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Abstract

We mvestigate the low-frequency dynamics for transmission or reflection of a
wave by a cavity with chaotic scattermg We compute the probabihty distn-
bution of the phase derivative φ = άφ/άω of the scattered wave amphtude,
known äs the smgle-mode delay time In the case of a cavity connected
to two smgle-mode waveguides we find a marked distinction between detec-
tion m transmission and m reflection The distribution Ρ(φ') vamshes for
negative φ' m the first case but not in the second case

β = l (2) mdicates the presence (absence) of time-reversal
symmetry We assume a smgle polanzation for simphcity,
äs m the microwave expenments in a planar cavity [2]

The dynamical observable is the correlator p of an element
of the scattermg matnx S (ω) at two nearby frequencies,

0)

1. Introduction

Microwave cavities have proven to be a good expenmental
testmg ground for theones of chaotic scattermg [1] Much
work has been done on staue scattermg properties, but
recently dynamic features have been measured äs well [2]
A key dynamical observable, introduced by Genack and
coworkers [3-5], is the frequency derivative φ' = άφ/άω
of the phase of the wave amphtude measured in a smgle
speckle of the transmitted or reflected wave Because one
speckle corresponds to one element of the scattermg matnx,
and because φ' has the dimension of time, this quantity is
called the smgle-channel or smgle-mode delay time It is
a linear superposition of the Wigner-Smith delay times intro-
duced m nuclear physics [6,7]

The probabihty distribution of the Wigner-Smith delay
times for scattermg by a chaotic cavity is known [8] The
purpose of this paper is to denve from that the distribution
Ρ(φ') of the smgle-mode delay time The calculation follows
closely our previous calculation of Ρ(φ') for reflection from
a disordered waveguide in the locahzed regime [9] The
absence of locahzation m a chaotic cavity is a sigmficant
simplification For a small number of modes N connectmg
the cavity to the outside we can calculate Ρ(φ') exactly, while
for 7V ̂ > l we can use perturbation theory in l /N The
large-jV distribution has the same form äs that followmg
from diffusion theory m a disordered waveguide [4,5], but
for small N the distribution is quahtatively different In par-
ticular, there is a marked distinction between the distri-
bution m transmission and in reflection

The mdices n and m mdicate the detected outgoing mode and
the mcident mode, respectively The smgle-mode delay time
φ' is defmed by [3-5]

φ' = hm
Imp

Ό δωΐ'
(2)

with 7 = \Snm((o)\2 the mtensity of the scattered wave m
mode n for unit mcident mtensity m mode m If we write
the scattermg amphtude S„m = -v/Je1* m terms of amphtude
and phase, then φ' = άφ/άω We will mvestigate the distri-
bution of φ' m an ensemble of chaotic cavities havmg shghtly
different shape, at a given mean frequency mterval Δ
between the cavity modes For notational convemence,
we choose umts of time such that 2π/Δ = l

The smgle-mode delay times are Imearly related to the
Wigner-Smith [6,7] delay times τ \ , τ ζ , ., IN, which are the
eigenvalues of the matnx

(3)

To see this, we first expand the scattermg matnx Imearly in
δω,

l, .,τΝ)ϋ (4)

Smce S is Symmetrie for β = l, one then has V = U For
β = 2, V and U are statistically mdependent Combmation

2. Formulation of the problem

The geometry studied is shown schematically m Fig l It
consists of an TV-mode waveguide connected at one end
to a chaotic cavity Reflections at the connection between
waveguide and cavity are neglected (ideal impedance
matching) The N modes may be divided among different
waveguides, for example, N = 2 could refer to two
smgle-mode waveguides The cavity may contain a fern-
magnetic element äs m Refs [10,11], m which case
time-reversal symmetry is broken The symmetry mdex

Fig l Sketch of a chaotic cavity coupled to 7V propagatmg modes via one or
more waveguides The shape of the cavity is the quartered Sinai bilhard used
m recent microwave expenments [2]
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of Eqs. (1), (2), and (4) leads to [9]

/ = 2^iT'UiV>

V, M,V,ί—ij J J
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The result is

(5) d^ocsin2y dy]~|da,. (14)

u, = Um, v, = Vm. (6) The joint distribution function Ρ(τ+, τ_) follows from
Eq. (7). For β = l one has

The distribution of the Wigner-Smith delay times for a
chaotic cavity was calculated in Ref. [8]. It is a Laguerre D, Λ ι , ,/ 2 2\-4

" τ τ- — τ - τ ~ τ ,Λ _,
(15)

,. . ,. . , .
ensemble in the rates μ, — l /τ,,

Ρ(μ, , ..., μΝ) α Π ΙΛ - μ/ Π

D, Λ ι , ,/ 2 2
" ντ+> τ-ι — Ϊ9 Ιτ-Κτ+ ~ τ-

χ

exp(- (7)

- Ιτ-Ι)·
(16)

The step function ö(x) = l for χ > 0 and ö(z) = 0 for χ < 0.
It follows from Eq. (7) that (Σ, τ,) = l, a result that was
known previously [12].

