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The interfacial tension of the planar interface and rigidity constants are determined for a simple
liquid—vapor interface by means of a lattice-gas model. They are compared with results from the
van der Waals model and from an analytical expansion around the critical point. The three
approaches are in agreement in the regions where these theories ap@@00GAmerican Institute

of Physics[S0021-960600)51106-4

I. INTRODUCTION II. THERMODYNAMICS OF CURVED INTERFACES

The curvature of interfaces determines the physics of [N @ phase-separated system, the interface between the
many systems to a large extent. This was already realized jhases is usually not infinitely sharp, owing to the thermal
terms in the thermodynamic descriptibfiive decades later, @ two-phase system, the system is split up in two bulk phases
Tolman addressed this issue again and derived from thg andp divided by an infinitely thin interface at an arbitrary
Gibbs adsorption equation a first-order curvature correctioff©SitionRs. All bulk values are extrapolated up to the inter-
to the interfacial tension of a simple liquid—vapor interface,face, and deviations from the bulk values, the excess
later known as the so-called Tolman len§tFrom a me- amounts, are attributed to the interfd€eThe curvature of
chanical point of view, Helfrich later introduced a more gen-the interface is determined by the total curvatdre 1/R,
erally applicable correction to the free energy of an interface” /R, and the Gaussian curvatuté=1/R;R;, respec-
that was up to second order in the curvattihe terms of the tively, whereR; andR, are the local radii of curvature of the

interfacial tensiony, this description reads interface alRs. This introduces two new degrees of freedom
so that the change of the grand potential of the interfage
is given by
Y(J,K) == keJod + 3k I+ kK, (1) dQs=—S5dT—ns-du+ y dA+AC, dJ+AC, dK, (2)

where $® is the interfacial entropyJ the absolute tempera-
ture, u the set of chemical potentials of al molecules

wherelJ is the total curvatureK the Gaussian curvature, and dsorbed at the interf f ardaThe t ‘ugated t
»° the interfacial tension of the planar interface. The saddle20s0roed at Ine interface of arda Ihe terms conjugated to

— . . the curvatures are the so-called bending stfgsand torsion
splay modulusk determines the topology of the interface stress(,, respectively! Integration of Eq.(2) and subse-
rather than its rigidity, which IS In turn detgrmmed by the quent differentiation provides us the most complete version
bending modulugk.. The bending modulus times the spon-

) of the well-known Gibbs adsorption equation
taneous curvatureJ,, is closely related to the Tolman
length.
Many suggestions have been made to determine the
aforementioned constants from a molecular médélRe- arn
cently, another suggestion has been rladieich combines whereI’'=n/A is the adsorbed amount.

the thermodynamic and mechanical route, as shown in Sec. fWe next con§|der the work ne(:](_:led to _benq a plaqar n-
[I. In Sec. lll we illustrate the derived equations by means oftértace to a certain curvaturé,K). This requires integration

a mean-field lattice model for a simple liquid—vapor inter- of the Gibbs adsorpt|on equa.tlon, E@' At constant tem-
face. These results are checked in Sec. IV by the well-knowRerature and chemical potentials, this reads

van der Waals theory, which has been employed before for 7(3,K)

simple interface$. Finally, the results are discussed in f
Sec. V.

S

S
dy=— £ dT-T-du+CdI+ 0, dK, ©)

J K
0 (dy/)TvM:J Cld\],‘l‘j ‘Csz/. (4)
Y 0 0

When the chemical potentials are a function of the applied

dpresent address: Van't Hoff Laboratory for Physical and Colloid Chemis-curvature’ they are not an Independent degree of freedom

try, Debye Research Institute, Utrecht University, P.O. Box 80051, 3508_5inCe their Change is then already acc_ou_nted for by the bend-
TB Utrecht, The Netherlands. Electronic mail: m.oversteegen@chem.uu.ing and torsion stress. For small deviations from the planar
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interface, the integrals on the right-hand side of E.can
be approximated by series expansion up to second order in Plff (r—Rg)(p*?—pr(r))dr, (10b)
the curvature, which yields

LCl 0J2+‘C2K, (5) PZEJ (r_RS)Z(paB_ pT(r))dr= (100)

1
~y0+ 2+ =
y(J,K)=~y"+ (1 73

2

where, in turn, the step function®?=p*6(Rs—r)+ p?6(r
where the superscript O denotes evaluation at the planar in- R.) has been introduced, using the Heaviside step function
terface. This is very reminiscent of the expression Helfrichg(r —Ry).

