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Electrons moving in a conductor can transfer momentum to the lattice via collisions with impurities
and boundaries, giving rise to a fluctuating mechanical stress tensor. The root-mean-squared momentum
transfer per scattering event in a disordered metal (of dimension L greater than the mean-free path l and
screening length j) is found to be reduced below the Fermi momentum by a factor of order l�L for shear
fluctuations and �j�L�2 for pressure fluctuations. The excitation of an elastic bending mode by the shear
fluctuations is estimated to fall within current experimental sensitivity for a nanomechanical oscillator.
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Impressive advances in the fabrication of miniature me-
chanical oscillators provide new opportunities for research
in mesoscopic physics [1,2]. The coupling of electrical
and mechanical degrees of freedom is of particular inter-
est. We mention the observation of thermal vibration [3]
and acoustoelectric effects [4] in carbon nanotubes, the
coupling of the center-of-mass motion of C60 molecules
and single-electron hopping [5], and also theoretical work
[6] on the coupling between a tunneling electrical current
and a localized phonon mode.

This Letter was motivated by a question posed to us
by M. Roukes: Electrons in a metal collide with impuri-
ties and thereby exert a fluctuating force on the lattice. In
equilibrium this electromechanical force cannot be distin-
guished from other sources of thermal noise. Might it be
measurable out of equilibrium by driving a current through
a nanoscale oscillator? To address this question one has
to consider a delicate balance of forces.

We will provide both a general theory and a specific ap-
plication to the electromechanical excitation of a bending
mode in the geometry of Fig. 1: a thin elastic beam con-
necting two massive Ohmic contacts. The beam could be
a conductor or an insulator covered with a metal (e.g., a
metallized suspended silicon beam [7]). We calculate the
excess noise in the bending mode that arises in the presence
of a dc voltage V and conclude that it should be observable
in the background of the thermal noise.

Let us first discuss the order of magnitude. The noise at
low temperatures is due to the N eV�EF “noisy” electrons
within a range eV of the Fermi energy EF (with N the
total electron number in the metal). Each electron transfers
to the lattice a typical momentum Dp � pF in a scattering
time t. The mean-squared momentum transfer in a time t
for uncorrelated increments Dp would be

�N eV�EF� �Dp�2�t�t� � N m�eV �t�t� � Pmaxt ,
(1)

with m� the electron effective mass.
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We find that Pmax overestimates the fluctuations in the
transverse force. The actual noise power is of order P �
�l�L�2Pmax , with L the length of the beam and l the mean-
free path in the metal. The reduction appears because sub-
sequent momentum transfers are strongly correlated, since
an electron being scattered back and forth alternatingly
transfers positive and negative momentum to the lattice.
The factor �l�L�2 reduces the noise substantially, but we
estimate that it should be observable in an oscillator with
a 10216 N�

p
Hz sensitivity [2,7].

We combine two independently developed theoretical
frameworks: the dynamic theory of elasticity [8,9] and
the kinetic theory of fluctuations [10]. We start from the
Boltzmann-Langevin equation of Kogan and Shulman
[10]. This is a kinetic equation with a fluctuating source
dJ�r, p, t� that describes fluctuations in the time of the
distribution function n�r, p, t�,

�≠t 1 v ? =r 1 eE ? =p 1 S �n � dJ . (2)

Here p � m�v is the quasimomentum and E�r, t� is the
electric field. The collision integral S for elastic scattering
on impurities (with rate W) is given by

Sn�p� � �W�p̂ ? p̂0� �n�p� 2 n�p0��	p̂0 . (3)

The angular brackets indicate an average over the direction
p̂0 of the momentum p0, with jp0j � jpj.

L

conductor

oscillator

u(x)
FIG. 1. Sketch of an elastic beam clamped at both ends to a
contact and covered by a metal layer. A current flowing through
the metal excites a bending mode u�x� of the beam.
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The noise source dJ has zero time average and variance

dJ�r, p, t�dJ�r0, p0, t0� � d�r 2 r0�d�t 2 t0�d�´ 2 ´0�n21

3 �4pd�p̂ 2 p̂0� �W�p̂ ? p̂00� �n̄ 1 n̄00 2 2n̄n̄00�	p̂00 2 W�p̂ ? p̂0� �n̄ 1 n̄0 2 2n̄n̄0�� . (4)
Here n�´� is the density of states (at energy ´ � p2�2m�)
and n̄ is the time-averaged distribution. We have set
Planck’s constant h � 1, so that n is dimensionless, and
have abbreviated n̄0 � n̄�r, p0 , t�, n̄00 � n̄�r, p00 , t�.

