*Single-Mode Delay Time Statistics for Scattering by a Chaotic Cavity

K J H van Bemmel, H Schomerus and C W J Beenakker
Instituut-Lorentz Universiteit Leiden, PO Box 95062300 RA Leiden The Netherlands

Recelved September 12000
pacs ref $0545 \mathrm{Mt}, 4225 \mathrm{Dd}, 4225 \mathrm{~Hz}$

Abstract

We investigate the low-frequency dynamics for transmission or reflection of a wave by a cavity with chaotic scattering We compute the probability distrıbution of the phase derivative $\phi=\mathrm{d} \phi / \mathrm{d} \omega$ of the scattered wave amplitude, known as the single-mode delay tume In the case of a cavity connected to two single-mode waveguides we find a marked distinction between detection in transmission and in reflection The distribution $P\left(\phi^{\prime}\right)$ vanishes for negative ϕ^{\prime} in the first case but not in the second case

1. Introduction

Microwave cavities have proven to be a good experimental testing ground for theories of chaotic scattering [1] Much work has been done on static scattering properties, but recently dynamic features have been measured as well [2] A key dynamical observable, introduced by Genack and coworkers [3-5], is the frequency derivative $\phi^{\prime}=\mathrm{d} \phi / \mathrm{d} \omega$ of the phase of the wave amplitude measured in a single speckle of the transmitted or reflected wave Because one speckle corresponds to one element of the scattering matrix, and because ϕ^{\prime} has the dimension of time, this quantity is called the single-channel or single-mode delay time It is a linear superposition of the Wigner-Smith delay times introduced in nuclear physics [6,7]

The probability distribution of the Wigner-Smith delay tımes for scatterıng by a chaotic cavity is known [8] The purpose of this paper is to derive from that the distribution $P\left(\phi^{\prime}\right)$ of the single-mode delay time The calculation follows closely our previous calculation of $P\left(\phi^{\prime}\right)$ for reflection from a disordered waveguide in the localized regime [9] The absence of localization in a chaotic cavity is a significant simplification For a small number of modes N connecting the cavity to the outside we can calculate $P\left(\phi^{\prime}\right)$ exactly, while for $N \gg 1$ we can use perturbation theory in $1 / N$ The large- N distribution has the same form as that following from diffusion theory in a disordered waveguide [4,5], but for small N the distribution is qualitatively different In particular, there is a marked distinction between the distribution in transmission and in reflection

2. Formulation of the problem

The geometry studied is shown schematically in $\mathrm{F}_{1} \mathrm{~g} 1$ It consists of an N-mode waveguide connected at one end to a chaotic cavity Reflections at the connection between waveguide and cavity are neglected (ideal impedance matching) The N modes may be divided among different waveguides, for example, $N=2$ could refer to two single-mode waveguides The cavity may contain a ferrimagnetic element as in Refs [10,11], in which case time-reversal symmetry is broken The symmetry index
$\beta=1$ (2) indicates the presence (absence) of time-reversal symmetry We assume a single polarization for simplicity, as in the microwave experiments in a planar cavity [2]

The dynamical observable is the correlator ρ of an element of the scattering matrix $S(\omega)$ at two nearby frequencies,
$\rho=S_{n m}\left(\omega+\frac{1}{2} \delta \omega\right) S_{n m}^{*}\left(\omega-\frac{1}{2} \delta \omega\right)$

The indices n and m indicate the detected outgoing mode and the incident mode, respectively The single-mode delay time ϕ^{\prime} is defined by [3-5]
$\phi^{\prime}=\lim _{\delta \omega \rightarrow 0} \frac{\operatorname{Im} \rho}{\delta \omega I}$,
with $I=\left|S_{n m}(\omega)\right|^{2}$ the intensity of the scattered wave in mode n for unit incident intensity in mode m If we write the scattering amplitude $S_{n m}=\sqrt{I} \mathrm{e}^{1 \phi}$ in terms of amplitude and phase, then $\phi^{\prime}=\mathrm{d} \phi / \mathrm{d} \omega$ We will investigate the distribution of ϕ^{\prime} in an ensemble of chaotic cavities having slightly different shape, at a given mean frequency interval Δ between the cavity modes For notational convenience, we choose units of time such that $2 \pi / \Delta \equiv 1$