gave from mechanical arguments for a phenomenological de- Now that we have a mechanical expression for the inter-
scription of the undulation of lipid bilayersComparison of  facial tension, we find from Eqg6) and (9) the following

Eqg. (5 with the Helfrich equation, Eq(1), yields for the  mechanical expressions for the rigidity constants:

rigidity constants

o [Po\°
3 (O ay 0 —kCJOZ]Pl‘f‘ ﬁ , (113
—kdo=C=|—3| . (6a TX
T,m,K
'S K 2(‘9P1)0 +(&2P°)0 (11b)
9C1\0 [ ¢4\ o P
k°:(a_al) :<EZ) | (6b) Wl Vo oy
Tk — P\ °
B 5y\0 k=13+ a—KO) . (119
k=Cg=(§—K) : (60 )
T.md In the next section, these rigidity constants are determined

where we have used the total differential H§) for the  for a simple liquid—vapor interface by means of a lattice-gas
definitions of the bending and torsion stress. We have linkednodel.

the thermodynamics of curved interfaces to the rigidity con-

stants. In order to derive these constants from a molecular

mOdel, we are interested in flndlng mechanical eXpreSSionﬁl_ LATTICE-GAS MODEL FOR CURVED INTERFACES
for them. These are obtained in a quasithermodynamic way

as proposed by Buff In order to have an easily accessible partition function,
From standard thermodynamics and Eg), it is found  space is divided into sitescelly with equal volumevg
that the total grand potential of the system reads =13, wherel is a characteristic molecular size. From the
lattice formed in this way, onlg=1, ... M parallel layers
Q=—paVe—phVA+ yA, ) y )4 p y

are considered of (z) sites each. We can form planar, cy-
where p® and p? are the bulk pressures of the respectivelindrical, and spherical lattices this way. In the layers1
bulk phases of volum&“ andV#, respectively. The actual and z=M bulk conditions prevail. Imposing a mean-field
pressure is obviously a continuous function through spaceapproximation, it can be derived from standard statistical
rather than a step function. However, due to the Gibbs conthermodynamics that for a one-component system the grand
vention, the bulk pressurgst andp” have been extrapolated potential is given b§?
up to the interface. The total difference between the actual M
and the extrapolated pressure must be assigned to the inter- el _ 2

. pressu . T =2 L@If(4(2) - nd(2)], (12
face. Since the only interfacial work is lateral, the excess of B z=1
the tangential pressure profifg(r) must constitute the in-
terfacial mechanical work

where kg is Boltzmann’s constantg(z)=N(z)/L(z) the
density of the molecules in layerand the free energy den-

sity f(¢),
f(p)=dInp+(1—¢)IN(1—¢)— px(¢)

Using the prmmple o_f parallel interfaces, the volume element + Iyl +(B)). (13)

can be written aslr=A(r)dr, where the ared\(r) at any

positionr can be given analytically relative to the interfacial The interaction equalgkgT per Z contacts, wher& is the
area A at Rs by A(r)=A{1+(r—Rg)J  coordination number. The so-called contact fraction accounts
+(r —Rg)?K}. 2 substitution into Eq(8) gives for the in-  for the mean-field interactions with adjacent lattice layers

terfacial tension (B(2))=N_1(2) (2= 1)+ No(D $(2) + My(2) (2 +1).
y=Po+PJ+P,K, 9) (14)

where we introduced the zeroth, first, and second bendingn€ fransition probabilityro(2) is the fraction of adjacent

moments SitesZ in layerz, whereas\ _1(z) and\,(z) are the fractions

of adjacent sites in the previous and next layer, respectively.

Obviously, in a planar lattick _;=\;. The sum of the tran-

sition probabilities equals unity, so in the bulkb(z—1)

YA= fva(p“_pT(r))dr"‘fvﬁ(pﬁ—pT(r))dr_ 8

IPoEf (p*#—p+(r))dr, (109
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2 . e ture, the interface and the interfacial tension vanish. Far
'YO away from y. the interface becomes sharper such that the
Lst 1 interfacial entropy becomes less important and eventually the
' interfacial tension is completely energetig®=y\,. Note
that the interfacial tension of the planar interface is indepen-
1t dent of the choice of the position of the dividing plane since
p“=p~. This choice is, however, important for curved inter-
05l ] faces. Henceforth, we will take the Gibbs-dividing or
' .’ equimolar plane to be the interface. This is the position
where the excess number of molecules at the interface, i.e.,
0 - \ \ \ s the adsorbed amount, vanishes, ilé= 0. This position is
2 3 4 5 : . ;
X not necessarily an integer but can be in between two layer
FIG. 1. The interfacial tension of the planar interface as function of thenumbers' . T .
interaction parameter in scaled units such #f=1 andl=1. The sym- In order to obtain the rigidity constants, as given by EQ.