The force density f�r, t� exerted by the electrons on
the lattice is the divergence of a symmetric tensor P that
can be decomposed into an isotropic pressure P0 and a
traceless shear tensor S:

fa � 2=bPab, Pab � P0dab 1 Sab . (5)

In the approximation of a deformation-independent effec-
tive mass, one has [9,11]

Pab � m�
Z

dp yaybn . (6)

The time-averaged force (5) vanishes, since it contains
a derivative of the spatially uniform time-averaged distri-
bution n̄. The electrical current drag on impurities (the
so-called “wind force”) is cancelled by the electric field
force exerted on the ions [12]. Since f is a total derivative
the net fluctuating force vanishes as well at low frequencies
(ignoring boundary contributions). Although the center
of mass does not move, there are fluctuating compres-
sion modes (driven by P0) as well as torsion and bending
modes (driven by S). The driving force F �t� for each of
these modes is obtained by weighing f�r, t� with a sensi-
tivity function g�r� proportional to the displacement field
of the mode,

F �
Z

dr f ? g �
Z

dr
µ
P0= ? g 1 Sab

≠gb

≠ra

∂
.

(7)

The two contributions P0 and S can be separated by ex-
panding n�r, p, t� in spherical harmonics n�q��r, ´, t� with
respect to the direction p̂ of the momentum. It is conve-
nient to write the spherical harmonics in Cartesian (rather
than spherical) coordinates,

n �
X̀
q�0

p̂a1
· · · p̂aq

n�q�
a1···aq

� n�0� 1 p̂an�1�
a 1

µ
p̂ap̂b 2

1
3

dab

∂
n

�2�
ab 1 . . . .

(8)
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Here p̂q is the traceless part of the symmetric tensor
p̂a1 · · · p̂aq . These tensors form an orthonormal set [13],

�p̂n p̂m	p̂ � dnm
m!

�2m 1 1�!!
D�m�. (9)

The tensor D�m� projects onto the traceless symmetric part
of a tensor of rank m. We will need D

�1�
ab � dab and

D
�2�
aba0b 0 �

1
2

daa 0dbb 0 1
1
2

dab 0dba 0 2
1
3

dabda 0b 0 .

(10)

In view of the orthogonality of different spherical har-
monics, one has

P0 �
1
3

Z
d´ 2´nn�0�, Sab �

2
15

Z
d´ 2´nn

�2�
ab .

(11)

The two harmonics n�0� and n�2� have to be found from the
kinetic equation (2). We first consider the harmonic n�2�

that determines the shear tensor S, and then discuss the
harmonic n�0� and resulting pressure P0.

To obtain an equation for n�2� we multiply both sides of
Eq. (2) by p̂p̂ and perform an angular average. Employ-
ing the diffusion approximation on length and time scales
larger than l and t, we neglect the derivatives with respect
to t and r in Eq. (2). Also, in the linear response approxi-
mation, we neglect the derivative with respect to p, since
it gives a term bilinear in E and j. What remains is a local
relation between n�2� and the second harmonic J�2� of the
fluctuating source,

n�2� � t2dJ�2�. (12)

The momentum transport time t2 is defined by

1
t2

�
3
4

Z 1

21
dj W�j� �1 2 j2� . (13)

For anisotropic scattering the time t2 is larger
than the charge transport time t, defined by 1

t �
1
2

R1
21 dj W �j� �1 2 j�. (For isotropic scattering t2 �

t � 1�W .) The correlator of dJ�2� follows in the same
way from Eq. (4). In the diffusion approximation we
replace n̄, n̄0, and n̄00 by n̄�0�. Using Eq. (9) we arrive at
dJ
�2�
ab�r, ´, t�dJ

�2�
a 0b 0�r0, ´0, t0� �

15
nt2

D
�2�
aba 0b 0d�t 2 t0�d�r 2 r0�d�´ 2 ´0�n̄�0��r,´� �1 2 n̄�0��r,´�� . (14)
Since n̄�0��r, ´� differs from 0 or 1 only in a narrow range
near the Fermi level, we ignore the energy dependence of
n and t2 and evaluate them at ´ � EF .