The single-mode delay times are linearly related to the Wigner-Smith [6,7] delay tımes $\tau_{1}, \tau_{2}, ., \tau_{N}$, which are the ergenvalues of the matrix
$Q=-1 S^{\dagger} \frac{\mathrm{d} S}{\mathrm{~d} \omega}=U^{\dagger} \operatorname{diag}\left(\tau_{1}, \quad, \tau_{N}\right) U$

To see this, we first expand the scattering matrix linearly in $\delta \omega$,
$S\left(\omega \pm \frac{1}{2} \delta \omega\right)=V^{T} U \pm \frac{1}{2} 1 \delta \omega V^{T} \mathrm{~d} 1 \mathrm{ag}\left(\tau_{1}, \quad ., \tau_{N}\right) U$
Since S is symmetric for $\beta=1$, one then has $V=U$ For $\beta=2, V$ and U are statistically independent Combination

Fig 1 Sketch of a chaotic cavity coupled to N propagating modes via one or more waveguides The shape of the cavity is the quartered Sinal billiard used in recent microwave experiments [2]
of Eqs. (1), (2), and (4) leads to [9]
$I=\left|\sum_{i} u_{i} v_{l}\right|^{2}, \phi^{\prime}=\operatorname{Re} \frac{\sum_{i} \tau_{l} u_{i} v_{i}}{\sum_{j} u_{j} v_{J}}$,
$u_{t}=U_{t m}, v_{l}=V_{m}$.
The distribution of the Wigner-Smith delay times for a chaotic cavity was calculated in Ref. [8]. It is a Laguerre ensemble in the rates $\mu_{t}=1 / \tau_{i}$,
$P\left(\mu_{1}, \ldots, \mu_{N}\right) \propto \prod_{l<j}\left|\mu_{l}-\mu_{J}\right|^{\beta} \prod_{k} \mu_{k}^{\beta N / 2} \exp \left(-\frac{1}{2} \beta \mu_{k}\right) \theta\left(\mu_{k}\right)$.
The step function $\theta(x)=1$ for $x>0$ and $\theta(x)=0$ for $x<0$. It follows from Eq. (7) that $\left\langle\sum_{i} \tau_{t}\right\rangle=1$, a result that was known previously [12].

To calculate the joint distribution $P\left(I, \phi^{\prime}\right)$ from Eq. (5), we also need the distribution of the coefficients u_{t} and v_{l}. This follows from the Wigner conjecture [13], proven in Ref. [8], according to which the matrices U and V are uniformly distributed in the unitary group. The calculation for small N is now a straightforward integration, see Section 3. For large N we can use perturbation theory, see Section 4.

Because of the uniform distribution of U and V, independent of the τ_{l} 's, we can evaluate the average of ϕ^{\prime} directly for any N,
$\left\langle\phi^{\prime}\right\rangle=\operatorname{Re}\left\langle\sum_{i} \tau_{i}\left\langle\frac{u_{t} v_{l}}{\sum_{j} u_{j} v_{J}}\right\rangle\right\rangle=\left\langle\sum_{i} \tau_{t} \frac{1}{N}\right\rangle=\frac{1}{N}$.
We define the rescaled variable $\hat{\phi}^{\prime}=\phi^{\prime} /\left\langle\phi^{\prime}\right\rangle=N \phi^{\prime}$, that we will use in the next sections.

