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The interfacial tension of the planar interface and rigidity constants are determined for a simple
liquid–vapor interface by means of a lattice-gas model. They are compared with results from the
van der Waals model and from an analytical expansion around the critical point. The three
approaches are in agreement in the regions where these theories apply. ©2000 American Institute
of Physics.@S0021-9606~00!51106-4#

I. INTRODUCTION

The curvature of interfaces determines the physics of
many systems to a large extent. This was already realized by
Gibbs, but he gave some reasoning to ignore the curvature
terms in the thermodynamic description.1 Five decades later,
Tolman addressed this issue again and derived from the
Gibbs adsorption equation a first-order curvature correction
to the interfacial tension of a simple liquid–vapor interface,
later known as the so-called Tolman length.2 From a me-
chanical point of view, Helfrich later introduced a more gen-
erally applicable correction to the free energy of an interface
that was up to second order in the curvature.3 In terms of the
interfacial tensiong, this description reads

g~J,K !5g02kcJ0J1 1
2 kcJ

21 k̄K, ~1!

whereJ is the total curvature,K the Gaussian curvature, and
g0 the interfacial tension of the planar interface. The saddle-
splay modulusk̄ determines the topology of the interface
rather than its rigidity, which is in turn determined by the
bending moduluskc . The bending modulus times the spon-
taneous curvature,J0 , is closely related to the Tolman
length.

Many suggestions have been made to determine the
aforementioned constants from a molecular model.4–7 Re-
cently, another suggestion has been made8 which combines
the thermodynamic and mechanical route, as shown in Sec.
II. In Sec. III we illustrate the derived equations by means of
a mean-field lattice model for a simple liquid–vapor inter-
face. These results are checked in Sec. IV by the well-known
van der Waals theory, which has been employed before for
simple interfaces.9 Finally, the results are discussed in
Sec. V.

II. THERMODYNAMICS OF CURVED INTERFACES

In a phase-separated system, the interface between the
phases is usually not infinitely sharp, owing to the thermal
motion of the molecules. Following the Gibbs convention for
a two-phase system, the system is split up in two bulk phases
a andb divided by an infinitely thin interface at an arbitrary
positionRs . All bulk values are extrapolated up to the inter-
face, and deviations from the bulk values, the excess
amounts, are attributed to the interface.10 The curvature of
the interface is determined by the total curvatureJ5 1/R1

1 1/R2 and the Gaussian curvatureK51/R1R2 , respec-
tively, whereR1 andR2 are the local radii of curvature of the
interface atRs . This introduces two new degrees of freedom
so that the change of the grand potential of the interfaceVs

is given by

dVs52Ss dT2ns
•dm1g dA1AC1 dJ1AC2 dK, ~2!

whereSs is the interfacial entropy,T the absolute tempera-
ture, m the set of chemical potentials of allns molecules
adsorbed at the interface of areaA. The terms conjugated to
the curvatures are the so-called bending stressC1 and torsion
stressC2 , respectively.11 Integration of Eq.~2! and subse-
quent differentiation provides us the most complete version
of the well-known Gibbs adsorption equation

dg52
Ss

A
dT2G•dm1C1 dJ1C2 dK, ~3!

whereG[ns/A is the adsorbed amount.
We next consider the work needed to bend a planar in-

terface to a certain curvature (J,K). This requires integration
of the Gibbs adsorption equation, Eq.~3!. At constant tem-
perature and chemical potentials, this reads

E
g0

g(J,K)

~dg8!T,m5E
0

J

C1 dJ81E
0

K

C2 dK8. ~4!