Το calculate the joint distribution P(I, φ') from Eq. (5), we
also need the distribution of the coefficients u, and vt. This
follows from the Wigner conjecture [13], proven in Ref. [8], «mtanty of tf one has |v,| = |M2| and|v2 = | M , | . There-

^ = ° and Φ = τ+> s° f l s mdependent of 7. Integration
Eq" (15) over τ" results m

while for β = 2

Ρ(τ+,τ.) = ίτ2_(τ2

+-τ2_Τ6

χ εχρ(-2τ+(τ2

+ - τ2,)'1)

First we consider thi . Because of the

according to which the matrices U and F are uniformly dis-
tributed in the unitary group. The calculation for small
N is now a straightforward Integration, see Section 3. » „ „ Λ *
For large N we can use perturbation theory, see Section 4. Ρ(Φ') = \Φ' (Φ' + 2Φ' + 2) ε\ρ(-2/φ')θ(φ').

Because of the uniform distribution of U and V, indepen-
dent of the T,'S, we can evaluate the average of φ' directly In this case (as wel1 as in the case Ν = ̂ Φ can take on

for anv N

(17)

positive values, but this is atypical, as we will see shortly.
From Eqs. (10) and (12) we find the relation between /

1. (8)

oi3-al-a2). (18)

The distribution of I resulting from the measure (14) is

Ρ(Γ) = \Γ1Ι2Θ(Ι)Θ(\ - /), (19)

We define the rescaled variable φ' = φ'/ (φ') — N φ', that we
will use in the next sections

3. Small number of modes
T-, ,r , .. . ,.„. , . ,, „r ,-, ·., in agreement with Refs. [16,171
For N = l there is no draerence between the Wigner-Smith _ ° . ,T ~ „ ,
, , ... , , . . . j i ^ T .11 4.delay time and the single-mode delay time. In that case

T ! , ΐ, , , · ,· . ·, , , ,· . r i ^ nn7 = 1 and φ = φ is distnbuted according to [14,15]

_ . ,T ~ „ ,
For the case 7 v = 2 , o = l, n = m we use that u\ = v\.

, , · , ·«2 = ^2 and obtam the parametnzationv

--€βφ'-2-^εχρ(-ίβ/φ')θ(φ'). (9)

The normalization coefficient Cß equals (2π)~1/2 for β = l
and l for β = 2.

Now we turn to the case N = 2. By writing out the sum-
mation in Eq. (5) for 7 and φ', one obtains φ' — τ+ + ατ_
with τ± = =(τι ± 12) and

(10)

- «i - «2),

« = (cos2y)/7.

(20)

(21)

The distnbution P(I, «) resulting from the measure (14) is

-̂2π
7)~1/2(1 - 7α2)-1/2θ(7)0(1 - 7)0(1 - 7α2).

(22)

α = (iHil 2^! 2 - |M2|
2|v2|

2)/7. (11) The joint distribution of 7 and φ' = 2φ' takes the form

To find the joint distribution P(I, a) we parametrize U in
p,j ΐ/^ _ fterms of 4 independent angles, Λ

sin j exp(-i«i - i

cosyexp(-ioc3)

(12)
y°° άτ+ Ρ(τ+, τ-)ρ(ΐ, α =

~

(23)
with α, e (Ο, 2π) and y e (0, π/2). The invariant measure
d,u α |Det g\dy f], da, in the unitary group follows from The distribution of 7 following from Integration of P(7, a)
the metric tensor g, defined by over a is given by Eq. (19) with 7 -> l - 7, as it should.

The integrations over τ+, τ_, and 7, needed to obtain
Tr dt/dt/ t = '^gljdxldxj, {x,} — {γ, «ι, α2, «3}· (13) /»(i '̂) can be evaluated numerically, see Fig. 2. Notice that

'>/ ^(φ') has a tail towards negative values of φ'.
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Fig 2 Distribution of the single-mode delay time m the case of preserved
time-reversal symmetry (ß = 1) The curves for 7V = 1,2 follow from Eqs (9),
(17), and (23) The curve for ./V S> l follows from Eq (36), and is the same for
n = m and n ̂  m The delay time φ — Φ'/(Φ')ls rescaled such that the mean
is l for all curves Data pomts are the result of a Monte Carlo calculation
m the Laguerre ensemble (with N = 400 n φ m representmg the large-N
hmit)
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Fig 3 Same äs in Fig 2, for broken time-reversal symmetry (ß = 2) The
curves for 7V = l 2 and for N » l follow from Eqs (9), (23), and (36) There
is no difference between n = m and n φ m for any N The large 7V-result
for ß = 2 is the same äs for ß = l

For N — 2, ß = 2 it doesn't matter whether n and m are
equal or not Parametnzation of both U and K leads to

eigenvalues,

cos η,

(24)

α = (l _ jti _ χ2)/7, (25)

with a measure άμ oc dxidx2d?7 and XL jca e (0, 1), j? e (Ο, π)
The jomt distnbution P(I, a) is now given by

P(I, a) - i 71/20(7)0(1 - 7)0(1 - 7a2) (26)

Integration over α leads to [16,17]

P(/) = 0(7)0(1 - 7) (27)