We quantify the transverse momentum noise through the
correlator of the shear tensor,
C
�2�
aba 0b 0�r,r0� � 2

Z `

2`
dt Sab�r, 0�Sa 0b 0�r0, t� . (15)
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Combining Eqs. (11), (12), and (14), we obtain the result

CCC �2��r, r0� �
8
15

�m�y2
F�2t2nd�r 2 r0�K�r�D�2�, (16)

K�r� �
Z

d´ n̄�0��r, ´� �1 2 n̄�0��r, ´�� . (17)

The kernel K is given by [14] K � �eV�L�x�1 2 x�L�,
where V is the voltage applied between the two contacts at
x � 0, L. The parabolic profile K�x� requires kBT ø eV
and the absence of inelastic scattering.

We now turn to the pressure fluctuations. Instead of
Eqs. (12) and (14) we have the fluctuating drift-diffusion
equation [14]

j 1 D=r 2 sE � et
Z

d´ nydJ�1� � dI , (18)

dIa�r, t�dIb�r0, t0� � 2sdabd�r 2 r0�d�t 2 t0�K�r� ,
(19)

which relates the fluctuations in the charge density r �
e

R
d´ nn�0� and the current density j � 1

3 e
R

d´ nyn�1�.
Once we know the charge density fluctuations we can find
the fluctuating pressure from

P0 � �D�m�dr , (20)

cf. Eq. (11). The diffusion constant is D � 1
3 y

2
Ft, the

conductivity s � e2nD, and the mobility m � et�m�.
The correlator C �0� of the pressure fluctuations is defined

as in Eq. (15), with S replaced by P0. To close the prob-
lem we need the continuity equation, ≠r�≠t 1 = ? j � 0,
and the Poisson equation, k= ? E � dr (with dielectric
constant k). The time derivative of r in the continuity
equation may be omitted in the low-frequency regime. The
fluctuations in the electron density then obey

D=2dr 2 �s�k�dr � = ? dI . (21)

The current fluctuations create a fluctuating charge
dipole that is screened over a length j � �kD�s�1�2 �
�k�e2n�1�2. On length scales ¿j, one may neglect the
diffusion term in Eq. (21) and use the local relation [15]
dr � 2�k�s�= ? dI. Equations (19) and (20) then yield

C �0��r, r0� �
4sj4

m2

≠

≠r
?

≠

≠r0
d�r 2 r0�K�r� . (22)

The next step is to use the results (16) and (22) to es-
timate the low-frequency noise power P � 2

R`
2` dt 3

F �0�F �t� of the fluctuating force F �t� that drives a par-
ticular oscillator mode [16]. To that end the correlator
(15) is integrated over r and r0, weighted by the sensitivity
function of the mode as in Eq. (7). For a bending mode
we use Eq. (16), which gives the noise power

P �2� �
8
15

�m�y2
F�2t2n

Z
dr K�r�D�2�

aba0b 0

≠gb

≠ra

≠gb 0

≠ra 0

.

(23)

For a compression mode in a metal of size ¿j we use
228303-3
Eq. (22) and find

P �0� �
4sj4

m2

Z
dr K�r� j== ? gj2. (24)

For an order of magnitude estimate, we take K � eV ,
g � 1, and estimate spatial derivatives by factors 1�L, and
the volume integral by a factor V . For simplicity we as-
sume isotropic impurity scattering, so that t2 � t. Then
the noise power due to fluctuations in the shear tensor
is of order P �2� � �m�y

2
F�2tneVV L22, and the noise

power due to pressure fluctuations is of order P �0� �
sj4m22eVV L24. It is instructive to write these two
estimates in the same form, using s�em � 1

3 m�y
2
Fn �

N �V � ne, with ne the electron density. One finds

P �0� � �j�L�4Pmax, P �2� � �l�L�2Pmax , (25)

with Pmax � N m�eV�t being the noise power for inde-
pendent momentum transfers mentioned earlier.

The experimental observation of the shear tensor fluc-
tuations looks more promising than the observation of the
pressure fluctuations, first, because j is typically ø�lL�1�2

so that P �0� ø P �2�, and, second, because a typical oscil-
lator operates in a bending or torsion mode rather than in a
compression mode. For that reason we will now limit the
more quantitative calculation to P �2�. We consider a bend-
ing mode u�x� cosv0t in the geometry of Fig. 1. The sensi-
tivity function g�x� � u�x��u�x0� equals the displacement
(in the y direction) normalized by the value at a reference
point x0. We choose x0 � L�2, so that F is equivalent
to a point force at the beam’s center. Equation (23) now
takes the form

P �
4
5

nepF�lA�L�
Z L

0

dx

L
K�x� �Lg0�x��2, (26)

with A � V �L the cross-sectional area of the metal
layer.

