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Electromechanical Noise in a Diffusive Conductor
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Electrons moving in a conductor can transfer momentum to the lattice via collisions with impuriües
and boundanes, giving rise to a fluctuatmg mechanical stiess tensor The root mean-squared momentum
transfer per scattermg event in a disordeied metal (of dimension L greater than the mean-free path / and
screening length ξ) is found to be reduced below the Ferrm momentum by a factor of order l/L for shear
fluctuations and (ξ/L)2 for pressure fluctuations The excitation of an elastic bending mode by the shear
fluctuaüons is estimated to fall withm current expenmental sensitivity for a nanomechanical oscillator
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Impressive advances m the fabncation of miniature me-
chanical oscillatois provide new oppoitunities for lesearch
m mesoscopic physics [1,2] The coupling of electncal
and mechanical degrees of freedom is of paiticular mtei-
est We mention the observation of thermal vibiation [3]
and acoustoelectiic effects [4] in carbon nanotubes, the
coupling of the centei-of-mass motion of C60 molecules
and smgle electron hopping [5], and also theoretical woik
[6] on the coupling between a tunnehng electncal cunent
and a locahzed phonon mode

This Lettei was motivated by a question posed to us
by M Roukes Electrons in a metal collide with impm i-
ties and theieby exeit a fluctuatmg foice on the lattice In
equihbnum this electiomechanical foice cannot be distin-
guished ftom othei sources of theimal noise Might it be
measmable out of equihbnum by dnving a cunent thiough
a nanoscale oscillatoi7 To addiess this question one has
to consider a delicate balance of foices

We will provide both a geneial theory and a specific ap-
plication to the electiomechanical excitation of a bending
mode in the geometiy of Fig l a thin elastic beam con-
nectmg two massive Ohmic contacts The beam could be
a conductor or an insulator covered with a metal (e g , a
metallized suspended Silicon beam [7]) We calculate the
excess noise in the bending mode that arises m the presence
of a de voltage V and conclude that it should be observable
in the background of the thermal noise

Let us fiist discuss the ordei of magnitude The noise at
low temperatures is due to the NeV/EF "noisy" electrons
withm a ränge eV of the Ferrm energy E p (with JV the
total electron numbei m the metal) Each electron transfers
to the lattice a typical momentum Δ/7 — pF in a scattenng
time τ The mean-squaied momentum tiansfei m a time t
for uncorrelated mciements Δ ρ would be

(D

PACS numbers 85 85+j 73 23-b 7350Td 77 65-j

We find that i^ax oveiestimates the fluctuations m the
tiansveise foice The actual noise powei is of order T —
(l/L)2Tmm, with L the length of the beam and / the mean-
free path in the metal The reduction appears because sub
sequent momentum tiansfers are strongly correlated, smce
an election bemg scattered back and forth altematingly
transfeis positive and negative momentum to the lattice
The factor (l/L)2 leduces the noise substantially, but we
estimate that it should be observable m an oscillator with
a 10~16 N/VHz sensitivity [2,7]

We combine two mdependently developed theoretical
frameworks the dynamic theoiy of elasticity [8,9] and
the kinetic theory of fluctuations [10] We Start fiom the
Boltzmann-Langevin equation of Kogan and Shulman
[10] This is a kinetic equation with a fluctuatmg source
5/(r,p,i) that desciibes fluctuations in the time of the
distiibution function n(r, ρ,ί),

(θ, + v Vr eE + S)n = 8J (2)

Heie p == m*v is the quasimomentum and E(r, t) is the
electnc field The colhsion integral 5 foi elastic scattermg
on impunties (with rate W) is given by

5n(p) = (W(p p') [«(P) - n(p')])P (3)

The angulai brackets mdicate an aveiage over the direction
p' of the momentum p', with |p'| = |p|
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with m the election effective mass

FIG l Sketch of an elastic beam clamped at both ends to a
contacl and coveied by a metal layer A current flowing thiough
the metal excites a bending mode u(x) of the beam
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The noise source 8J has zero time average and variance

8J(r,p,t)8J(r',p',t') = δ (r - r')8(t - t')8(e - ε')ν~

Χ[4ττδ(ρ -p')(W(p ·ρ")(η

Here ι/(ε) is the density of states (at energy ε = p1 /2m*) \—
and n is the time-averaged distribution. We have set
Planck's constant h = l, so that n is dimensionless, and
have abbreviated n' = n (r, p', t), n" = n(r,p",t).

