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Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo

Ph Jacquod,'PG Silvestiov,12 and C W J Beenakker1

]Instituut Lorentz Universität Leiden P O Box 9506 2300 RA Leiden The Netherlands
Budker Institute of Nuclear Physics 630090 Novosibirsk Russia

(Received 19 July 2001 pubhshed 15 October 2001)

The overlap of two wave packets evolvmg m time with shghtly different Hamiltomans decays exponentially
ae~y ', for perturbation strengths U greater than the level spacing Δ We present numencal evidence for a
dynamical System that the decay rate γ is given by the smallest of the Lyapunov exponent λ of the classical
chaotic dynarrucs and the level broadening ί/2/Δ that follows from the golden rule of quantum mechanics This
imphes the ränge of vahdity U> \j\Ä for the perturbation-strength independent decay rate discovered by
Jalabert and Pastawski [Phys Rev Lett 86, 2490 (2001)]
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The search for classical Lyapunov exponents in quantum
mechanics is a celebrated problem m quantum chaos [1]
Motivated by NMR expenments on spm echoes [2], Jalabert
and Pastawski [3] have given analytical evidence, supported
by computei simulations [4], that the Lyapunov exponent
governs the time dependence of the fidelity

(D

with which a wave packet ψ can be reconstructed by mvert-
mg the dynamics with a perturbed Hamiltoman H=H0

+ Hl They have called this the problem of the "quantum
Loschmidt echo " The fidelity M (t) can equivalently be m-
terpreted äs the decay mg oveilap of two wave functions that
Start out identically and evolve under the acüon of two
shghtly different Hamiltomans, a problem first studied m
perturbation theory by Peies [5]

Perturbation theory breaks down once a typical matnx
element U of Hl connectmg different eigenstates of H0 be-
comes greater than the level spacing Δ Then the eigenstates
of H, decomposed mto the eigenstates of H0, contam a laige
number of non-neghgible components The distnbution p(E)
(local spectral density) of these components over energy has
a Lorentzian form

P(E) =
Γ

2·7τ(£2+Γ2/4)'
(2)

with a spreading width Γ—ί/2/Δ given by the golden rule
[6,7] A simple calculation m a landom-matiix model gives

an aveiage decay Mccexp(-IY) governed by the same
golden uile width This should be contrasted with the expo-

nential decay M^exp(—λί) obtamed by Jalabert and Pastaw-
ski [3], which is governed by the Lyapunov exponent λ of
the classical chaotic dynamics

Smce the landom-matiix model has by construction an
infinite Lyapunov exponent, one way to umiy both results
would be to have an exponential decay with a late set by the
smallest of Γ and λ We will m what follows present nu
mencal evidence for this scenano, usmg a dynamical System
in which we can vaiy the lelative magnitude of Γ and λ
Theie exists a third energy scale, the mverse of the Ehienfest

time TE, that is smaller than the Lyapunov exponent by a
factor logarithmic m the System's effective Planck constant
In om numencs we do not have enough Orders of magnitude
between l/rE and λ to distinguish between the two, so that
our findings lemam somewhat inconclusive in this respect

Because Γ cannot become bigger than the band width B
of H0 (we are interested m the regime //;<//0), a conse-

quence of a decay M^exp[—/ηιιη(λ,Γ)] is that the regime of
Lyapunov decay can only be reached with increasmg U if λ
is constderably less than B That would exclude typical fully
chaotic Systems, m which λ and B are compaiable, and set
limits of observabihty of the Lyapunov decay

The ciossover from the golden rule regime to a legime
with a perturbation-strength independent decay, obtamed
heie for the Loschmidt echo, should be distinguished from
the conespondmg crossover m the local spectial density
p(E), obtamed by Cohen and Heller [8] The Founer trans-
form of M (t) would be equal to p (E) if ψ would be an
eigenstate of //0 rather than a wave packet The choice of a
wave packet instead of an eigenstate does not matter m the
golden rule regime, but is essential for a decay rate given by
the Lyapunov exponent