bols are determined by the lattice-gas model using a simple cubic lattice(11), knowledge of the curvature dependence of the bending
The solid line gives the corresponding van der Waals descrifian  moments is required. To that end, a certain pressure differ-
(228], whereas the dashed line gives the asymptotic vdlEgs(293]. encep— pgz 'yOJ is imposed, wherd is approximately the
desired total curvature. The corresponding bulk chemical po-
tential is found and consequently molecules are ‘titrated’ on
= ¢(2)= ¢(z+1)] the contact fraction reduces to the bulk den-the simple-cubic curved lattice until the chemical potential of
sity. SinceX,L(z)=V/vq, Eq. (13) reduces in the bulk to the resulting phase separated system, as given by15y.
the Flory—Huggins free enerdy. equals the desired bulk chemical potential. Subsequently, the
The chemical potential in Eq12) can be regarded as a exact curvaturel is determined from the equimolar plane.
Lagrange multiplier that minimizes the free energy at theThe corresponding bending moments as given in Appendix
constraint of fixed number of molecules. From its thermody-A can now be calculated.

namic definition,u= (JF/dN)1 and Eq.(13), the chemical The spontaneous curvatukgl, and the bending modu-
potential reads lus k. can be determined strictly from the cylindrical lattice

P b(2) because in order to evaluate deri\(atives, as given ir(E, .
kB—T=In -6 —2x((2))+ x. (15  the total curvature] must be varied at constant Gaussian

curvatureK. The bending moments were determined for a
Although the individual terms of Eq15) are a function of, cylindrical interface as a function of the total curvature as
the equilibrium chemical potential must be constant throughdescribed above. A third-order polynomial was fit through
out the lattice. A density profile must be found that satisfieshe bending moments in order to evaluate the derivatives
the criterion that the chemical potential in each layer equalsiumerically. This way, we found from Eq11a that the
the bulk chemical potentials. It is now easily seen that thisSTolman length or spontaneous curvatudg, vanishes for
density profile minimizes the free energy. each value of the interaction parameterThis should be the
The grand potential density, the terms within squarecase from symmetry consideratidfsince exchange of free
brackets of Eq(12), is now identified as the tangential pres- volume and the monomeric species gives the same minimal
sure profile***® For both the bulk phases and 3, the bulk  free energy of the planar interface. This can easily be seen
pressures are found from Ed12), Eq. (15), and Q°  from Eq.(13) when specief¢(z)] are replaced by free vol-
=—p°V®, whereb=a or ume[1—¢(2)].

b
pP~vo

KT —In(1—¢®) — x "2

The bending moduluk,; was determined analogously as
a function of the interaction parameter, as shown by the sym-
bols in Fig. Za). The bending modulus of the lattice-gas

For x> x. this gives the familiar van der Waals loop. The model as given by Eq11b vanishes in the critical point.

spinodals given by Ap®/3(1/¢"))+=0 merge at the critical
point, which yields from Eq(16) that y,=2 and ¢2= ¢*

=1/2.

For larger values of the interaction parameter, an interface is
formed and the system is affected by the applied curvature.
The bending modulus from the lattice-gas model goes

When¢“= ¢(1) and¢P= ¢(M) are applied, the excess through a minimum and for very large it appears to go to
pressure profile follows directly from Eq$12) and (16).  zero. This physically means that in the lattice-gas model the
Consequently, the respective bending moments can be detdree energy of the interface for largeis apparently domi-
mined for the lattice-gas model, as outlined in Appendix A.nated by the interfacial tension rather than curvature energy.

The interfacial tension of the planar interfagé can be The saddle-splay modulus cannot be determined from a
straightforwardly identified with the zeroth bending consideration of the cylindrical interface alone, since, ac-
moment® as it also follows directly from Eq(9). This has  cording to Eq.(11c), K must be varied at constadit Neither
been done for several values of the interaction parameter can this be done from a spherical interface sinc®;1/
>y, as shown by the symbols in Fig. 1 for a simple cubic=1/R,=1/R, such that] andK are no longer independent
lattice, i.e.\ _;=\;=1% in units such thakgT=1 andl=1. state variablesK = J2. Consequently, for a spherical inter-
Since the interfacial width diverges at the critical temperaface one of the curvature terms in the starting thermody-
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0 L ANnanansasna 0.15 e to liquid—vapor coexistence and is used in the calculation to
koD I3 vary the curvature of the liquid—vapor interface.

