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Abstract

We investigate the low-frequency dynamics for transmission or reflection of a
wave by a cavity with chaotic scattering We compute the probability distri-
bution of the phase derivative ¢ = d¢/dw of the scattered wave amplitude,
known as the single-mode delay time In the case of a cavity connected
to two single-mode waveguides we find a marked distinction between detec-
tion 1n transmission and 1n reflection The distribution P(¢’) vamishes for
negative ¢’ 1n the first case but not in the second case

1. Introduction

Microwave cavities have proven to be a good experimental
testing ground for theories of chaotic scattering [1] Much
work has been done on static scattering properties, but
recently dynamic features have been measured as well [2]
A key dynamical observable, introduced by Genack and
coworkers [3-5], 1s the frequency denvative ¢’ = d¢/dw
of the phase of the wave amplitude measured 1n a single
speckle of the transmitted or reflected wave Because one
speckle corresponds to one element of the scattering matrix,
and because ¢’ has the dimenston of time, this quantity 1s
called the single-channel or single-mode delay time It 1s
a inear superposition of the Wigner-Smith delay times imtro-
duced in nuclear physics [6,7]

The probability distribution of the Wigner-Smith delay
times for scattering by a chaotic cavity 18 known [8] The
purpose of this paper 1s to derive from that the distribution
P(¢") of the single-mode delay time The calculation follows
closely our previous calculation of P(¢') for reflection from
a disordered waveguide 1n the localized regime [9] The
absence of localization 1n a chaotic cavity 1s a signtficant
stmplification For a small number of modes N connecting
the cavity to the outside we can calculate P(¢’) exactly, while
for N> 1 we can use perturbation theory m 1/N The
large-N distribution has the same form as that following
from diffusion theory in a disordered wavegude [4,5], but
for small N the distribution 1s qualitatively different In par-
ticular, there 1s a marked distinction between the distri-
bution 1n transmission and 1n reflection

2. Formulation of the problem

The geometry studied 1s shown schematically m Fig 1 It
consists of an N-mode waveguide connected at one end
to a chaotic cavity Reflections at the connection between
waveguide and cavity are neglected (1deal impedance
matching) The N modes may be divided among different
wavegudes, for example, N =2 could refer to two
single-mode waveguides The cavity may contain a ferr-
magnetic element as in Refs [10,11], in which case
time-reversal symmetry 1s broken The symmetry index

Physica Seripta T90

f =1 (2) indicates the presence (absence) of time-reversal
symmetry We assume a single polarization for simplicity,
as 1n the microwave experiments 1n a planar cavity [2]
The dynamical observable 1s the correlator p of an element
of the scattering matrix S(w) at two nearby frequencies,

p = Sum(® +16w)S%, (w0 — 1 6w) )
The indices » and m indicate the detected outgoing mode and
the mcident mode, respectively The single-mode delay time

¢’ 15 defined by [3-5]

, Imp
¢ = 5030 5ol @
with T = |S,u(w)* the mtensity of the scattered wave m
mode n for unit mmcident intensity in mode m If we write
the scattering amphtude Sy, = +/7€'¢ 1n terms of amphtude
and phase, then ¢’ = d¢/dw We will mvestigate the distri-
bution of ¢’ 1n an ensemble of chaotic cavities having shghtly
different shape, at a given mean frequency interval A
between the cavity modes For notational convenience,
we choose units of time such that 2n/A =1

The single-mode delay times are hinearly related to the
Wigner-Smith [6,7] delay times 7y, 73, ., Ty, which are the
eigenvalues of the matrix

ds
Q=—15" o= Uldiag(r;, ,tm)U (3)

To see this, we first expand the scattering matrix linearly 1n
ow,

S(w £1éw) = VTU £hidwVTdiag(ty, ., ty)U 4)
2 3

Since S 15 symmetric for f = 1, one then has V' = U For
p =2,V and U are statistically independent Combination

Fig 1 Sketch of a chaotic cavity coupled to N propagating modes via one or
more waveguides The shape of the cavity 1s the quartered Sinai bilhard used
n recent microwave experiments [2]
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of Egs. (1), (2), and (4) leads to [9]