When the chemical potentials are a function of the applied
curvature, they are not an independent degree of freedom
since their change is then already accounted for by the bend-
ing and torsion stress. For small deviations from the planar

a!Present address: Van’t Hoff Laboratory for Physical and Colloid Chemis-
try, Debye Research Institute, Utrecht University, P.O. Box 80051, 3508
TB Utrecht, The Netherlands. Electronic mail: m.oversteegen@chem.uu.nl

JOURNAL OF CHEMICAL PHYSICS VOLUME 112, NUMBER 6 8 FEBRUARY 2000

29800021-9606/2000/112(6)/2980/7/$17.00 © 2000 American Institute of Physics



interface, the integrals on the right-hand side of Eq.~4! can
be approximated by series expansion up to second order in
the curvature, which yields

g~J,K !'g01C1
0J1

1

2 S ]C1

]J D 0

J21C2
0K, ~5!

where the superscript 0 denotes evaluation at the planar in-
terface. This is very reminiscent of the expression Helfrich
gave from mechanical arguments for a phenomenological de-
scription of the undulation of lipid bilayers.3 Comparison of
Eq. ~5! with the Helfrich equation, Eq.~1!, yields for the
rigidity constants

2kcJ05C1
05S ]g

]J D
T,m,K

0

, ~6a!

kc5S ]C1

]J D 0

5S ]2g

]J2 D
T,m,K

0

, ~6b!

k̄5C2
05S ]g

]K D
T,m,J

0

, ~6c!

where we have used the total differential Eq.~3! for the
definitions of the bending and torsion stress. We have linked
the thermodynamics of curved interfaces to the rigidity con-
stants. In order to derive these constants from a molecular
model, we are interested in finding mechanical expressions
for them. These are obtained in a quasithermodynamic way
as proposed by Buff.12

From standard thermodynamics and Eq.~2!, it is found
that the total grand potential of the system reads

V52paVa2pbVb1gA, ~7!

where pa and pb are the bulk pressures of the respective
bulk phases of volumeVa andVb, respectively. The actual
pressure is obviously a continuous function through space,
rather than a step function. However, due to the Gibbs con-
vention, the bulk pressurespa andpb have been extrapolated
up to the interface. The total difference between the actual
and the extrapolated pressure must be assigned to the inter-
face. Since the only interfacial work is lateral, the excess of
the tangential pressure profilepT(r ) must constitute the in-
terfacial mechanical work12

gA5E
Va

~pa2pT~r !!dr1E
Vb

~pb2pT~r !!dr . ~8!

Using the principle of parallel interfaces, the volume element
can be written asdr5A(r )dr, where the areaA(r ) at any
positionr can be given analytically relative to the interfacial
area A at Rs by A(r )5A$11(r 2Rs)J
1(r 2Rs)

2K%.13,14 Substitution into Eq.~8! gives for the in-
terfacial tension

g5P01P1J1P2K, ~9!

where we introduced the zeroth, first, and second bending
moments

P0[E ~pab2pT~r !!dr, ~10a!

P1[E ~r 2Rs!~pab2pT~r !!dr, ~10b!

P2[E ~r 2Rs!
2~pab2pT~r !!dr, ~10c!

where, in turn, the step functionpab[pau(Rs2r )1pbu(r
2Rs) has been introduced, using the Heaviside step function
u(r 2Rs).

Now that we have a mechanical expression for the inter-
facial tension, we find from Eqs.~6! and ~9! the following
mechanical expressions for the rigidity constants:

2kcJ05P1
01S ]P0

]J D
T,K

0

, ~11a!

kc52S ]P1

]J D
T,K

0

1S ]2P0

]J2 D
T,K

0

, ~11b!

k̄5P2
01S ]P0

]K D
T,J

0

. ~11c!

In the next section, these rigidity constants are determined
for a simple liquid–vapor interface by means of a lattice-gas
model.

III. LATTICE-GAS MODEL FOR CURVED INTERFACES

In order to have an easily accessible partition function,
space is divided into sites~cells! with equal volumev0

5 l 3, where l is a characteristic molecular size. From the
lattice formed in this way, onlyz51, . . . ,M parallel layers
are considered ofL(z) sites each. We can form planar, cy-
lindrical, and spherical lattices this way. In the layersz<1
and z>M bulk conditions prevail. Imposing a mean-field
approximation, it can be derived from standard statistical
thermodynamics that for a one-component system the grand
potential is given by15

V@f#

kBT
5(

z51

M

L~z!@ f ~f~z!!2mf~z!#, ~12!

where kB is Boltzmann’s constant,f(z)[N(z)/L(z) the
density of the molecules in layerz and the free energy den-
sity f (f),

f ~f!5f ln f1~12f!ln~12f!2fx^f&

1 1
2 x$f1^f&%. ~13!