The wave equation for transverse waves is biharmonic,
d4u�dx4 � k4u. The solution for doubly clamped bound-
ary conditions is [17]

u�x� � �sinkL 2 sinhkL� �coskx 2 coshkx�
2 �coskL 2 coshkL� �sinkx 2 sinhkx� , (27)

with the resonance condition coskL coshkL � 1. We use
the lowest resonance at kL � 4.73. Substituting K �
�eV�L�x�1 2 x�L� and integrating, we obtain the excess
noise P � 4

5 nepF�lA�L� 3 0.83eV . If we insert values
typical for a metal, ne � 1029 m23, pF � 10224 Ns, l �
100 nm, and choose typical dimensions A�L � 10 nm,
then the force spectral density at V � 1 mV is P �
10232 N2�Hz, well above the thermal noise power at low
temperatures (of order 10234 N2�Hz at T � 1 K [2]).

It is instructive to apply the result (26) to a system in
thermal equilibrium, when K�x� � kBT for all x. In this
case an independent estimate of the noise P0 is provided by
the fluctuation-dissipation theorem: P0 � 4kBTMv0�Q0,
with M the active mass of the oscillator and 1�Q0 the elec-
tromechanical contribution to the inverse quality factor.
228303-3
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Equation (26) gives

1
Q0

�
1
5

�l�L�2 N m�

Mv0t

Z L

0

dx
L

�Lg0�x��2. (28)

This electromechanical quality factor might be measurable
in a superconducting metal, as an increase in the overall
quality factor when T drops below the critical tempera-
ture. One can also calculate Q0 directly as an “absorp-
tion of ultrasound” by conduction electrons [9], providing
a consistency check on our analysis. However, the non-
equilibrium noise (26) with an x-dependent kernel K�x�
cannot be obtained from acoustic dissipation. The elec-
tromechanical part (28) of the overall quality factor can
be significant. We estimate Q0 � 5 3 104 for the above
metal parameters with L � 1 mm, v0�2p � 100 MHz,
and M�N � 1000mproton. This is comparable to the re-
ported values Q � 103 105 [2].

Before concluding we mention an altogether different
mechanism for electromechanical noise, which is the cou-
pling of a fluctuating surface charge dq�t� on the metal
to the electromagnetic environment. In the presence of an
electric field E0 between the metal surface and the substrate
(e.g., due to a mismatch in work functions), the charge fluc-
tuations will give rise to a fluctuating transverse force with
noise power

Penv � E2
0dq2 � E2

0C2dV2 � E2
0C2R max�kBT ,eV � .

Here C is the capacitance to the ground and R � L�As

is the resistance of the metal [18]. The ratio Penv�P �2� �
�E0CL2�elN �2 is quite small for typical parameter val-
ues. The reason is that the environmental charge fluctua-
tions are a surface effect, while the whole bulk of the metal
contributes to P �2�. Although the noise per electron is
small in l�L, the total noise power P �2� is big due to the
large number N eV�EF of contributing electrons.

In summary, we have addressed the fundamental ques-
tion of the excitation of an elastic mode in a disordered
metal out of equilibrium, as a result of the fluctuating mo-
mentum that an electrical current transfers to the lattice.
The effect is small but measurable. The characteristic
linear dependence of the electromechanical noise on the
applied voltage should distinguish it from other sources of
noise. We believe that a measurement is not only feasible
but worth performing. Indeed, the nonequilibrium elec-
tric current noise has proven to be a remarkably powerful
tool in the study of transport properties [19], precisely be-
cause it contains information that is not constrained by the
fluctuation-dissipation theorem. The noise considered here
could play a similar role for mechanical properties.

We mention one such application. Just as electrical shot
noise measures the effective charge of the carriers, me-
chanical noise could be used to measure their momentum.
This should be most intriguing in 1D electron systems,
such as quantum wires and nanotubes, where strong elec-
tron interaction invalidates the Fermi liquid description.
Electromechanical noise could thus be employed to mea-
sure the Luttinger liquid equivalent of the Fermi momen-
228303-4
tum. We are not aware of any other technique that would
allow us to do such a measurement.
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