3. Small number of modes

For $N=1$ there is no difference between the Wigner-Smith delay time and the single-mode delay time. In that case $I=1$ and $\phi^{\prime}=\phi^{\prime}$ is distributed according to $[14,15]$
$P\left(\hat{\phi}^{\prime}\right)=c_{\beta}{\hat{\phi^{\prime}}}^{-2-\beta / 2} \exp \left(-\frac{1}{2} \beta / \hat{\phi}^{\prime}\right) \theta\left(\hat{\phi}^{\prime}\right)$.
The normalization coefficient c_{β} equals $(2 \pi)^{-1 / 2}$ for $\beta=1$ and 1 for $\beta=2$.
Now we turn to the case $N=2$. By writing out the summation in Eq. (5) for I and ϕ^{\prime}, one obtains $\phi^{\prime}=\tau_{+}+\alpha \tau_{-}$ with $\tau_{ \pm}=\frac{1}{2}\left(\tau_{1} \pm \tau_{2}\right)$ and
$I=\left|u_{1}\right|^{2}\left|v_{1}\right|^{2}+\left|u_{2}\right|^{2}\left|v_{2}\right|^{2}+u_{1} u_{2}^{*} v_{1} v_{2}^{*}+u_{1}^{*} u_{2} v_{1}^{*} v_{2}$,
$\alpha=\left(\left|u_{1}\right|^{2}\left|v_{1}\right|^{2}-\left|u_{2}\right|^{2}\left|v_{2}\right|^{2}\right) / I$.
To find the joint distribution $P(I, \alpha)$ we parametrize U in terms of 4 independent angles,
$U=\left(\begin{array}{cc}\cos \gamma \exp \left(-\mathrm{i} \alpha_{1}\right) & \sin \gamma \exp \left(-\mathrm{i} \alpha_{1}-\mathrm{i} \alpha_{2}\right) \\ -\sin \gamma \exp \left(-\mathrm{i} \alpha_{3}+\mathrm{i} \alpha_{2}\right) & \cos \gamma \exp \left(-\mathrm{i} \alpha_{3}\right)\end{array}\right)$,
with $\alpha_{t} \in(0,2 \pi)$ and $\gamma \in(0, \pi / 2)$. The invariant measure $\mathrm{d} \mu \propto|\operatorname{Det} g| \mathrm{d} \gamma \prod_{l} \mathrm{~d} \alpha_{t}$ in the unitary group follows from the metric tensor g, defined by
$\operatorname{Tr} \mathrm{d} U \mathrm{~d} U^{\dagger}=\sum_{l, j} g_{l J} \mathrm{~d} x_{l} \mathrm{~d} x_{j}, \quad\left\{x_{l}\right\}=\left\{\gamma, \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$.

The result is
$\mathrm{d} \mu \propto \sin 2 \gamma \mathrm{~d} \gamma \prod_{l} \mathrm{~d} \alpha_{l}$.
The joint distribution function $P\left(\tau_{+}, \tau_{-}\right)$follows from Eq. (7). For $\beta=1$ one has

$$
\begin{align*}
P\left(\tau_{+}, \tau_{-}\right)= & \frac{1}{12}\left|\tau_{-}\right|\left(\tau_{+}^{2}-\tau_{-}^{2}\right)^{-4} \tag{15}\\
& \times \exp \left(-\tau_{+}\left(\tau_{+}^{2}-\tau_{-}^{2}\right)^{-1}\right) \theta\left(\tau_{+}-\left|\tau_{-}\right|\right)
\end{align*}
$$

while for $\beta=2$

$$
\begin{align*}
P\left(\tau_{+}, \tau_{-}\right)= & \frac{1}{3} \tau_{-}^{2}\left(\tau_{+}^{2}-\tau_{-}^{2}\right)^{-6} \\
& \times \exp \left(-2 \tau_{+}\left(\tau_{+}^{2}-\tau_{-}^{2}\right)^{-1}\right) \theta\left(\tau_{+}-\left|\tau_{-}\right|\right) \tag{16}
\end{align*}
$$