The interaction equalsxkBT per Z contacts, whereZ is the
coordination number. The so-called contact fraction accounts
for the mean-field interactions with adjacent lattice layers

^f~z!&[l21~z!f~z21!1l0~z!f~z!1l1~z!f~z11!.
~14!

The transition probabilityl0(z) is the fraction of adjacent
sitesZ in layerz, whereasl21(z) andl1(z) are the fractions
of adjacent sites in the previous and next layer, respectively.
Obviously, in a planar latticel215l1 . The sum of the tran-
sition probabilities equals unity, so in the bulk@f(z21)
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5f(z)5f(z11)# the contact fraction reduces to the bulk den-
sity. Since(zL(z)5V/v0 , Eq. ~13! reduces in the bulk to
the Flory–Huggins free energy.6

The chemical potential in Eq.~12! can be regarded as a
Lagrange multiplier that minimizes the free energy at the
constraint of fixed number of molecules. From its thermody-
namic definition,m[(]F/]N)T,V and Eq.~13!, the chemical
potential reads

m

kBT
5 lnS f~z!

12f~z! D22x^f~z!&1x. ~15!

Although the individual terms of Eq.~15! are a function ofz,
the equilibrium chemical potential must be constant through-
out the lattice. A density profile must be found that satisfies
the criterion that the chemical potential in each layer equals
the bulk chemical potentials. It is now easily seen that this
density profile minimizes the free energy.

The grand potential density, the terms within square
brackets of Eq.~12!, is now identified as the tangential pres-
sure profile.12,15 For both the bulk phasesa andb, the bulk
pressures are found from Eq.~12!, Eq. ~15!, and Vb

52pbVb, whereb5a or b

pbv0

kBT
52 ln~12fb!2xfb2. ~16!

For x.xc this gives the familiar van der Waals loop. The
spinodals given by (]pb/](1/fb))T50 merge at the critical
point, which yields from Eq.~16! that xc52 andfc

a5fc
b

51/2.
Whenfa5f(1) andfb5f(M ) are applied, the excess

pressure profile follows directly from Eqs.~12! and ~16!.
Consequently, the respective bending moments can be deter-
mined for the lattice-gas model, as outlined in Appendix A.

The interfacial tension of the planar interfaceg0 can be
straightforwardly identified with the zeroth bending
moment,16 as it also follows directly from Eq.~9!. This has
been done for several values of the interaction parameterx
.xc , as shown by the symbols in Fig. 1 for a simple cubic
lattice, i.e.l215l15 1

6 in units such thatkBT51 andl 51.
Since the interfacial width diverges at the critical tempera-

ture, the interface and the interfacial tension vanish. Far
away from xc the interface becomes sharper such that the
interfacial entropy becomes less important and eventually the
interfacial tension is completely energetic:g05xl1 . Note
that the interfacial tension of the planar interface is indepen-
dent of the choice of the position of the dividing plane since
pa5pb. This choice is, however, important for curved inter-
faces. Henceforth, we will take the Gibbs-dividing or
equimolar plane to be the interface. This is the position
where the excess number of molecules at the interface, i.e.,
the adsorbed amount, vanishes, i.e.,G50. This position is
not necessarily an integer but can be in between two layer
numbers.

In order to obtain the rigidity constants, as given by Eq.
~11!, knowledge of the curvature dependence of the bending
moments is required. To that end, a certain pressure differ-
encepa2pb5g0J is imposed, whereJ is approximately the
desired total curvature. The corresponding bulk chemical po-
tential is found and consequently molecules are ‘titrated’ on
the simple-cubic curved lattice until the chemical potential of
the resulting phase separated system, as given by Eq.~15!,
equals the desired bulk chemical potential. Subsequently, the
exact curvatureJ is determined from the equimolar plane.
The corresponding bending moments as given in Appendix
A can now be calculated.