> TV,
I=1) uvl? ¢ = Re=t21, Q)]
Z,: v 2 WY

u, = Uzrna V= Vm- (6)

The distribution of the Wigner-Smith delay times for a
chaotic cavity was calculated in Ref. [8]. It is a Laguerre
ensemble in the rates u, = 1/7,,

Py, o i) o [ [ 11— P T ] ™72 exp(= 3 Buad0(ue).  (7)
1<y k

The step function 6(x) = 1 for x > 0 and 6(x) = 0 for x < 0.
It follows from Eq. (7) that (3>, 7,) =1, a result that was
known previously [12].

To calculate the joint distribution P(I, ¢') from Eq. (5), we
also need the distribution of the coefficients «, and v,. This
follows from the Wigner conjecture [13], proven in Ref. [8],
according to which the matrices U and V are uniformly dis-
tributed in the unitary group. The calculation for small
N is now a straightforward integration, see Section 3.
For large N we can use perturbation theory, see Section 4.

Because of the uniform distribution of U and ¥V, indepen-
dent of the 1,’s, we can evaluate the average of ¢’ directly
for any N,

u,v 1 1
=R A=—))= vl vl
o-r{To{) - (Eea) -y o
We define the rescaled variable d;’ = ¢’ /{¢") = N¢', that we
will use in the next sections.

3. Small number of modes

For N =1 there is no difference between the Wigner-Smith
delay time and the single-mode delay time. In that case
I =1 and ¢’ = ¢’ is distributed according to [14,15]

P(§) = ¢~ exp(= 1 B/8)0($). ©
The normalization coefficient ¢z equals Q@r)~V2 for =1
and 1 for f=2.

Now we turn to the case N = 2. By writing out the sum-
mation in Eq. (5) for I and ¢’, one obtains ¢’ =t + az_
with 74 = %(11 +15) and

(10)

2 2
I = |1 P2 + g |va* + wadsvivi + ufuaviv,

o = (P> — lua P vl /1. (11)

To find the joint distribution P(I, «) we parametrize U in
terms of 4 independent angles,

cos y exp(—ia;)

U= sinyexp(—ia; — i)
T\ —sinyexp(—ias + ixn)

cosyexp(—ias)
(12)
with a, € (0,2n) and y € (0, n/2). The invariant measure

du o< |Det g|dy[],de, in the unitary group follows from
the metric tensor g, defined by

Tr dUAUT = Zgydxzdx], {x.} = {y, 1, 0, 03}.

L]

(13)
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(14)

The result is
dp oc sin2y dy H de,.
t

The joint distribution function P(ry,7.) follows from
Eq. (7). For =1 one has

Pry,t) =&l |(2 - )™

15)
x exp(—T4(t] — TZ_)MI)Q(’H —lz_0), (
while for f =2
P(, 1) =372 (5} =) (16)

x exp(—2t4(t2 — 12)7")0(zy — Iz-)).

First we consider the case =1, n # m. Because of the
unitarity of U, one has |v|? = |uz]? and [v|> = |u1|*. There-
fore « =0 and ¢’ = 1, so ¢' is independent of 1. Integration
of Eq. (15) over 7_ results in

P(¢)) =24 (¢ + 24’ +2) exp(=2/¢)0(d). 17)

In this case (as well as in the case N = 1), ¢’ can take on only
positive values, but this is atypical, as we will see shortly.
From Egs. (10) and (12) we find the relation between 7
and the parametrization of U,

(18)

The distribution of I resulting from the measure (14) is

I = sin® 2y sinz(oz3 — oy — o).

P(I) = L17120()6(1 — 1), (19)

in agreement with Refs. [16,17].
For the case N =2, =1, n=m we use that u = n,
uy = v; and obtain the parametrization

I=1-—sin? 2y sin2(fx3 - — ®2), (20)

o = (cos2y)/I. 2D

The distribution P(I, o) resulting from the measure (14) is

P, “)zzl_n I'2(1 = D721 — 1272600 — DO — 1d?).
(22)

The joint distribution of I and qg’ = 2¢' takes the form

P, §) = /O ” de A
¢,/2—T+>_1_.