\ As shown in Sec. Il, the volume elemeat depends on
the geometry of the system. The Euler—Lagrange equation
that minimizes the above grand potential in spherical geom-

etry is given by

0.1F 5% p 01l

02 1 005f
..... X X1, ,
PN =—— —ps(N)+1'(ps) —Aus, (19
03 Lo 0 3 3r
KPR 5 2 Sy 4 5
(a) (b wherer is the radial distance. The subscrigtenotes the fact

FIG. 2. (a) The bending modulus ar) the saddle-splay modulus as func- thfit we are con5|der|_ng a spherlcal Interfa(_:e’ whereas the
tion of the interaction parameter in scaled units such tdt=1 and| prime denotes the derivative with respect to its argument. In

=1. The symbols are determined by the lattice-gas model using a simpl@rder to relate the grand potential to the curvature coeffi-

cubic lattice. The solid line gives the corresponding van der Waals descrip-i n 0 Kk n ? n expansion is m in the recior I
tion [Egs. (22b) and (22d)], whereas the dashed line gives the asymptoticC Z.ISY EI.RC, afdtl’; a eh pa} SI od S | tad?l'h tde e(.ip Ocad
values[Egs. (29 and (299)]. radius, s, O € spnerica roplet. € density an

chemical potential expanded to first order are

namic equation of the interface, E®), is redundant and the

thermodynamic analysis should be gone through again. ps<r):p0(r)+p1(r)ﬁs+0 r?/ (209

However, it is easily seen that this gives only one new state s

variable conjugate to the total curvature that incorporates 1 1

both the bending and torsion stress. For the Helfrich equation A,ugA,ulE +0 E) , (20b)
- s 2

we then also find only one “effective” modulus,+ 3k,

given by Eq.(11b) where the respective bending momentswhere it can be shown thatu,=2v%Ap," with Ap=p,

are found from a spherical interface. From the effective—p  the density difference between the liquiol € ¢) and

bending modulus, determined completely ar@logously to th@apor (p, = ¢#) phase at coexistence. The Euler—Lagrange

cylindrical geometry, the saddle-splay modukusan be ex- equation in Eq.(19) is also expanded to first order in the

tracted sincek, was already known from the cylindrical in- reciprocal radius

terface. The bending moduluk,, and the effective modu-

lus, ke+ 3k, were determined from a third-order polynomial Kpg(z):f'(po), (219

fit through the respective bending moments. Consequently, 3

the extracted value for the saddle-splay modulus is subject to >

relatively much numerical noise. However, within the nu- Kp’l’(z):—_xp(’)(z)+f”(po) p1(2)—Apuq, (21b

merical accuracy, the same values could be found from a 3 3

direct parabolic fit of Eq(1) to the interfacial tension deter- \yhere we have definez=r — R, which must not be con-

mined with EQ-<9>-8 The results for the saddle-splay modu- fsed with the lattice index of Sec. Ill. Using the above dif-

lus are shown in Fig. (b) and give the same qualitative fgreniial equations, the grand potential of the interface can be

behavior as the bending modulus, albeit with a different signayiracted from Eq(17) up to second order in the curvature.

and magnitude. Comparison with the Helfrich equation, E(LL), yields the
interfacial tension of the planar interface and rigidity con-

IV. VAN DER WAALS THEORY OF CURVED stants expressed in terms of the density profilg&) and
INTERFACES »1(2) (Ref. 9

As outlined in Appendix B, the grand potential of a .
lattice-gas model, Eq12), can be regarded as the discretized VOZKJ’ dz[p(’)]Z, (223
version of the well-known free-energy functional as given by 3J) =
van der Waals. In units such th&pT=1, =1, and \,

=1/6, the continuous version of the grand potential, Eq. kCJOZI ) dz 4p412, (22b)
(12), then reads 3J)-=

