,} The mtegrals over |«,[> can be per-
formed, resulting in

det H'?#
P(A4,B) o /dx/dye‘XA+‘yB< © ),2> ; (A5)
det[H”? + 2iw(xH' + y)/n2B1P

where the average 1s now over the Gaussian ensemble of H’-matiices It 1s our goal to
relate this average to autocorrelators of the seculair polynomial of Gaussian distributed
random matrices, given in Refs [37,38]

The determmant 1 the denominator can be expressed as a Gaussian integral,

P(A,B)oc/dx/dye“"*lyg/dz/dH’detH’Zﬁ

4/))_712 /2_ZT /2 ! A6
X exp 4MtrH H /f 2(H + ) (A6)

where the M — 1 dumensional vector z 1s real (complex) for f =1 (2) Since our
original expression did only depend on the eigenvalues of H’, the foimulation above
1s 1nvariant under orthogonal (umtary) transformations of H’, and we can choose a
basis mn which z poimnts mto the direction of the last basis vector (index M — 1) Let
us denote the Hamiltonman 1n the block form
V h
H' = A7
<h1 61> A7
Here V' 15 a (M —2) x (M — 2) matrix, g a number, and h a (M — 2) dimensional
vector In this notation,

P(4,B) o /dx/dye”‘“‘y‘?/dz/dg/dV/dh

xdet[V*P(g —hty h)*

X exp {~%((12 +2|hf? +tr Vz)}

xexp [mz (gz +hp 2 2<xq+y>)} (A8)
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The integrals over x and y give o-functions,

P(4,B) oc /dz/dg/dV/ dhdet[V*#(g — hfy—'h)*
ﬁ[))_n_z 2 2 2N ()22 2
xexp | —7r (9" + 2"+ V) — 279" + [h])

x8(4 — gB)S(B — 2w|z|*/pn?) (A.9)

We then mtegrate over g and z,

28
P(4,B) oc / dV dhdet [Vﬂf (B hy- 1h> 13(/}/2)(1‘/’_”_2

2
X exp [——(211112 +trV?) — /3an <B2 + |1|2>} (A.10)

We already anticipated B > 1/M and omutted 1n the exponent a term —fBn24?/4MB?
The integial over & can be mterpreted as an average over Gaussian random variables
with variance

1 1 w w
R=(h)e—o— 1——). All
(Il 2 Bjw+ 1/M TEZB( MB ( )

For the stochastic interpretation one also has to supply the normalization constants
proportional to

M ~2)/2 Bw
pA=2) _ <i> did Al2
2B P |72 (A 12)
The mtegral over V 1s another Gaussian average, and thus
2A2
P(4,B) o QB2 exp | - BW (14T , (A 13a)
2B w?

28
Op = <det [Vﬂf (B Ry 111) D : (A 13b)

After averaging over h, one has now to consider for =1
0 = <det {VZ + RV VY 2 v ]D (A.14)

where only the even terms m ¥ have been kept. The ratio of coefficients in this
polynomual 1n 4/B can be calculated from the autocorrelator [38]

(det(V + o)V + o))

Gi(w, o) = {det )
3 d smmnx

= ——— AlS

mxdx X |, ( )




490 H. Schomerus et al. | Physica A 278 (2000) 469-496

of the secular polynomial of Gaussian distributed real matrices V. This is achieved
by expressing the products of traces and determinants through secular coefficients, and
these then as derivatives of the secular determinant,

(detV?(ry=1y% &2 ,
Qi) dwdw @)
0? n?
= ~WG1(60,0) :?, (A16a)
=0
2(det V(tr ¥—2)) 0?
eI 4=—G1(,0) - (A.16b)

[We used the translational invariance of G(w,®’).] Egs. (A.11) and (A.15) yield

A2 W2

For f =2, the average over h yields the expression
A% A?
O o« ﬁ+qlh4ﬁ + gk, (A.182)
g1 = 6(det VA[(tr V=Y + 10 V2], (A.18b)
g2 = (det V(e VY + 6tr V2 tr V1>
+8tr Ve VR 6tr VT 3(tr V)2 (A.18¢)