First we consider the case $\beta=1, n \neq m$. Because of the unitarity of U, one has $\left|v_{1}\right|^{2}=\left|u_{2}\right|^{2}$ and $\left|v_{2}\right|^{2}=\left|u_{1}\right|^{2}$. Therefore $\alpha=0$ and $\phi^{\prime}=\tau_{+}$, so ϕ^{\prime} is independent of I. Integration of Eq. (15) over τ_{-}results in
$P\left(\hat{\phi}^{\prime}\right)=\frac{2}{3} \hat{\phi}^{\prime-5}\left(\hat{\phi}^{2}+2 \hat{\phi}^{\prime}+2\right) \exp \left(-2 / \hat{\phi}^{\prime}\right) \theta\left(\hat{\phi}^{\prime}\right)$.
In this case (as well as in the case $N=1$), $\hat{\phi}^{\prime}$ can take on only positive values, but this is atypical, as we will see shortly. From Eqs. (10) and (12) we find the relation between I and the parametrization of U,
$I=\sin ^{2} 2 \gamma \sin ^{2}\left(\alpha_{3}-\alpha_{1}-\alpha_{2}\right)$.
The distribution of I resulting from the measure (14) is
$P(I)=\frac{1}{2} I^{-1 / 2} \theta(I) \theta(1-I)$,
in agreement with Refs. [16,17].
For the case $N=2, \beta=1, n=m$ we use that $u_{1}=v_{1}$, $u_{2}=v_{2}$ and obtain the parametrization
$I=1-\sin ^{2} 2 \gamma \sin ^{2}\left(\alpha_{3}-\alpha_{1}-\alpha_{2}\right)$,
$\alpha=(\cos 2 \gamma) / I$.
The distribution $P(I, \alpha)$ resulting from the measure (14) is
$P(I, \alpha)=\frac{1}{2 \pi} I^{1 / 2}(1-I)^{-1 / 2}\left(1-I \alpha^{2}\right)^{-1 / 2} \theta(I) \theta(1-I) 0\left(1-I \alpha^{2}\right)$.

The joint distribution of I and $\hat{\phi}^{\prime}=2 \phi^{\prime}$ takes the form

$$
\begin{align*}
P\left(I, \hat{\phi}^{\prime}\right)= & \int_{0}^{\infty} \mathrm{d} \tau_{-} \\
& \times \int_{\tau_{-}}^{\infty} \mathrm{d} \tau_{+} P\left(\tau_{+}, \tau_{-}\right) P\left(I, \alpha=\frac{\hat{\phi}^{\prime} / 2-\tau_{+}}{\tau_{-}}\right) \frac{1}{\tau_{-}} \tag{23}
\end{align*}
$$

The distribution of I following from integration of $P(I, \alpha)$ over α is given by Eq. (19) with $I \rightarrow 1-I$, as it should. The integrations over τ_{+}, τ_{-}, and I, needed to obtain $P\left(\hat{\phi}^{\prime}\right)$ can be evaluated numerically, see Fig. 2 . Notice that $P\left(\phi^{\prime}\right)$ has a tail towards negative values of $\hat{\phi}^{\prime}$.

Flg 2 Distribution of the single-mode delay time in the case of preserved time-reversal symmetry $(\beta=1)$ The curves for $N=1,2$ follow from Eqs (9), (17), and (23) The curve for $N \gg 1$ follows from Eq (36), and is the same for $n=m$ and $n \neq m$ The delay tume $\hat{\phi}=\phi^{\prime} /\left\langle\phi^{\prime}\right\rangle$ is rescaled such that the mean is 1 for all curves Data points are the result of a Monte Carlo calculation in the Laguerre ensemble (with $N=400 n \neq m$ representing the large- N limit)

For $N=2, \beta=2$ it doesn't matter whether n and m are equal or not Parametrization of both U and V leads to
$I=\left(1-x_{1}\right)\left(1-x_{2}\right)+x_{1} x_{2}+2 \sqrt{\left(1-x_{1}\right)\left(1-x_{2}\right) x_{1} x_{2}} \cos \eta$,
$\alpha=\left(1-x_{1}-x_{2}\right) / I$,
with a measure $\mathrm{d} \mu \propto \mathrm{d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} \eta$ and $x_{1}, x_{2} \in(0,1), \eta \in(0, \pi)$ The joint distribution $P(I, \alpha)$ is now given by
$P(I, \alpha)=\frac{1}{2} I^{1 / 2} \theta(I) \theta(1-I) \theta\left(1-I \alpha^{2}\right)$
Integration over α leads to [16,17]
$P(I)=\theta(I) \theta(1-I)$
The distribution $P\left(I, \hat{\phi}^{\prime}\right)$ follows upon insertion of Eqs (16) and (26) into Eq (23) Numerical integration yields the distribution $P\left(\hat{\phi}^{\prime}\right)$ plotted in Fig 3 As in the previous case, there is a tall towards negative $\hat{\phi}^{\prime}$