The distnbution P(I, φ') follows upon msertion of Eqs (16)
and (26) mtq Eq (23) Numerical Integration yields the dis-
tnbution Ρ(φ') plotted in Fig 3 As in the previous case, there

is a tail towards negative φ'

4. Large number of modes

We now calculate the jomt distnbution P(I, φ') for N » l
First the case n φ m will be considered, when there is no dis-
tmction between ß = l and ß = 2 In the large /V-hmit the
vectors H and v become uncorrelated and their elements
become independent Gaussian numbers with zero mean
and vanance l /N We first average over v, followmg
Ref [9] We mtroduce the weighted delay time W = Ιφ'
The Founer transform of P(I, W) is given by χ(ρ, q) —
(exp(ipl + iqW)) The average over v is a Gaussian
Integration, that gives

), (28)

H =/?H*KT +^q(u*ur + H*MT),

where ü, = η,τ, The matnx 77 has only two nonzero
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^ +p ±

= > U,

(30)

(31)

Performing the mverse Founer transforms and returnmg to
the variables φ' and 7 leads to

, φ') = (τΥ37/π)1/2 exp(-7V7)

χ (B2 -

(32)

The averages over u, and τ, still have to be performed
Up to now the denvation is the same äs for the disordered

waveguide in the localized regime [9], the only difference
bemg the different distnbution of the Wigner-Smith delay
times τ, The absence of localization in a chaotic cavity
greatly simplifies the subsequent calculation in our present
case While m the localized waveguide anomalously large
τ/s lead to large fluctuations in B\ and ΒΊ, m the chaotic
cavity the term μ^Ν/2 m Eq (7) suppresses large delay times
Fluctuations in B^ are smaller than the mean by a factor
l /VN For N 3> l we may therefore replace Bk m Eq (32)
by (Bk)

To calculate the average of B\ and ΒΊ we need the density
ρ(τ) = (Σι δ(τ - τ,)} of the delay times It is given by [8]

v (τ+ - τ-), τ± = ·
3±V8

Ν
(33)

for τ mside the interval (τ_, τ+) The density is zero outside
this interval The resultmg averages are (B\) = N ' and
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(B2) = 2N'2, which leads to

P(I, φ') = (7V37/7i)1/2 exp(-7V7[l + (φ' - l)2])ö(7) (34)

(Recall that φ' = φ' /(φ') = Ν φ' ) Integration over φ' or /
gives

7>(7) = 7Vexp(-7V7)Ö(7), (35)

(36)

This distnbution of / and φ' has the same form äs that of a
disordered wavegmde m the diffusive regime [4,5]

We next turn to the case n = m and β = l (For β = 2 there
is no difference between n = m and n ̂  m ) Smce u, = v, in
Eq (5) we have

(37)

The jomt distnbution P(Co, C\) has the Founer transform

imagmary part of the off-diagonal elements are mdepen
dently Gaussian distnbuted with zero mean and unit
vanance The real diagonal elements are mdependently
Gaussian distnbuted with zero mean and variance 2 We
diagonahze H, order the eigenvalues from large to small,
and multiply the n-th normahzed eigenvector by a random
phase factor e'a", with cc„ chosen umformly from (0,2π)
The resulting matnx of eigenvectors is umformly distnbuted
in the umtary group

The Laguerre ensemble (7) for the rates μ, = l/τ, can be
generated by a random matnx of the Wishart type [18,19]
Consider a N χ (2Ν — l + 2/ß) matnx X, where X is real
for β = l and complex for β = 2 (The matnx X is neither
Symmetrie nor Hermitian) The matnx elements are
Gaussian distnbuted with zero mean and vanance
(\xnm\2) = l The jomt probabihty distnbution of the
eigenvalues of the matnx XX^ is then given by Eq (7)
The results of our numencal check are mcluded in Figs
2 and 3 The large-7V hmit is represented by 7V = 400,
n Φ m The analytical curves agree well with the numencal
data

= (exp(y?oReCo + +

(38)

(39)

] (40)

Fluctuations in L are smaller than the average by a factor
l/7V We may therefore approximate (exp(—L)} «a

Averagmg over H we find

χ(ρο,ρι, qo, qi) = (exp(-L)),

L =

exp(-L) Because + ρ\τι~)2 + N~2(q0 is of
order l /N, we may expand the loganthm m Eq (40)
The average follows upon Integration with the density (33),

Va + Va + gf +
N2

Inverse Founer transformation gives

N4

6. Conclusion

We have investigated the statistics of the single-mode delay
time φ' for chaotic scattenng For a large number 7V of
scattermg channels the distnbution has the same form äs
for diffusive scattenng [4,5], but for small 7V the distnbution
is different The case N = 2 is of particular interest,
representing a cavity connected to two single-mode
waveguides For preserved time-reversal symmetry and
detection in transmission (ß — l, η φ m), we find that φ'
can take on only positive values, similarly to the Wigner-
Smith delay times In contrast, for detection in reflection
(or for broken time-reversal symmetry) the distnbution
acquires a tail towards negative φ' These theoretical
predictions are amenable to expenmental test in the
microwave cavities of current interest [2]

P(C0, Q) =
(2π)2
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