The coeflicients can now be computed from the four-point correlator of the Gaussian
unitary ensemble [37]:
Gz(wlaa)2) CO3,(U4)

(det(V + w; )(V + 602)(V -+ CO3)(V -+ CL)4)>
(det V'4)

3 cosm(w; + w; — W3 — ®q)

21t | (w1 — w3) (w1 — o402 — 3) (@2 — ©4)

cosm(wy + w3 — Wy — w4)
(w1 — 2 )(w1 — wa ) (w3 — ) (W3 — 4)

cosm(w; + wg — w3 — W)

, A.19a
(01 — 3) (w1 — w2 ) (g — W3)(ws — 02) ( )
3 .
G2(®,0,0,0) = —— (sintw — mw cos tw) (A.19b)
T

3
Gy(w,®,0,0) = W(cos 2nw — 1+ 2mtw?) . (A.19¢)
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In this case

2

q1 = = [6G2(w, ®,0,0) — 18G,(w,0,0,0)]
awz w=0
=2, (A.20a)
54
= —15 0,0
92 5@4[10G2(w’ ®,0,0) G2(,0,0,0)] o
=n, (A.20b)
which gives
0, o« OF . (A21)

Collecting results we obtain Eq. (3.17), where we also included the normalization
constant.

Appendix B. Derivation of Eq. (4.10) for the mean Petermann factor

The computation of the mean Petermann factor from expression (4.8) is facilitated
by the fact that it can be obtained from the same generating function [18,39],

det[(w — # )" — A1) — (ur — ie)(uz2 — is)]> B
det[(w — ) w* — Y — (uy +1e)y +1ie)]/ ° (B.1)

Y(wi, Wy, ur,U,8) = <

as the distribution function

& &
= lim (t B.2
plo)= lim < Yo — Y w — )+ & (0 — )" — A1) + 82> (B-2)

of poles in the complex plane. (The distribution of poles is related to the distribution
of decay rates by P(I") = %Ap(a))|w:g,ir/2.) The relations are

: s 1 & 1 &
np(w)= lim { —— + +

c—0* 6w2(3w§‘ E a(l)zaCOT E 6601660;
X \I](a)law%o:o:g)'wl:wz:w > (B3)
Mn(K =—Ilm —~—-—VY , U1, U2, B4
TE< >Q,1“p((1)) l?g‘l(;l’ 4 6u( 6u2 (w,w 1 8) =y =0 ( )

Most of the analysis runs therefore in parallel with the calculation of p(w) in
Ref. [18]. We restrict ourselves to the case of broken time-reversal symmetry, where
the algebra is less involved.
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The ratio of determimants m Eq (B 1) can be written as a superdetermuant, which
m tutn can be expiessed as a Gaussian mtegral over bosonic and fermionic vaiables

lI’(a),co,a,ul,uz):(—I)M<Sdet_1(,4)> :(_1)/"1 </d‘l‘ f/dlp el‘l'*A\y>

(B5)
The matrix 4 18
[ 4 0 1€ + uy 0
S = 0 w—=H 0 —1& + vy
T = 0 —w* + 1 0
0 —1& + up 0 w* — A1
- I A
:(Q—H)®L+1<TEWTW— —2~> ® 6,L
—16® 6,L + 06,.L (B 6)

The vector ¥ =V, & ¥, d ¥Y; & ¥4 15 a 4M-dimensional supervector consisting
of two M-dmensional bosonic entries W, with « =1 and 3, supplemented by two
M -dimensional fermiomc entries with ¢ =2 and 4 We encounter the four-dimensional
supermatrices I = diag(1,1,—1,1), & = diag(—uy,u1, —uz,u3), and &, = 0, ® 15, where
o, ate the usual Pauli matrices [eg &, = diag(1,1,—1,—1)]