Qlp)= | dr| 3|V p(r)[2+F(p)— App(r) a” X7 dzpuppt 2217 az 20

pl= 6VP p)—Aup(r)|, ke=—5% _deplpO-‘rT _mdz Zp}, (220
with the free-energy densiti(p)
— X[~ ,
f(p):PIn(P)+(1_p)|n(1_P)+PX(1_P)_:U*coe)€18) =3 _dzZlpo]* (220)
1

wherep(r) is the continuous density profile as opposed toSimilar expressions were previously derived from Landau
the discrete density profiles(z). The chemical potential theory/’ As also found in Sec. lllk, andk, unlike y° and
Ap=pu— ueoex IS defined as the chemical potential distancek.J,, depend on the choice of the position of the dividing
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plane. In order to make a fair comparison with the lattice-gas Xe, ,, —1 ) "
model, the above expressions were derived by locating the  Ke=—£,(7°=3)(Ap)°¢= 75aV6(7"=3) (X~ xc) ™
interface at the equimolar plane, defined by (29b)
_ 1
I'= f drlps(2) = pou(2)]1=0, (23) = 5(772—6)(Ap)2§= HsJE(WZ—G)(X—XC)”%

where py . =p0(—2) +p,0(z). Expanded to first order in 3 _ (299
1R, Eq. (23) gives the following set of conditions for the Where Eq.(293 recovers the familiar mean-field result for

profiles po(z) andp,(2): the interfacial tension of the planar interfade.The
asymptotic expressions E@29) are the dashed curves in
* Figs. 1 and 2.
| ddoo21-ponui21-0. oo P

o “ V. DISCUSSION
| dtm@-prowon= [ dzzoiz. e

From a quasithermodynamic route we derived mechani-
cal expressions for the interfacial tension and the rigidity
With these two conditions, the differential equations in Eqd.constants. These are evaluated from a lattice-gas model for a
(21) have been solved numerically for the density profilessimple liquid—vapor interface. The results are given by the
po(2z) and p;(z), using the explicit expression fdi(p) in symbols in Figs. 1 and 2.

Eq. (18). The resulting density profiles have then been in- |t js shown that the free energy of the one-component
serted into the expression for the interfacial tension and rifattice_gas model is the discretized version of the well-
gidity constants as given by E@22). The results of this  known van der Waals free-energy functional. The continuous
numerical approach are shown as the solid lines in Figs. {ersjon of this free energy is expanded up to second order in
and 2. the curvature. Comparison with the Helfrich equation yields

Both the lattice-gas model and the van der Waals theoryndependent expressions for the interfacial tension of the pla-
required a numerical solution of the density profiles. HOw-par interface and the rigidity constants in terms(dériva-
ever, in the vicinity of the critical pointy.=2, analytical  tives off the density profile of the planar interface. These
solutions for the interfacial tension of the planar interfaceregylts are given by the solid lines in Figs. 1 and 2. Inserting
and rigidity constants can be derivEtiTo that end, the den- 4 series expansion of the free-energy density up to fourth

sity is expanded around the critical densipg=3. In par-  order around the critical density in the van der Waals expres-

ticular, we can expandi(p) to fourth order in p—p) sions gives analytical expressions for the interfacial tension
S 4 of the planar interface and the rigidity constants. These are
fp)=T(pc) = (X —Xc) (P=pc)™+ 5(p—pc) given by the dashed lines in Figs. 1 and 2.
+O((p—po)®). (26) The interfacial tension of the planar liquid—vapor inter-

face, y°, has been studied extensively befbteAs clearly
This is the familiarp*-shape of the free-energy density usedshown in Fig. 1, all three models have the same known
in the van der Waals theory for inhomogeneous systemsnean-field behavior in the vicinity of the critical point

Solving the Euler—Lagrange equation fog(z) in Eq. (22 =2. Away from the critical point, nonlocal effects must be
with the above form forf(p) yields the well-known included and the analytical solution, which does not account
hyperbolic-tangent profife™® for that, deviates from the other two. Further away from the

critical point (=1.2x.) the density profile in the interfacial
27) region becomes steeper and the square gradient term in the
van der Waals expression for the free energy is not sufficient

L i to account for this rapidly varying density profile, higher
where the density differenckp and bulk correlation length order derivatives of the density profile should be included.