The dynamical model that we have studied is the kicked
top [9], with Hamiltoman

(3)

It descnbes a vector spm (magnitude S) that undergoes a free
piecession around the y axis perturbed penodically (penod
τ) by sudden lotations around the z axis over an angle pro-
poitional to Sz The time evolution of a state after n periods
is given by the nth power of the Floquet operator

= exp[ - i(K/2S)S~]exp[ (4)

Dependmg on the kickmg strength K, the classical dynamics
is regulai, paitially chaotic, 01 fully chaotic The dependence
of the Lyapunov exponent λ on K is plotted m the inset to
Fig l (cf Ref [10]) The erroi bais leflect the spiead in λ m
diffeient legions of phase space, in particulai the piesence of
Islands of stabihty Foi K^9 the enoi bars vamsh because
the system has become fully chaotic Foi the leversed time
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FIG l Decay of the average fidehty M for the quantum kicked
top with K = 13 l and S = 500, äs a function of the squared rescaled
time (φι)2 The perturbation strengths ränge between φ= 10~7 and
10~6 The straight line corresponds to the Gaussian decay (6) valid
in the perturbative regime Inset Numencally computed Lyapunov
exponent for the classical kicked top äs a function of the kicking
strength K Dots correspond to averages taken over l O4 initial con-
ditions (see Ref [10]) The error bars reflect different results ob-
tamed with different initial conditions The vanishmg of error bars
indicates the disappearance of Islands of regulär dynamics

evolution we mtroduce äs a perturbation a penodic rotation
of constant angle around the χ axis, slightly delayed with
respect to the kicks H0,

(5)

The conespondmg Floquet operator is Ρ=εχρ(—ιφ8χ)Ρ0

We have set A = l and in what follows we will also set τ
= l for ease of notation

Both H and H0 conserve the spm magnitude We choose
the initial wave packets äs coherent states of the spm SU(2)
group [11], i e, states that mimrmze the Heisenberg uncer-
tainty in phase space (m our case on a sphere of fixed radius)
at the effective Planck constant he{i~S~l The conespond-
mg Ehrenfest time is TE= λ ~' In S [12] We take S = 500 and
average Μ(ί = η) = \(ψ\(Ρ^)ηΡ"0\ψ)\2 over 100 initial cohei-
ent states ψ

We first show results m the fully chaotic regime K>9,
where we choose the initial states randomly over the entire
phase space The local spectial density p(a) of the eigen-
states of F (m the basis ot the eigenstates of F0 with eigen-
phases a) is plotted for three different φ's m the mset to Fig
2 The cuives can be fitted by Lorentzians fiom which we
extiact the spieadmg width Γ (It is given up to numencal

coefficients by Γ=ί/2/Δ, υ^φ-JS, Δ =1/5) The golden
rule regime Γ^Δ is entered at φ(°*1 7X10~4 Foi φ<ζφ(

we aie m the pertuibative regime, wheie eigenstates of F do
not appteciably differ fiom those of F0 and eigenphase dif-
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FIG 2 Decay of M m the golden rule regime for kicking
strengths K= 13 l, 17 l, and 21 l äs a function of the rescaled time
φ21 Perturbation strengths ränge from φ = l to 10~3 Inset
Local spectral density of states for K= 13 l and perturbation
strengths φ = 2 5Χ 10~4,5X 10 4,10~3 The solid curves are
Lorentzian fits, from which the decay rate Γ^084φ282 is ex-

tracted The solid line m the main plot gives the decay M
«exp(— Γί) with this value of Γ

ferences can be calculated m fiist-order peiturbation theory
We then expect the Gaussian decay

(6)

This decay is evident m Fig l, which shows M äs a function
of (φί)2 on a semiloganthmic scale for φ^ 10~6 The decay

(6) stops when M approaches Mx= 1/25, being the inverse
of the dimension of the Hubert space This Saturation leflects
the fimteness of the System and eventually prevails at long
times mdependently of the strength of the pertuibation