The hinear appearance of H in the exponent of Eq (B 5) facilitates the ensemble
average with the distribution function (2 1), since the integial over the mdependent
components of H factorizes, and each single integral 1s Gaussian The result 1s

{exp[ — 1WTH ® L¥]) = exp {—MTMSH(LAIQ)Z} , (B 7a)

A

1
Ryg= ¥, ¥ (B 7b)

The order of R in the exponent is 1educed from quadratic to lmear by a Hubbaid—
Stratonovich transformation, based on the identity

5 -2
exp {_% Str(ljﬁ)z} = /dS’ exp [—M Str(% — ILLS'LA]é)jl (B3)

The ntegral over ¥ and ¥is again Gaussian and results

a2
av:/dﬁexp [—MStr(% +ln§>} Sdet™!(1 + C), (B 9a)
; r R o) 1
C={Q+1{7W'W - =] ®6F, — 160, + UFy - (B9b)
2 uS

One now can write Sdet™ (1 + €)= exp[ — StrIn(1 + C)] and expand the logarithm
to first order in I', ¢, and the source tetm J, 1 addition we set =0 and pass from the
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genetating function to the mean Petermann factor according to Eq (B 4) This gives

1 n? §
Ma(K)g rp(w) = iR /dS’exp {—MStr(E + In§>

!
+1§Str@§” +1%sn 6.8 }

N
xtip6:§ 1368 [[ Sdet™ (Mg + w6 8T) (B 10)
n—1
The traces t1,, 4 = A, +A;, opeiate only on the indicated subspaces We miroduced the
1escaled vanables y = —2nImw/4 = nl'/A and ¢ = 2ne/4 In what follows we will
wiite ¢ nstead of &
The condition M > 1 justifies a saddle-pomnt appioximation The mamn contiibution
to the pieceding mtegral comes from ponts for which the first part of the exponent 1s
muumal, that i1s from the solutions of

o, .
s+8=0 & § =1 (B 11)

With § =10, the solutions fulfill Qz =1 As mbherited fiom the defimtion of R m
Eq (B7b), OL 1s a Hermitian matrix and Q = T_lelagf can be diagonalized by a
pseudounitary supermatix 7' € U(1,1/2) (these matrices fulfill it =L) The laigest
manifold which 1espects the definiteness 1equirements on O 1s obtamed by the choice

leqg = ¢, Howevel, rotations m the block « = 1,3 and i the block o= 2,4 leave Q

mvariant, the saddle-pomnt manifold 1s hence covered exactly once if we take the T
mattices from the coset space U(1,1/2)/U(1/1) x U(1/1)
A convenient parametetization of the coset space has been given by Efetov [40],

- u-t oo 0 %dlag(()l,l(iz) U o0
T‘( 0 V—‘>6Xp<;dlag(01,102) 0 o v )

(B 12a)
¢? 0 1+ pp*/2 0
= B 12b
U ( 0 el(/)z) ( ,0* 1+p*p/2 H ( )
1—00"/2 10
= B 12
d ( 10" 1— o*a/2> ’ (B 12¢)
with bosonic vatiables 0y, 0;, ¢;, and ¢, and feimionic vauables p, p*, ¢, and ¢*
We inttoduce A; =cosh0; and A; = cos (), In this parameterization
Str6,0 =2(4 — Ja), (B 13a)

St1 6,0 = —smh 0, [(1 + pp*/2)(1 — 60*/2) — 1p57]
+smh 0,7 (1 + pp*/2)(1 — 00*/2) — 10p*]
+15m 0, [(1 + p* p/2)(1 — 6%6/2) — 19" 7]
—1sm e [(1 4 p*p/2)(1 — 6%6/2) — 10%p] , (B 13b)
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tr1p 0,Q = —sinh 0, [(1 + pp*/2)(1 — 66*/2) — i6" p]
—isin 0,'2[(1 + p*p/2)(1 — 6*6/2) — ip*], (B.13¢)

trag 0,0 =sinh 0,6 "Y' [(1 + pp*/2)(1 — 66™/2) — ip* o]