The spontaneous curvaturekcJ0 and the bending modu-
lus kc can be determined strictly from the cylindrical lattice
because in order to evaluate derivatives, as given in Eq.~11!,
the total curvatureJ must be varied at constant Gaussian
curvatureK. The bending moments were determined for a
cylindrical interface as a function of the total curvature as
described above. A third-order polynomial was fit through
the bending moments in order to evaluate the derivatives
numerically. This way, we found from Eq.~11a! that the
Tolman length or spontaneous curvature,J0 , vanishes for
each value of the interaction parameterx. This should be the
case from symmetry considerations17 since exchange of free
volume and the monomeric species gives the same minimal
free energy of the planar interface. This can easily be seen
from Eq.~13! when species@f(z)# are replaced by free vol-
ume @12f(z)#.

The bending moduluskc was determined analogously as
a function of the interaction parameter, as shown by the sym-
bols in Fig. 2~a!. The bending modulus of the lattice-gas
model as given by Eq.~11b! vanishes in the critical point.
For larger values of the interaction parameter, an interface is
formed and the system is affected by the applied curvature.
The bending modulus from the lattice-gas model goes
through a minimum and for very largex it appears to go to
zero. This physically means that in the lattice-gas model the
free energy of the interface for largex is apparently domi-
nated by the interfacial tension rather than curvature energy.

The saddle-splay modulus cannot be determined from a
consideration of the cylindrical interface alone, since, ac-
cording to Eq.~11c!, K must be varied at constantJ. Neither
can this be done from a spherical interface since 1/R1

51/R251/Rs such thatJ and K are no longer independent
state variables:K5 1

4J
2. Consequently, for a spherical inter-

face one of the curvature terms in the starting thermody-

FIG. 1. The interfacial tension of the planar interface as function of the
interaction parameter in scaled units such thatkBT51 andl 51. The sym-
bols are determined by the lattice-gas model using a simple cubic lattice.
The solid line gives the corresponding van der Waals description@Eq.
~22a!#, whereas the dashed line gives the asymptotic values@Eq. ~29a!#.
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namic equation of the interface, Eq.~2!, is redundant and the
thermodynamic analysis should be gone through again.
However, it is easily seen that this gives only one new state
variable conjugate to the total curvature that incorporates
both the bending and torsion stress. For the Helfrich equation
we then also find only one ‘‘effective’’ modulus,kc1 1

2k̄,
given by Eq.~11b! where the respective bending moments
are found from a spherical interface. From the effective
bending modulus, determined completely analogously to the
cylindrical geometry, the saddle-splay modulusk̄ can be ex-
tracted sincekc was already known from the cylindrical in-
terface. The bending modulus,kc , and the effective modu-
lus, kc1 1

2k̄, were determined from a third-order polynomial
fit through the respective bending moments. Consequently,
the extracted value for the saddle-splay modulus is subject to
relatively much numerical noise. However, within the nu-
merical accuracy, the same values could be found from a
direct parabolic fit of Eq.~1! to the interfacial tension deter-
mined with Eq.~9!.8 The results for the saddle-splay modu-
lus are shown in Fig. 2~b! and give the same qualitative
behavior as the bending modulus, albeit with a different sign
and magnitude.

IV. VAN DER WAALS THEORY OF CURVED
INTERFACES

As outlined in Appendix B, the grand potential of a
lattice-gas model, Eq.~12!, can be regarded as the discretized
version of the well-known free-energy functional as given by
van der Waals. In units such thatkBT51, l 51, and l1

51/6, the continuous version of the grand potential, Eq.
~12!, then reads

V@r#5E dr Fx6 u“r~r !u21 f ~r!2Dmr~r !G , ~17!

with the free-energy densityf (r)

f ~r!5r ln~r!1~12r!ln~12r!1rx~12r!2mcoexr,
~18!

wherer(r ) is the continuous density profile as opposed to
the discrete density profilef(z). The chemical potential
Dm[m2mcoex is defined as the chemical potential distance

to liquid–vapor coexistence and is used in the calculation to
vary the curvature of the liquid–vapor interface.