OO0
x/ dry P(T+,T_)P(I,OC= - -
(23)

The distribution of I following from integration of P(I, a)
over o is given by Eq. (19) with 7 — 1 — 1, as it should.
The integrations over 7,7, and /, needed to obtain
P(¢) can be evaluated numerically, see Fig. 2. Notice that
P(¢) has a tail towards negative values of ¢'.
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Fig 2 Disinbution of the single-mode delay time 1n the case of preserved
time-reversal symmetry (§ = 1) The curves for N = 1, 2 follow from Eqs (9),
(17), and (23) The curve for N 3> 1 follows from Eq (36), and 1s the same for
n =mand n % m The delay time ¢ = ¢’/(¢") 1s rescaled such that the mean
15 1 for all curves Data pomts are the result of a Monte Carlo calculation
in the Laguerre ensemble (with N =400 7 3 m representing the large-N
hmit)

For N =2, 8 = 2 1t doesn’t matter whether » and m are
equal or not Parametrization of both U and V leads to

I=(1=x) = x)+ x1%2 + 2/ — x1)(1 — x2)x1x2 CO8 7,
(24)
a=(1-x —x)/1, (25)

with a measure du o« dx;dx,dy and x1, x; € (0, 1), 7 € (0, )
The joint distribution P(7, ) 1s now given by

P(1,0) =11'20(16(1 — NO(1 — To?) (26)
Integration over « leads to [16,17]
P =061 -1) 27

The distribution P(J, qg’ ) follows upon msertion of Eqs (16)
and (26) into Eq (23) Numerical mtegration yields the dis-
tribution P(¢') plotted in Fig 3 Asin the previous case, there

1s a tail towards negative ¢’

4. Large number of modes

We now calculate the jomnt distribution P(7, ¢') for N >> 1
First the case n # m will be considered, when there 1s no dis-
tinction between f==1 and f =2 In the large N-limit the
vectors u and v become uncorrelated and their elements
become independent Gaussian numbers with zero mean
and vanance 1/N We first average over v, following
Ref [9] We introduce the weighted delay time W =I¢’
The Fourier transform of P(I, W) 1s given by x(p, q) =

lexp(pI +1gW)) The average over v 1s a Gaussian
integration, that gives

1(p, 9) = (det(1 —LH/N)™), (28)
H =pu*u" +Lq@ u® + ua"), (29)

where #, = u,7, The matnx H has only two nonzero
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Fig 3 Same as in Fig 2, for broken time-reversal symmetry (f = 2) The
curves for N =1 2 and for N > 1 foliow from Egs (9), (23), and (36) There
18 no difference between n =m and n # m for any N The large N-result
for f = 2 1s the same as for =1

eigenvalues,
3a =4 (aB1 +p % V2paBi + PB4 1), (30)
Be=Y_lultf G

Performing the mverse Fourier transforms and returning to
the variables ¢’ and I leads to

P, ¢) = (N*I/m)"/? exp(~NI)

/ — B 2
X <(132 — BY exp (-Nl%;}ig—>>9(z)

(32)

The averages over u, and 7, still have to be performed

Up to now the derivation 1s the same as for the disordered
waveguide 1n the localized regime [9], the only difference
being the different distribution of the Wigner-Smith delay
times 7, The absence of localization in a chaotic cavity
greatly ssmplifies the subsequent calculation 1n our present
case While 1n the localized waveguide anomalously large
7,’s lead to large fluctuations in B; and B, 1n the chaotic
cavity the term ,uﬁN /2 1n Bq (7) suppresses large delay times
Fluctuations 1n B; are smaller than the mean by a factor
1/+/N For N > 1 we may therefore replace B, 1 Eq (32)
by (By)

To calculate the average of By and B, we need the density
p(t) = (3 ,6(1 — 1)) of the delay times It 1s given by [8]

3+4/8

p(7) N

(33)