The force density f (r, t) exerted by the electrons on
the lattice is the divergence of a Symmetrie tensor Π that
can be decomposed into an isotropic pressure Πο and a
traceless shear tensor Σ:

fa = -1 (5)

In the approximation of a deformation-independent effec-
tive mass, one has [9,11]

laß = rn* l dp va VßH . (6)

The time-averaged force (5) vanishes, since it contains
a derivative of the spatially uniform time-averaged distri-
bution h. The electrical current drag on impurities (the
so-called "wind force") is cancelled by the electric field
force exerted on the ions [12]. Since f is a total derivative
the net fluctuating force vanishes äs well at low frequencies
(ignoring boundary contributions). Although the center
of mass does not move, there are fluctuating compres-
sion modes (driven by HO) äs well äs torsion and bending
modes (driven by £). The driving force J"(t) for each of
these modes is obtained by weighing f (r, i) with a sensi-
tivity function g(r) proportional to the displacement field
of the mode,

= drt - g = f
J

(7)

The two contributions HO and Σ can be separated by ex-
panding n(r, p, t) in spherical harmonics n'9^(r, ε, ί) with
respect to the direction p of the momentum. It is conve-
nient to write the spherical harmonics in Cartesian (rather
than spherical) coordinates,

papß - 5a/

(8)

15

Since n^(r, ε) differs from 0 or l only in a narrow ränge
near the Fermi level, we ignore the energy dependence of
v and τ2 and evaluate them at ε = £>·

We quantify the transverse momentum noise through the
coiTelator of the shear tensor,

ϊ" - 2««")>p» - W(p · p') (n + n' - 2nn')~]. (4)

Here p? is the traceless part of the Symmetrie tensor
Pa, ···Pa · These tensors form an orthonormal set [13],

<^l^O = ^ ( 2 f f t+
!

1 ) !,
A ( m )· (9)

The tensor Δ(/η) projects onto the traceless Symmetrie part
, (Dof a tensor of rank m. We will need A a jg = daß and

l „ „
— δαβΐδβαΙ - •V/3'·

(10)

In view of the orthogonality of different spherical har-
monics, one has

Πο = — l άε2ενηM * -A f
'*aß ~~ 15 J

(H)

The two harmonics n^ and n(2) have to be found from the
kinetic equation (2). We first consider the harmonic n^
that determines the shear tensor Σ, and then discuss the
harmonic n®1 and resulting pressure Π0.

To obtain an equation for n'2·1 we multiply both sides of
Eq. (2) by pp and perform an angular average. Employ-
ing the diffusion approximation on length and time scales
larger than / and τ, we neglect the derivatives with respect
to t and r in Eq. (2). Also, in the linear response approxi-
mation, we neglect the derivative with respect to p, since
it gives a term bilinear in E and j. What remains is a local
relation between n'2^ and the second harmonic J^2' of the
fluctuating source,

(12)

The momentum transport time τ2 is defined by
• i

-ξ2}·
l_ = 3_ Γ 1

T2 ~ 4 J-
(13)

For anisotropic scattering the time TZ is larger
than the Charge transport time τ, defined by ~ =

\ /_ι άξ W (ξ) (l — ξ). (For isotropic scattering τ2 =
τ = l/W.) The correlator of 5J® follows in the same
way from Eq. (4). In the diffusion approximation we
replace n, h', and h" by «(0\ Using Eq. (9) we arrive at

-ft® (r, ε)]. (14)

= 2 dtZaß(r,a)?,a,ß,(r',t). (15)
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Combining Eqs. (11), (12), and (14), we obtain the result

C(2)(r,r') = -(m*v2)2T2v8(r - r')^(r)A(2), (16)

-/ (17)

The kernel K is given by [14] K = (eV/L)x(l - x/L),
where V is the voltage applied between the two contacts at
χ = 0,L. The parabolic profile K(x) requires kßT « eV
and the absence of inelastic scattering.