As shown in Sec. II, the volume elementdr depends on
the geometry of the system. The Euler–Lagrange equation
that minimizes the above grand potential in spherical geom-
etry is given by

x

3
rs9~r !52

4x

3

1

r
rs8~r !1 f 8~rs!2Dms , ~19!

wherer is the radial distance. The subscriptsdenotes the fact
that we are considering a spherical interface, whereas the
prime denotes the derivative with respect to its argument. In
order to relate the grand potential to the curvature coeffi-
cientsg0, kc , andk̄, an expansion is made in the reciprocal
radius, 1/Rs , of the spherical droplet. The density and
chemical potential expanded to first order are

rs~r !5r0~r !1r1~r !
1

Rs
1OS 1

Rs
2D , ~20a!

Dms5Dm1

1

Rs
1OS 1

Rs
2D , ~20b!

where it can be shown thatDm152g0/Dr,17 with Dr[r l

2rv the density difference between the liquid (r l>fa) and
vapor (rv>fb) phase at coexistence. The Euler–Lagrange
equation in Eq.~19! is also expanded to first order in the
reciprocal radius

x

3
r09~z!5 f 8~r0!, ~21a!

x

3
r19~z!52

2

3
x r08~z!1 f 9~r0! r1~z!2Dm1 , ~21b!

where we have definedz[r 2Rs , which must not be con-
fused with the lattice index of Sec. III. Using the above dif-
ferential equations, the grand potential of the interface can be
extracted from Eq.~17! up to second order in the curvature.
Comparison with the Helfrich equation, Eq.~1!, yields the
interfacial tension of the planar interface and rigidity con-
stants expressed in terms of the density profilesr0(z) and
r1(z) ~Ref. 9!

g05
x

3E2`

`

dz@r08#2, ~22a!

kcJ05
x

3E2`

`

dz z@r08#2, ~22b!

kc52
x

6E2`

`

dzr1r081
Dm1

4 E
2`

`

dz z2r08 , ~22c!

k̄5
x

3E2`

`

dz z2@r08#2. ~22d!

Similar expressions were previously derived from Landau
theory.7,17 As also found in Sec. III,kc and k̄, unlike g0 and
kcJ0 , depend on the choice of the position of the dividing

FIG. 2. ~a! The bending modulus and~b! the saddle-splay modulus as func-
tion of the interaction parameter in scaled units such thatkBT51 and l
51. The symbols are determined by the lattice-gas model using a simple
cubic lattice. The solid line gives the corresponding van der Waals descrip-
tion @Eqs. ~22b! and ~22d!#, whereas the dashed line gives the asymptotic
values@Eqs.~29b! and ~29c!#.
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plane. In order to make a fair comparison with the lattice-gas
model, the above expressions were derived by locating the
interface at the equimolar plane, defined by

G5E dr @rs~z!2rbulk~z!#50, ~23!

whererbulk[r lu(2z)1rvu(z). Expanded to first order in
1/Rs , Eq. ~23! gives the following set of conditions for the
profilesr0(z) andr1(z):

E
2`

`

dz@r0~z!2r0,bulk~z!#50, ~24!

E
2`

`

dz@r1~z!2r1,bulk~z!#5E
2`

`

dz z2r08~z!. ~25!

With these two conditions, the differential equations in Eq.
~21! have been solved numerically for the density profiles
r0(z) and r1(z), using the explicit expression forf (r) in
Eq. ~18!. The resulting density profiles have then been in-
serted into the expression for the interfacial tension and ri-
gidity constants as given by Eq.~22!. The results of this
numerical approach are shown as the solid lines in Figs. 1
and 2.

Both the lattice-gas model and the van der Waals theory
required a numerical solution of the density profiles. How-
ever, in the vicinity of the critical point,xc52, analytical
solutions for the interfacial tension of the planar interface
and rigidity constants can be derived.18 To that end, the den-
sity is expanded around the critical density,rc5 1

2. In par-
ticular, we can expandf (r) to fourth order in (r2rc)

f ~r!5 f ~rc!2~x2xc! ~r2rc!
21 4

3 ~r2rc!
4

1O~~r2rc!
6!. ~26!