¢, which is a measure of the thickness of the interface, % his is accounted for in the lattice-gas expression for the free

Ap
po(2)=p.— —tanh(z/2¢),

given by energy by the contact fraction, as can be seen from the trun-
(Ap)2=3(x—xo), (283 cated series expansion in Appendix B. Consequently, only
the lattice-gas model gives the appropriate linear behavior far

&= %\/g (x—xo)~ Y2 (28b) away from the critical point. This accounts for the differ-

ences between square gradient and the more exact integral-
Within the van der Waals theory, the values for the interfafunctional theory as already known in the literatéfe&Some
cial tension of the planar interface and rigidity constantsprogress can be made in the van der Waals description by
have already been calculat®@nd we can simply insert the adding a square Laplacidr’
above expression far, in Eq. (22). Using Eq.(28) for Ap We found that using Eq(11g in the lattice-gas model
and ¢, this gives gave a vanishing Tolman length or spontaneous curvature,
Jo. This must be the case from symmetry argum€rasd
has also been found for the van der Waals theory, as follows

o_Xc (Ap)°
from Eq. (22b).°

1
6 ¢ 6V x™ (299
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The bending modulug., determined from the lattice-
gas model found from Eq(11b), is in good quantitative Pﬁf (R—Ro)(p*’—pr(R))dR
agreement with the ones found from the van der Waals
theory, Eq.(220), up to the interaction parameter where the
higher order derivatives of the density profile become impor-

tant (y=1.2x.). The saddle-splay moduluk, found from
Eq. (110 is also in good qualitative agreement with the ones =, tR?—RRZ 4(p**—p+(2))
found from the van der Waals theory, EQ2d), in the re- z
gion where the latter is valid.

In the region where all the above-mentioned theories are =Y, (z—Rs— H)(p**—p1(2)). (A2)
valid, they gave identical and physically relevant results for z
the interfacial tension of the planar interface and the bendin@wing to the discretization, an extra factor 1/2 comes in
constants. The van der Waals expressions, @), are  when replacing the integral by a summation. Analogously, it
within a mean-field approximation for the pair density, con-js found that the second bending moment in the lattice-gas
sistent with the rigidity constants found from the virial route model is given by
to the rigidity constantS.Gompperet al.” derived expres-
sions that were very reminiscent of E§2). They defined a Py=> ((z—Ry)?—(z—Rs— 1)) (p*—p1(2)). (A3)
free-energy density, in this particular case for instance z
(x/3)[po]?, as the tangential pressure profips(z). Szlei-
fer et al. did the same with their free-energy denSity ar-  AppENDIX B: CONTINUOUS VERSION OF THE
rive at the same expressions for the rigidity constants as fromaATTICE GRAND POTENTIAL
the principle of virtual worl It is therefore concluded that

the rigidity constants as given by Eg.1) are consistent with SinceL(2)v is the volume of a layer, the summation
all the previously mentioned models within the mean-field®Ver all layers of the grand potential density, as given by Eg.
approximation. (12), is equivalent to a volume integral in continuous space.

In that continuous limit, the discrete density profifgz)

reduces tep(r). For slowly varying densities, the continuous

density profile may be approximated by a second-order se-
ACKNOWLEDGMENTS ries expansion around the local discrete densities. Substitu-
tion in the contact fraction, as defined in EG4), gives

-3 [ (R-R(p*-pr(2)aR
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=p(r)+\412V?p(r), (BY)

where we implicitly assumed a planar lattice, i.a.,

=\1, and used the fact that the sum of the transition prob-
In Sec. Il the bending moments were found as given byabilities A equals unity. Integration by parts gives

Egs.(10a, (10b), and(10¢). Because the tangential pressure m

pt(r) was identified with the grand potential density from 2 L(2)p(2)x{b(2))

Eqg. (12), it is constant within one layer. Consequently, az=1

bending moment can be written as a sum over all layers. The

APPENDIX A: DISCRETIZED BENDING MOMENTS

zeroth bending moment is simply given by Ef —[xp(r)2=x\412Vp(r)|?], (B2)
a VO
Po= J (p*A—p+(R))dR where use has been made of the fact that the density gradient
vanishes in both bulk phases (z<1) andB (z=M). In-

z serting this into Eq.(12) yields the well-known van der

=> f (p*#=pr(2))dR= 2, (p“—pr(2)). Waals free-energy functional for inhomogeneous systems. In

z Jed z this paper, we reduce this to the standard van der Waals form
(A1) for the grand potential

As before p*# equalsp® up to the dividing plane ang? € _ f dr > 2

beyond, where both bulk pressures are given by E&§). keT vo[x)\ll [Vo(D]*+p(r)in p(r)

The integral in Eq.(109 is thus effectively replaced by a 2

summation. However, this cannot be done for the first bend- + (1= p(r)In(L=p(r)) —xp(r)*+ xp(r) — pp(r)].
ing moment (B3)
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