We now turn to the pressure fluctuations. Instead of
Eqs. (12) and (14) we have the fluctuating drift-diffusion
equation [14]

j + DVp - crE = e-τ i ds νυδ3(ι} = 51,

8Ia(T,t)SIß(r',t') = 2σ8αβ8(τ - r')8(t

(18)

(19)

which relates the fluctuations in the Charge density p =
e f de vn^ and the current density j = \e / ds ννηΡ* .
Once we know the Charge density fluctuations we can find
the fluctuating pressure from

Πο = (0/μ)δρ , (20)

cf. Eq. (11). The diffusion constant is D = ^vjs-τ, the
conductivity σ = e2vD, and the mobility μ = er/m".

The correlator C ̂  of the pressure fluctuations is defined
äs in Eq. (15), with Σ replaced by HO· To close the prob-
lem we need the continuity equation, dp / d t + V · j = 0,
and the Poisson equation, /cV · E = δ p (with dielectric
constant κ). The time derivative of p in the continuity
equation may be omitted in the low-frequency regime. The
fluctuations in the electron density then obey

(σ/κ)δρ = V (21)

The current fluctuations create a fluctuating charge
dipole that is screened over a length ξ = (κΰ/σ)1'2 =
( κ / ε 2 ν ) 1 / 2 . On length scales »f, one may neglect the
diffusion term in Eq. (21) and use the local relation [15]
δρ = -(/c/(7-)V · <5I. Equations (19) and (20) then yield

(22)
μ

The next Step is to use the results (16) and (22) to es-
timate the low-frequency noise power T = 2 /üro dt X
J7(0)J!'(i) of the fluctuating force f(t) that drives a par-
ticular oscillator mode [16]. To that end the correlator
(15) is integrated over r and r', weighted by the sensitivity
function of the mode äs in Eq. (7). For a bending mode
we use Eq. (16), which gives the noise power

,(2)

' ' "^ dra dra,
(23)

For a compression mode in a metal of size »^ we use
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Eq. (22) and find

3>(0) = (24)

For an Order of magnitude estimate, we take K — eV,
g — l, and estimate spatial derivatives by factors l /L, and
the volume integral by a factor Ύ. For simplicity we as-
sume isotropic impurity scattering, so that τ2 = τ. Then
the noise power due to fluctuations in the shear tensor
is of order i*^ — (nitvp)2rveV'V^L~2, and the noise
power due to pressure fluctuations is of order T^ ~
σξ4μ~2eVΎ^L~'4. It is instructive to write these two
estimates in the same form, using σ/εμ = -^m*vpv =
!N /Ύ = ne, with ne the electron density. One finds

?(0) - (£/L)4?raax, ? ( 2 )-(//L)2J>m a x, (25)

with Tmm = Nm*eV/T being the noise power for inde-
pendent momentum transfers mentioned earlier.

The experimental observation of the shear tensor fluc-
tuations looks more promising than the observation of the
pressure fluctuations, first, because ξ is typically «^(/L)1/2

so that !P(0) <3< J>(2), and, second, because a typical oscil-
lator operates in a bending or torsion mode rather than in a
compression mode. For that reason we will now limit the
more quantitative calculation to T^2\ We consider a bend-
ing mode u(x)cosa>ot in the geometryof Fig. 1. Thesensi-
tivity function g(x) — U(X)/U(XQ) equals the displacement
(in the y direction) normalized by the value at a reference
point XQ. We choose XQ = L/2, so that J7 is equivalent
to a point force at the beam's center. Equation (23) now
takes the form

T = 4 nepF(lA/L) { ^ K(x) [Lg'(x)]2,
5 Jo L

(26)

with JA. = ~V /L the cross-sectional area of the metal
layer.