This is the familiarr4-shape of the free-energy density used
in the van der Waals theory for inhomogeneous systems.
Solving the Euler–Lagrange equation forr0(z) in Eq. ~21!
with the above form for f (r) yields the well-known
hyperbolic-tangent profile6,19

r0~z!5rc2
Dr

2
tanh~z/2j!, ~27!

where the density differenceDr and bulk correlation length
j, which is a measure of the thickness of the interface, are
given by

~Dr!25 3
2~x2xc!, ~28a!

j5 1
6A6 ~x2xc!

2 1/2. ~28b!

Within the van der Waals theory, the values for the interfa-
cial tension of the planar interface and rigidity constants
have already been calculated,9 and we can simply insert the
above expression forr0 in Eq. ~22!. Using Eq.~28! for Dr
andj, this gives

g05
xc

18

~Dr!2

j
5

1

6
A6~x2xc!

3/2, ~29a!

kc52
xc

54
~p223!~Dr!2j5

21

108
A6~p223!~x2xc!

1/2,

~29b!

k̄5
xc

54
~p226!~Dr!2j5

1

108
A6 ~p226!~x2xc!

1/2,

~29c!

where Eq.~29a! recovers the familiar mean-field result for
the interfacial tension of the planar interface.19 The
asymptotic expressions Eq.~29! are the dashed curves in
Figs. 1 and 2.

V. DISCUSSION

From a quasithermodynamic route we derived mechani-
cal expressions for the interfacial tension and the rigidity
constants. These are evaluated from a lattice-gas model for a
simple liquid–vapor interface. The results are given by the
symbols in Figs. 1 and 2.

It is shown that the free energy of the one-component
lattice-gas model is the discretized version of the well-
known van der Waals free-energy functional. The continuous
version of this free energy is expanded up to second order in
the curvature. Comparison with the Helfrich equation yields
independent expressions for the interfacial tension of the pla-
nar interface and the rigidity constants in terms of~deriva-
tives of! the density profile of the planar interface. These
results are given by the solid lines in Figs. 1 and 2. Inserting
a series expansion of the free-energy density up to fourth
order around the critical density in the van der Waals expres-
sions gives analytical expressions for the interfacial tension
of the planar interface and the rigidity constants. These are
given by the dashed lines in Figs. 1 and 2.

The interfacial tension of the planar liquid–vapor inter-
face, g0, has been studied extensively before.19 As clearly
shown in Fig. 1, all three models have the same known
mean-field behavior in the vicinity of the critical pointxc

52. Away from the critical point, nonlocal effects must be
included and the analytical solution, which does not account
for that, deviates from the other two. Further away from the
critical point (*1.2xc) the density profile in the interfacial
region becomes steeper and the square gradient term in the
van der Waals expression for the free energy is not sufficient
to account for this rapidly varying density profile, higher
order derivatives of the density profile should be included.
This is accounted for in the lattice-gas expression for the free
energy by the contact fraction, as can be seen from the trun-
cated series expansion in Appendix B. Consequently, only
the lattice-gas model gives the appropriate linear behavior far
away from the critical point. This accounts for the differ-
ences between square gradient and the more exact integral-
functional theory as already known in the literature.20 Some
progress can be made in the van der Waals description by
adding a square Laplacian.9,21

We found that using Eq.~11a! in the lattice-gas model
gave a vanishing Tolman length or spontaneous curvature,
J0 . This must be the case from symmetry arguments17 and
has also been found for the van der Waals theory, as follows
from Eq. ~22b!.9
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The bending modulus,kc , determined from the lattice-
gas model found from Eq.~11b!, is in good quantitative
agreement with the ones found from the van der Waals
theory, Eq.~22c!, up to the interaction parameter where the
higher order derivatives of the density profile become impor-
tant (x&1.2xc). The saddle-splay modulus,k̄, found from
Eq. ~11c! is also in good qualitative agreement with the ones
found from the van der Waals theory, Eq.~22d!, in the re-
gion where the latter is valid.