For φ>φ(. one enters the golden rule regime, where the
Loientzian spreadmg of eigenstates of F over those of F0

results in the exponential decay

M oc exp( - ί/2ί/Δ) => In M <χ φ21 (7)

The data presented m Fig 2 clearly confirm the vahdity of

the scalmg (7) There is no dependence of M on K in this
regime of moderate (but nonpeituibative) values of φ, ι e ,
no dependence on the Lyapunov exponent (λ vanes by a
factoi of l 4 foi the diffeient values of K in Fig 2)

We cannot satisfy λ<Γ m the fully chaotic regime, for
the icason mentioned in the Introduction The band width B
(which is an uppei hmit foi Γ) is Β = ττΙ2 (in umts of l/r),
while λ a l foi fully developed chaos m the kicked top (see
the mset to Fig 1) Foi this leason, when the peituibation
stiength φ is furthei mcieased, the golden mle decay täte
satuiates at the bandwidth — befoie leaching the Lyapunov
exponent This is shown in Fig 3 Theie is no tiace of a
Lyapunov decay m this fully chaotic legime
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FIG 3 Decay of M m the golden rule regime without rescalmg
of time, for £=131, </>=jX\0 3, 0=1,15,2, 5) (solid
curves) and K =21 l, ς6=3Χ10~ 3 (circles) Dashed and dotted
Imes show exponential decays with Lyapunov exponents λ = l 65
and 2 12, correspondmg to K = 13 l and 211, respectively The
decay slope saturates at φ^2 5X10~3, when Γ reaches the band-
width

We therefore reduce K to values m the ränge 2T^K
=S4 2, which allows us to vary the Lyapunov exponent ovei
a widei ränge between 0 22 and 0 72 In this ränge the clas-
sical phase space is mixed and we have coexisting regulai
and chaotic tiajectones We choose the initial coheient states
in the chaotic region (identified numencally through the pai-
ticipation ratio) Because the chaotic region still occupies
more than 80% of the phase space for the smallest value of K
considered, nonuniveisal effects (e g , nonzeio oveilap of our
initial wavepackets with regulär eigenfunctions of F0 or F)
should be neghgible We expect a crossover from the golden
rule decay (7) to the Lyapunov decay [3]

(8)

once Γ exceeds λ This expectation is boine out by our nu-
mencal simulations, see Fig 4

In conclusion, we have presented numencal evidence foi
the existence of thiee distinct regimes of exponential decay
of the Loschmidt echo the peiturbative regime (6), the
golden rule legime (7), and the Lyapunov icgime (8) The
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FIG 4 Decay of M in the Lyapunov regime, for φ
= 2 l X IGT3, K=27,3 3,3 6,3 9,4 2 The time is rescaled with the
Lyapunov exponent λ, ranging from 0 22-0 72 The straight solid
Ime mdicates the decay Mxe\p(— λί) Inset M for K=42 and
different ψ = ; Χ ΐ Ο 4, j= 1,2,3,4,5,9,17,25 The decay slope satu-
rates at the value φ** l 7X 10~3 for which Γ = λ, even though Γ
keeps on mcreasmg This demonstrates the decay law M

γί) with 7=ηιιη(Γ,λ)

peiturbation strength mdependent decay in the Lyapunov re-
gime is reached m our Simulation if λ<Γ, which pievents its
occurrence for fully developed chaos in the model consid-
eied here Our numencs are limited by a relatively small
wmdow between λ and II TE (a factoi In 5*= 6) It lemams to
be seen if the Lyapunov decay can be observed under con-
ditions of fully developed chaos and Γ < λ by mcreasmg S so
that I/TE becomes largei than Γ It is noteworthy that for a

Lyapunov decay M°cexp(-\i), the saturated fldelity M«,
= 1/251 is reached at the Ehrenfest time TE (äs can also be
seen m Fig 4), so that a Lyapunov decay for f& rE rules out
golden rule decay for later times Sirmlar investigations m
strongly chaotic Systems with small Lyapunov exponents
(like the Bummovich Stadium with short straight segments)
are highly desnable
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