Dephasing of Entangled Electron-Hole Pairs in a Degenerate Electron Gas

J. L. van VELSEN, M. KINDERMANN, C. W. J. BEENAKKER
Instrtuut Lorentz, Unvverstert Leaden, PO Box 9506, 2300 RA Leiden, THE NETHERLANDS

Recerved 12092003

Abstract

A tumnel barise in a degenerate electron gas was recently discovesed as a source of entangled electronhole pairs Ilere we investigate the loss of entanglement by dephasing We calculate both the maximal violation $\mathcal{E}_{\mathrm{m} 2 \mathrm{x}}$ of the Bell mequality and the degree of entanglement (concurience) \mathcal{C} If the imitally maximally entangled electron-hole pair is in a Bell state, then the Bell mequality is violated for arbitrary strong dephasing The same relation $\mathcal{E}_{\mathrm{m} 2 \mathrm{x}}=2 \sqrt{1+\mathcal{C}^{2}}$ then holds as in the absence of dephasing More generally, for a maximally entangled superposition of Bell states, the Bell inequality is satisfied for a finite dephasing strength and the entanglement vanishes for somewhat stionger (but still finite) dephasing strength There is then no one-to-one relation between $\mathcal{E}_{\text {max }}$ and \mathcal{C}

Key Words: Entanglement, Bell mequality, Nonlocality, Decoherence

1. Introduction

The pioduction and detection of entangled particles is the essence of quantum information piocessing [1] In optics, this is well-established with polarization-entangled photon pans, but in the sold state it iemans an expermental challenge There exist several theoretical proposals for the production and detection of entangled elections [2,3] These theoretical works addiess mamly pure states The purpose of this aiticle is to investigate what happens if the state is mixed Some aspects of this problem were also considered in Refs $[4,5,6]$ We go a bit fuither by compaing violation of the Bell mequality to the degiee of entanglement of the muxed state

The Bell mequality is a test for the existence of nonclassical conielations in a state shared by two spatially separated observers [7] It is called an entanglement "witness", because violation of the mequality imphes that the state is quantum mechamcally entangled - but not the other way around [8] More precrsely while all entangled pure states volate the Bell mequality, there exist mixed states which are entangled and nevertheless satisfy the mequality [9] A mixed state can anse either because of the interaction with an envnonment (proper mixture) of because the detector does not differentrate among certan degrees of fieedom of the entangled puse state (mproper mixture) Generically, the loss of puity of a state is associated with a deciease in the degiee of entanglement (although this is not necessanly so)

Applications of these general notions typically nuvolve polauzation entangled photon pans [10] The tiansition fiom pure to mixed states, and the associated degiadation of entanglement, can be avoided quite effectively in that context - even if the photons melact strongly with matter degiees of freedom For a diamatic demonstration, see a recent experment [11] and theory [12] on plasmon-assisted entanglement tiansfer In essence, this iobustness of photon entanglement is a manifestation of the fact that lineal optics is an excellent appioximation even if the medium in which the photons piopagate is stiongly scattening and absor bing

VAN VELSEN, KINDERMANN, BEENAKKER

The entanglement scheme that we will analyze here, proposed in Ref. [6], involves the Landau level index of an electron and hole quasiparticle. The scheme differs from earlier proposals in that the entanglement is produced by a single-electron Hamiltonian, without requiring Coulomb interaction or the superconductor pairing interaction. We consider one specific mechanism for the loss of purity, namely interaction with the environment. We model this interaction phenomenologically by introducing phase factors in the scattering matrix and subsequently averaging over these phases. A more microscopic treatment (for example along the lines of a recent paper [13]) is not attempted here. The mixed state created by this averaging is a proper mixture. An improper mixture would result from energy averaging. We assume that the applied voltage is sufficiently small that we can neglect energy averaging. Experimentally, both energy and phase averaging may play a role [14].

2. Description of the edge state entangler

In Fig. 1 we illustrate the method to produce and detect entangled edge states in the quantum Hall effect [6]. The thick black lines indicate the boundaries of a two-dimensional electron gas. A strong perpendicular magnetic field B ensures that the transport near the Fermi level E_{F} takes place in two edge channels, extended along a pair of equipotentials (thin solid and dashed lines, with arrows that give the direction of propagation). A split gate electrode (shaded rectangles at the center) divides the conductor into two halves, coupled by tunneling through a narrow opening (dashed arrow, scattering matrix S). If a voltage V is applied between the two halves, then there is a narrow energy range $0<\varepsilon<e V$ above E_{F} in which the edge channels are predominantly filled in the left half (solid lines) and predominantly empty in the right half (dashed lines).

Figure 1. Schematic drawing of the edge state entangler. Taken from Ref. [6].
Tunneling events introduce filled states in the right half [black dots, creation operator $b_{\imath}^{\dagger}(\varepsilon)$] and empty states in the left half [open circles, creation operator $c_{\imath}^{\dagger}(\varepsilon)$]. These are quasiparticle excitations of the vacuum state $|0\rangle_{\varepsilon}$, corresponding to empty states in the left half and filled states in the right half. To leading order in the tumneling probability the wavefunction is given by

$$
\begin{align*}
& |\Psi\rangle=\prod_{\varepsilon}\left(\sqrt{w}|\Phi\rangle_{\varepsilon}+\sqrt{1-w}|0\rangle_{\varepsilon}\right) \tag{1}\\
& |\Phi\rangle_{\varepsilon}=w^{-1 / 2} \sum_{\imath, \jmath} c_{\imath}^{\dagger}(\varepsilon) \gamma_{\imath \jmath} b_{\jmath}^{\dagger}(\varepsilon)|0\rangle_{\varepsilon}, \tag{2}\\
& \gamma=\sigma_{y} r \sigma_{y} t^{\mathrm{T}}, \quad w=\operatorname{Tl} \gamma \gamma^{\dagger} . \tag{3}
\end{align*}
$$