In the region where all the above-mentioned theories are
valid, they gave identical and physically relevant results for
the interfacial tension of the planar interface and the bending
constants. The van der Waals expressions, Eq.~22!, are
within a mean-field approximation for the pair density, con-
sistent with the rigidity constants found from the virial route
to the rigidity constants.9 Gompperet al.7 derived expres-
sions that were very reminiscent of Eq.~22!. They defined a
free-energy density, in this particular case for instance
(x/3) @r08#2, as the tangential pressure profile,pT(z). Szlei-
fer et al. did the same with their free-energy density5 to ar-
rive at the same expressions for the rigidity constants as from
the principle of virtual work.6 It is therefore concluded that
the rigidity constants as given by Eq.~11! are consistent with
all the previously mentioned models within the mean-field
approximation.

ACKNOWLEDGMENTS

F.A.M. Leermakers is gratefully acknowledged for his
discussions on the meaning of the bending modulus in
simple liquid–vapor interfaces. The work of S.M.O. was
supported by the Netherlands Organization for Scientific Re-
search Chemical Sciences~NWO/CW!. The research of
E.M.B. has been made possible by a fellowship of the Royal
Netherlands Academy of Arts and Sciences.

APPENDIX A: DISCRETIZED BENDING MOMENTS

In Sec. II the bending moments were found as given by
Eqs.~10a!, ~10b!, and~10c!. Because the tangential pressure
pT(r ) was identified with the grand potential density from
Eq. ~12!, it is constant within one layer. Consequently, a
bending moment can be written as a sum over all layers. The
zeroth bending moment is simply given by

P05E ~pab2pT~R!!dR

5(
z
E

z21

z

~pab2pT~z!!dR5(
z

~pab2pT~z!!.

~A1!

As before,pab equalspa up to the dividing plane andpb

beyond, where both bulk pressures are given by Eq.~16!.
The integral in Eq.~10a! is thus effectively replaced by a
summation. However, this cannot be done for the first bend-
ing moment

P15E ~R2Rs!~pab2pT~R!!dR

5(
z
E

z21

z

~R2Rs!~pab2pT~z!!dR

5(
z

1
2 R22RsRuz21

z ~pab2pT~z!!

5(
z

~z2Rs2
1
2!~pab2pT~z!!. ~A2!

Owing to the discretization, an extra factor 1/2 comes in
when replacing the integral by a summation. Analogously, it
is found that the second bending moment in the lattice-gas
model is given by

P25(
z

~~z2Rs!
22~z2Rs2

1
3!!~pab2pT~z!!. ~A3!

APPENDIX B: CONTINUOUS VERSION OF THE
LATTICE GRAND POTENTIAL

SinceL(z)v0 is the volume of a layer, the summation
over all layers of the grand potential density, as given by Eq.
~12!, is equivalent to a volume integral in continuous space.
In that continuous limit, the discrete density profilef(z)
reduces tor(r ). For slowly varying densities, the continuous
density profile may be approximated by a second-order se-
ries expansion around the local discrete densities. Substitu-
tion in the contact fraction, as defined in Eq.~14!, gives

^f~z!&[l21~z!f~z21!1l0~z!f~z!1l1~z!f~z11!

'l21~z!~r~r !2 l“r~r !1 1
2l

2¹2r~r !!

1l0~z!r~r !

1l1~z!~r~r !1 l“r~r !1 1
2l

2¹2r~r !!

5r~r !1l1l 2¹2r~r !, ~B1!

where we implicitly assumed a planar lattice, i.e.,l21

5l1 , and used the fact that the sum of the transition prob-
abilities l equals unity. Integration by parts gives

(
z51

M

L~z!f~z!x^f~z!&

>E
a

bdr

v0
@xr~r !22xl1l 2u“r~r !u2#, ~B2!

where use has been made of the fact that the density gradient
vanishes in both bulk phasesa (z<1) andb (z>M ). In-
serting this into Eq.~12! yields the well-known van der
Waals free-energy functional for inhomogeneous systems. In
this paper, we reduce this to the standard van der Waals form
for the grand potential

V

kBT
5E dr

v0
@xl1l 2u“r~r !u21r~r !ln r~r !

1~12r~r !!ln~12r~r !!2xr~r !21xr~r !2mr~r !#.

~B3!
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