= 5-7];[—2 (ty — )t —12), T4 =

for 7 inside the interval (v_, 7,) The density 1s zero outside
this interval The resulting averages are (B;) =N 1 and
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(By) = 2N~2, which leads to

P(1, ¢) = (N*1/n)/2 exp(——NI[l 1 — 1)2])0(1) (34)

(Recall that q;' =¢'/(¢) = N¢') Integration over ¢3’ or I
gives

P(I) = N exp(—NDO(D), (35)

2 (36)

P¢) =41 +@ -1’
This distribution of 7 and ¢’ has the same form as that of a
disordered waveguide 1n the diffusive regime [4,5]

We next turn to thecasen = mand f = 1 (For f = 2 there
1s no difference between n =m and n # m ) Since u, = v, 1n
Eq (5) we have

C
I=|C, ¢ =Re F; Ce=) (37)

The joint distribution P(Cy, Cy) has the Fourler transform

x(Po, P1. g0, 1)
= (exp(poReCy +19oImCy + 1p1ReC1 + 191 ImCy))

(38)
Averaging over u we find
x@o, p1, 90, 1) = (exp(—L)), (39)
L=33,n[1+N@+p1t)’ + N(q0 +q1m)"]  (40)

Fluctuations in L are smaller than the average by a factor
1/N  We may therefore approximate (exp(—L))~
exp(—L) Because N~ %(po+pit.)* + N2(qo + q17.)* 18 of
order 1/N, we may expand the logarithm in Eq (40)

The average follows upon integration with the density (33),

_Pi+db_ Pi+dt , popi+qod
N N? N?

Inverse Fourer transformation gives

(L) @41)

N4
P(Co, C)) = Wexp(—Nch2 —1N3C1? + N?Re CoCy)
[
(42)
The resulting distribution of qg’ and 7 18

P, ) = (V172 exp(~ ANT[1 4+ (@ — 1] o)
(43)

It 1s the same as the distribution (34) for »n # m, apart from
the rescaling of I by a factor of 2 as a result of coherent
backscattering )

The distribution (36) of ¢’ for N > 1 1s included n Figs 2
and 3 for comparison with the small N-results

5. Numerical check

We can check our analytical calculations by performing a
Monte Carlo average over the Laguerre ensemble for the
7,’s and the unitary group for the u,’s and v,’s For the aver-
age over the unmitary group we generate a large number
of complex Hermitian N x N matrices H The real and
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mmagmary part of the off-diagonal elements are mdepen"
dently Gaussian distributed with zero mean and unit
variance The real diagonal elements are mdependently
Gaussian distributed with zero mean and variance 2 We
diagonalize H, order the eigenvalues from large to small,
and multiply the n-th normalized eigenvector by a random
phase factor ¢, with o, chosen umformly from (0, 2x)
The resulting matrix of eigenvectors 1s uniformly distributed
in the unitary group

The Laguerre ensemble (7) for the rates y, = 1/7, can be
generated by a random matrix of the Wishart type [18,19]
Consider a N x (2N — 1+ 2/f) matrix X, where X 1s real
for § =1 and complex for § =2 (The matrix X 1s neither
symmetric nor Hermitian) The matrix elements are
Gaussitan distributed with zero mean and variance
(IXml*) =1 The joint probability distribution of the
eigenvalues of the matrix XX' 1s then given by Eq (7)
The results of our numerical check are included n Figs
2 and 3 The large-N limit 1s represented by N =400,
n # m The analytical curves agree well with the numerical
data

6. Conclusion

We have investigated the statistics of the single-mode delay
time ¢’ for chaotic scattering For a large number N of
scattering channels the distribution has the same form as
for diffustve scattering [4,5], but for small N the distribution
18 different The case N =2 1s of particular interest,
representing a cavity connected to two single-mode
waveguides For preserved time-reversal symmetry and
detection 1n transmission (f = 1,n # m), we find that ¢’
can take on only positive values, similarly to the Wigner-
Smuth delay times In contrast, for detection in reflection
(or for broken time-reversal symmetry) the distribution
acquires a tail towards negative ¢’ These theoretical
predictions are amenable to experimental test in the
microwave cavities of current interest [2]
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