+isin O, 2 [(1 4 p*p/2)(1 — 6% 6/2) — ipc™], (B.13d)
A w2
Sdet™' [ + w,6.0] = 3’ :[/1? . (B.13¢)
The integration measure is
A dirdiyd dp* dp dic™ di
4 — Yds $1d¢rdp* dpdic™ dic (B.14)

Q2 — 12 )

In order to integrate over the fermionic variables we have to expand in these
quantities and only keep the term in which all four variables appear linearly. The
angle ¢, appears in the pre-exponential factor as well as in the exponential term
exp(—esin 0, sin ¢p,). We expand the exponential and integrate over ¢,. Only terms of
order ¢"sinh™ 8, with n<m survive the limit ¢ — 0. We discard all other terms and

obtain
2

A
—4F<K>Q,rp(w)

oo 1 1 2n d(/)1
=lim dA dly ————— —D
3—»0/1 ! [1 2 (/11 — 12)2 /0 2r

N
n A’
xexp[ — i/ A2 — 1sin ¢y + y(A — /12)]H In + 72 (B.15a)
n=1

Gn ‘5‘}»1 ’

D = —igsinh 0 sin ¢1(2sin” 0, -+ 2sinh” 6)
2
+ 8Z—sinh2 0, [sinh® 0, cos? 1 — (3cos? ¢y + 5sin® ¢y )sin? 0;]

+i¢’ sinh® 0; sin ¢y sin® 0o(— % sin® ¢ — 12 cos? ;)
+ &% sinh* 0; sin® ¢y sin® 0, . (B.15b)

It is convenient to bring the factor D into a form which involves ¢; only in the
combination z; = —isinh 0, sin ¢|, because such terms can be expressed as derivatives
with respect to € of the exponential exp(ez; ) appearing in Eq. (B.15a). This goal can be
achieved by integrating by parts all terms that involve cos ¢;. Effectively this amounts
to the substitutions ¢ sinh 6; sin ¢ cos? ¢; — i(sin? ¢, —cos? ¢, ) and sinh 0; cos® p; —
isin ¢, resulting in

D = ez)( sin® 0, + 2sinh® 0)) + L&%z} sin® 0, — L&’z sin 0, . (B.16)

Mathematically these expressions are quite similar to those obtained for the decay-rate
distribution in Ref. [18]. By a simple substitution rule that relates to each other the
terms of different order in ¢, we now rewrite D in a way that allows to make direct
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contact to Ref [18], yielding a result in tetms of the two functions %, given
Eq (42) As n Ref [18] we express the factors (g, + A1)~ as an mtegial of expo-
nential functions

l (o)
g T /l] = / dSn eXp[ "' Sn(gn + il )] (B 17)
n 0

We also write (41 — 4)* = [, dxxexp[ —a(A — 4)] Then the mtegiations over 0;
and ¢, can be performed, and ¢ only appears in a facto:

e,y )= ZPL N g (B 18)

with ' =y —x — s, The limiting value for ¢ — 0 of the derivatives
Y=y 0 g

1
a gh

amounts m Eq (B 16) to the substitutions &
D =2ez(J3 — 22) As a tesult, we obtain

&' —B(6,y) = C,8(y), Ci=-Cy=Cs2=-2, (B 19)

73 — 26z) and ¢*z7 — —¢z(, which gives

Y
| 20| k= twray + 2narva) (B 20)
1 o [ : A
L) =—Ttmew [ diy [ d) -T2
D=—zimez | "/,1 T

g/1+j-2
gl1+)l ’

N
xJo(ey/ 2 = Dexply(h = )] [ (B 21)

n—1
where Jp 1s a Bessel function By compaiing expiessions with Ref [18], we recognize
that Io(y) = 71(3)F2(») = (4/0)P(I" = Ay/n) [ef Eq (42)], while

! / a /
W) == [ & RO 700 (822)
0 Y

This concludes the denivatton of the final 1esult (4 10)
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