4. Large number of modes

We now calculate the joint distribution $P\left(I, \phi^{\prime}\right)$ for $N \gg 1$ First the case $n \neq m$ will be considered, when there is no distinction between $\beta=1$ and $\beta=2$ In the large N-limit the vectors \boldsymbol{u} and \boldsymbol{v} become uncorrelated and their elements become independent Gaussian numbers with zero mean and variance $1 / N$ We first average over v, following Ref [9] We introduce the weighted delay time $W=I \phi^{\prime}$ The Fourier transform of $P(I, W)$ is given by $\chi(p, q)=$ $\langle\exp (1 p I+1 q W)\rangle$ The average over \mathbf{v} is a Gaussian integration, that gives
$\chi(p, q)=\left\langle\operatorname{det}(1-1 H / N)^{-1}\right\rangle$,
$H=p \boldsymbol{u}^{*} \boldsymbol{u}^{\mathrm{T}}+\frac{1}{2} q\left(\overline{\boldsymbol{u}}^{*} \boldsymbol{u}^{\mathrm{T}}+\boldsymbol{u}^{*} \overline{\boldsymbol{u}}^{\mathrm{T}}\right)$,
where $\bar{u}_{l}=u_{t} \tau_{t}$ The matrix H has only two nonzero

Fig 3 Same as in Fig 2, for broken time-reversal symmetry $(\beta=2)$ The curves for $N=12$ and for $N \gg 1$ follow from Eqs (9), (23), and (36) There is no difference between $n=m$ and $n \neq m$ for any N The large N-result for $\beta=2$ is the same as for $\beta=1$
elgenvalues,
$\lambda_{ \pm}=\frac{1}{2}\left(q B_{1}+p \pm \sqrt{2 p q B_{1}+q^{2} B_{2}+p^{2}}\right)$,
$B_{k}=\sum_{t}\left|u_{i}\right|^{2} \tau_{t}^{k}$
Performing the inverse Fourier transforms and returning to the variables ϕ^{\prime} and I leads to

$$
\begin{align*}
P\left(I, \phi^{\prime}\right)= & \left(N^{3} I / \pi\right)^{1 / 2} \exp (-N I) \\
& \times\left\langle\left(B_{2}-B_{1}^{2}\right)^{-1 / 2} \exp \left(-N I \frac{\left(\phi^{\prime}-B_{1}\right)^{2}}{B_{2}-B_{1}^{2}}\right)\right\rangle \theta(I) \tag{32}
\end{align*}
$$

The averages over u_{1} and τ_{l} stll have to be performed
Up to now the derivation is the same as for the disordered waveguide in the localized regime [9], the only difference being the different distribution of the Wigner-Smith delay times τ_{l} The absence of localization in a chaotic cavity greatly simplifies the subsequent calculation in our present case While in the localized waveguide anomalously large τ_{t} 's lead to large fluctuations in B_{1} and B_{2}, in the chaotic cavity the term $\mu_{k}^{\beta N / 2}$ in Eq (7) suppresses large delay tımes Fluctuations in B_{k} are smaller than the mean by a factor $1 / \sqrt{N}$ For $N \gg 1$ we may therefore replace B_{k} in Eq (32) by $\left\langle B_{k}\right\rangle$

To calculate the average of B_{1} and B_{2} we need the density $\rho(\tau)=\left\langle\sum_{i} \delta\left(\tau-\tau_{l}\right)\right\rangle$ of the delay times It is given by [8]
$\rho(\tau)=\frac{N}{2 \pi \tau^{2}} \sqrt{\left(\tau_{+}-\tau\right)\left(\tau-\tau_{-}\right)}, \tau_{ \pm}=\frac{3 \pm \sqrt{8}}{N}$,
for τ inside the interval $\left(\tau_{-}, \tau_{+}\right)$The density is zero outside this interval The resulting averages are $\left\langle B_{1}\right\rangle=N^{1}$ and
$\left\langle B_{2}\right\rangle=2 N^{-2}$, which leads to
$P\left(I, \hat{\phi}^{\prime}\right)=\left(N^{3} I / \pi\right)^{1 / 2} \exp \left(-N I\left[1+\left(\hat{\phi}^{\prime}-1\right)^{2}\right]\right) O(I)$
(Recall that $\hat{\phi}^{\prime}=\phi^{\prime} /\left\langle\phi^{\prime}\right\rangle=N \phi^{\prime}$) Integration over $\hat{\phi}^{\prime}$ or I gives
$P(I)=N \exp (-N I) \theta(I)$,
$P\left(\hat{\phi}^{\prime}\right)=\frac{1}{2}\left[1+\left(\hat{\phi}^{\prime}-1\right)^{2}\right]^{3 / 2}$
This distribution of I and $\hat{\phi}^{\prime}$ has the same form as that of a disordered waveguide in the diffusive regime $[4,5]$