The wave equation for transverse waves is biharmonic,
d4u/dx4 = k4u. The solution for doubly clamped bound-
ary conditions is [17]

u(x) = (sinfcL — sinhkL) (coskx — coshfct)

— (coskL — co&hkL) (&inkx — s'mhkx) , (27)

with the resonance condition coskL cosh^L = l . We use
the lowest resonance at kL = 4.73. Substituting K =
(eV /L)x(\ — x/L) and integrating, we obtain the excess
noise T = ^nepF(lJ\-/L) X 0.83eV. If we insert values
typical for a metal, ne = 1029 m~3, pp = 10"24 Ns, / =
100 nm, and choose typical dimensions JA /L = 10 nm,
then the force spectral density at V = l mV is T =
10~32 N2 /Hz, well above the thermal noise power at low
temperatures (of order 10~34 N2/Hz at T = l K [2]).

It is instructive to apply the result (26) to a System in
thermal equilibrium, when K(x) = kgT for all x. In this
case an independent estimate of the noise T0 is provided by
the fluctuation-dissipation theorem: TQ = 4-kßTMwo/Qo,
with M the active mass of the oscillator and l/öo the elec-
tromechanical contribution to the inverse quality factor.
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Equation (26) gives

ßo" = ^

* rL

f ^[Lg'
./o ^

(28)

This electromechamcal quality factor might be measurable
in a supeiconductmg metal, äs an increase m the oveiall
quality factor when T drops below the cntical tempera-
ture One can also calculate Q0 directly äs an "absorp-
tion of ultrasound" by conduction electrons [9], providing
a consistency check on our analysis However, the non-
equihbnum noise (26) with an *-dependent kemel K(x)
cannot be obtamed from acoustic dissipation The elec-
tromechamcal part (28) of the overall quality factor can
be sigmficant We estimate ßo — 5 X l O4 for the above
metal parameters with L = l μπι, ωο/2ττ = 100 MHz,
and M/JSf = 1000mproton This is comparable to the re-
ported values β = 103-105 [2]

Before concludmg we mention an altogether diffeient
mechamsm for electromechamcal noise, which is the cou-
plmg of a fluctuatmg surface Charge 8q(t) on the metal
to the electromagnetic environment In the presence of an
electric field E0 between the metal surface and the Substrate
(e g , due to a mismatch in work funcüons), the Charge fluc-
tuations will give nse to a fluctuatmg transveise foice with
noise power

Here C is the capacitance to the giound and R = L/' Ά.σ
is the resistance of the metal [18] The ratio /Psm/'P(1-) ~
(EoCL2/elN)2 is quite small for typical parametei val-
ues The reason is that the environmental Charge fluctua-
tions are a surface effect, while the whole bulk of the metal
contnbutes to T^ Although the noise pei election is
small in l/L, the total noise power P^ is big due to the
laige numbei !NeV/Ep of contubuting electrons

In summary, we have addressed the fundamental ques-
tion of the excitation of an elastic mode in a disordered
metal out of equilibnum, äs a result of the fluctuatmg mo-
mentum that an electncal cunent transfers to the lattice
The effect is small but measurable The charactenstic
linear dependence of the electromechamcal noise on the
applied voltage should distmguish it from other sources of
noise We beheve that a measurement is not only feasible
but worth performmg Indeed, the nonequilibrium elec-
tric current noise has proven to be a lemarkably powerful
tool in the study of transport properties [19], precisely be-
cause it contams Information that is not constramed by the
fluctuation-dissipation theoiem The noise consideied heie
could play a similar role for mechamcal properties

We mention one such application Just äs electncal shot
noise measures the effective Charge of the caniers, me-
chamcal noise could be used to measuie then momentum
This should be most intnguing m 1D election Systems,
such äs quantum wues and nanotubes, wheie stiong elec
tion interaction invalidates the Feimi liquid descuption
Electiomechamcal noise could thus be employed to mea
suie the Luttingei liquid equivalent of the Feimi momen-

tum We are not aware of any other techmque that would
allow us to do such a measurement
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