We next turn to the case $n=m$ and $\beta=1$ (For $\beta=2$ there is no difference between $n=m$ and $n \neq m$) Since $u_{t}=v_{t}$ in Eq (5) we have
$I=\left|C_{0}\right|^{2}, \quad \phi^{\prime}=\operatorname{Re} \frac{C_{1}}{C_{0}}, C_{k}=\sum_{i} \tau_{l}^{k} u_{t}^{2}$
The joint distribution $P\left(C_{0}, C_{1}\right)$ has the Fourier transform

$$
\begin{align*}
& \chi\left(p_{0}, p_{1}, q_{0}, q_{1}\right) \\
& \quad=\left\langle\exp \left(1 p_{0} \operatorname{Re} C_{0}+1 q_{0} \operatorname{Im} C_{0}+1 p_{1} \operatorname{Re} C_{1}+1 q_{1} \operatorname{Im} C_{1}\right)\right\rangle \tag{38}
\end{align*}
$$

Averaging over \boldsymbol{u} we find
$\chi\left(p_{0}, p_{1}, q_{0}, q_{1}\right)=\langle\exp (-L)\rangle$,
$L=\frac{1}{2} \sum_{l} \ln \left[1+N^{-2}\left(p_{0}+p_{1} \tau_{l}\right)^{2}+N^{-2}\left(q_{0}+q_{1} \tau_{l}\right)^{2}\right]$
Fluctuations in L are smaller than the average by a factor $1 / N$ We may therefore approximate $\langle\exp (-L)\rangle \approx$ $\exp \langle-L\rangle$ Because $N^{-2}\left(p_{0}+p_{1} \tau_{l}\right)^{2}+N^{-2}\left(q_{0}+q_{1} \tau_{l}\right)^{2}$ is of order $1 / N$, we may expand the logarithm in Eq (40) The average follows upon integration with the density (33),
$\langle L\rangle=\frac{p_{0}^{2}+q_{0}^{2}}{2 N}+\frac{p_{1}^{2}+q_{1}^{2}}{N^{3}}+\frac{p_{0} p_{1}+q_{0} q_{1}}{N^{2}}$
Inverse Fourier transformation gives
$P\left(C_{0}, C_{1}\right)=\frac{N^{4}}{(2 \pi)^{2}} \exp \left(-N\left|C_{0}\right|^{2}-\frac{1}{2} N^{3}\left|C_{1}\right|^{2}+N^{2} \operatorname{Re} C_{0} C_{1}^{*}\right)$

The resulting distribution of $\hat{\phi}^{\prime}$ and I is

$$
\begin{equation*}
P\left(I, \hat{\phi}^{\prime}\right)=\left(N^{3} I / 2 \pi\right)^{1 / 2} \exp \left(-\frac{1}{2} N I\left[1+\left(\hat{\phi}^{\prime}-1\right)^{2}\right]\right) \theta(I) \tag{43}
\end{equation*}
$$

It is the same as the distribution (34) for $n \neq m$, apart from the rescaling of I by a factor of 2 as a result of coherent backscattering

The distribution (36) of $\hat{\phi}^{\prime}$ for $N \gg 1$ is included in Figs 2 and 3 for comparison with the small N-results

5. Numerical check

We can check our analytical calculations by performing a Monte Carlo average over the Laguerre ensemble for the τ_{t} 's and the unitary group for the u_{l} 's and v_{l} 's For the average over the unitary group we generate a large number of complex Hermitian $N \times N$ matrices H The real and

1magmary part of the off-diagonal elements are indepen* dently Gaussian distributed with zero mean and unit variance The real diagonal elements are independently Gaussian distributed with zero mean and variance 2 We diagonalize H, order the eigenvalues from large to small, and multiply the n-th normalized eigenvector by a random phase factor $\mathrm{e}^{1 \alpha_{n}}$, with α_{n} chosen unformly from ($0,2 \pi$) The resulting matrix of eigenvectors is uniformly distributed in the unitary group

The Laguerre ensemble (7) for the rates $\mu_{i}=1 / \tau_{l}$ can be generated by a random matrix of the Wishart type $[18,19]$ Consider a $N \times(2 N-1+2 / \beta)$ matrix X, where X is real for $\beta=1$ and complex for $\beta=2$ (The matrix X is netther symmetric nor Hermitian) The matrix elements are Gaussian distributed with zero mean and variance $\left.\left.\langle | x_{n m}\right|^{2}\right\rangle=1$ The joint probability distribution of the ergenvalues of the matrix $X X^{\dagger}$ is then given by Eq (7) The results of our numerical check are included in Figs 2 and 3 The large- N limit is represented by $N=400$, $n \neq m$ The analytical curves agree well with the numerical data

6. Conclusion

We have investigated the statistics of the single-mode delay time ϕ^{\prime} for chaotic scattering For a large number N of scattering channels the distribution has the same form as for diffusive scattering [4,5], but for small N the distribution is different The case $N=2$ is of particular interest, representing a cavity connected to two single-mode waveguides For preserved time-reversal symmetry and detection in transmission $(\beta=1, n \neq m)$, we find that ϕ^{\prime} can take on only positive values, similarly to the WignerSmith delay times In contrast, for detection in reflection (or for broken time-reversal symmetry) the distribution acquires a tall towards negative ϕ^{\prime} These theoretical predictions are amenable to experimental test in the microwave cavities of current interest [2]

Acknowledgements

We thank P W Brouwer and M Patra for valuable advice This research was supported by the "Nederlandse organısatie voor Wetenschappelık Onderzoek" (NWO) and by the "Stichting voor Fundamenteel Onderzoek der Materıe" (FOM)

References

1 Stockmann, H -J ,"Quantum Chaos - An Introduction", (Cambridge University, Cambridge, 1999)
2 Persson, E, Rotter, I, Stockmann, H -J and Barth, M, Phys Rev Lett 85, 2478 (2000)
3 Sebbah, P, Legrand, O and Genack, A Z, Phys Rev E 59, 2406 (1999)

4 Genack, A Z, Sebbah, P, Stoytchev, M and van Tiggelen, B A, Phys Rev Lett 82, 715 (1999)
5 van Tiggelen, B A, Sebbah, P, Stoytchev, M and Genack, A Z, Phys Rev E 59, 7166 (1999)
6 Wigner, E P, Phys Rev 98, 145 (1955)
7 Smith, F T, Phys Rev 118, 349 (1960)
8 Brouwer, P W, Frahm, K M and Beenakker, C W J, Phys Rev Lett 78, 4737 (1997), Waves Random Medıa 9, 91 (1999)
9 Schomerus, H, van Bemmel, K J H and Beenakker, C W J, condmat/0004049

- 282 K J H van Bemmel, H Schomerus and C W J Beenakker
- 10 So, P, Anlage, S M, Ott, E and Oerter, R N, Phys Rev Lett 74, 15 Gopar, V A Mello, P A and Buttiker, M, Phys Rev Lett 77, 3005 2662 (1995) (1996)
11 Stoffregen, U, Sten, J, Stockmann, H-J, Kus, M and Haake, F, 16 Baranger, H U and Mello, P A, Phys Rev Lett 73, 142 (1994) Phys Rev Lett 74, 2666 (1995)

17 Jalabert, R A, Pichard, J -L and Beenakker, C W J, Europhys Lett 27, 255 (1994)
12 Lyuboshitz, V L, Phys Lett B 72, 41 (1977)
13 Wigner, E P, Ann Math 53, 36 (1951) 55, 7 (1952).
18 Edelman, A, Lınear Algebra Appl 159, 55 (1991)
14 Fyodorov, Y V and Sommers, H-J, Phys Rev Lett 76, 4709 (1996)

19 Baker, T H, Forrester, P J and Pearce, P A, J Phys A 31, 6087 (1998)