The matrix γ is given in terms of a Pauli matrix,

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \tag{4}\\
1 & 0
\end{array}\right) \equiv \sigma_{1}, \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -\imath \\
\imath & 0
\end{array}\right) \equiv \sigma_{2}, \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \equiv \sigma_{3}
$$

and the reflection and transmission matices $1, t$ (These are 2×2 submatices of S) The state $|\Psi\rangle$ is a superposition of the vacuum state $|0\rangle$ and the entangled particle-hole state $|\Phi\rangle$ Terms contanng two particles on two holes are of higher order in the tunneling piobability and can be neglected We also assume that the applied voltage is sufficiently small that the encigy dependence of the scatteimg matix meed not be taken into account

Dephasing is introduced phenomenologically though iandom phase shifts $\phi_{2}\left(\psi_{\imath}\right)$ accumulated in channel \imath at the left (1ight) of the tunnel banner The eflection and tiansmission matnces tiansform as

$$
r \rightarrow\left(\begin{array}{cc}
e^{\imath \phi_{1}} & 0 \tag{5}\\
0 & e^{\imath \phi_{2}}
\end{array}\right) \tau_{0}, \quad t \rightarrow\left(\begin{array}{cc}
e^{\imath \psi_{1}} & 0 \\
0 & e^{\imath \psi_{2}}
\end{array}\right) t_{0}
$$

By averaging over the phase shifts, with distırbution $P\left(\phi_{1}, \phi_{2}, \psi_{1}, \psi_{2}\right)$, the puie state (1) is conveited into a mixed state Projecting out the vacuum contıbution (which does not contirbute to cuirent fluctuations), we obtann for this mixed state the 4×4 density matirx

$$
\begin{equation*}
\rho_{\imath \jmath h l}=\frac{\left\langle\gamma_{\imath \jmath} \gamma_{h l}^{*}\right\rangle}{\left\langle\operatorname{T1} \gamma \gamma^{\dagger}\right\rangle} \tag{6}
\end{equation*}
$$

where (> denotes the average over the phases The degiee of entanglement is quantified by the concuncence \mathcal{C}, given by [15]

$$
\begin{equation*}
\mathcal{C}=\max \left\{0, \sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}-\sqrt{\lambda_{3}}-\sqrt{\lambda_{4}}\right\} \tag{7}
\end{equation*}
$$

The λ_{2} 's are the eigenvalues of the matinx product $\rho\left(\sigma_{y} \otimes \sigma_{y}\right) \rho^{*}\left(\sigma_{y} \otimes \sigma_{y}\right)$, in the order $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \lambda_{4}$ The concurence ranges fiom 0 (no entanglement) to 1 (maximal entanglement)

The entanglement of the particle-hole excitations is detected by the violation of the Bell-CHSH (Clauseı-Hone-Shimony-Holt) mequality $[16,17]$ This requines two gate electiodes to locally mix the edge channels (scattering matices U_{L}, U_{R}) and two pans of contacts 1,2 to separately measure the cunent fluctuations $\delta I_{L \imath}$ and $\delta I_{R_{\imath}}(\imath=1,2) \mathrm{m}$ each transmitted and reflected edge channel In the tumeling regime the Bell mequality can be formulated in teims of the low-fiequency norse conelator [5]

$$
\begin{equation*}
C_{\imath \jmath}=\int_{-\infty}^{\infty} d t \overline{\delta I_{L \imath}(t) \delta I_{R \jmath}(0)} \tag{8}
\end{equation*}
$$

At low temperatures $(k T \ll e V)$ the conelator has the general expiession [18]

We agam intioduce the random phase shifts intor and t and average the corielator The Bell-CHSH parameter is

$$
\begin{equation*}
\mathcal{E}=\left|E\left(U_{L}, U_{R}\right)+E\left(U_{L}^{\prime}, U_{R}\right)+E\left(U_{L}, U_{R}^{\prime}\right)-E\left(U_{L}^{\prime}, U_{R}^{\prime}\right)\right| \tag{10}
\end{equation*}
$$

where $E(U, V)$ is related to the average conelators $\left\langle C_{\imath \jmath}(U, V)\right\rangle$ by

$$
\begin{equation*}
E=\frac{\left\langle C_{11}+C_{22}-C_{12}-C_{21}\right\rangle}{\left\langle C_{11}+C_{22}+C_{12}+C_{21}\right\rangle} \tag{11}
\end{equation*}
$$

The state 15 entangled if $\mathcal{E}>2$ for some set of 2×2 unitary matices $U_{L}, U_{R}, U_{L}^{\prime}, U_{R}^{\prime} \quad$ If $\mathcal{E}=2 \sqrt{2}$ the ontanglement is maximal

3. Calculation of the mixed-state entanglement

We sumplify the problem by assummg that the two tiansmission eigenvalues (ergenvalues of $t t^{\dagger}$) are identical $T_{1}=T_{2} \equiv T$ In the absence of dephasing the election and hole then foim a maximally entangled

VAN VELSEN, KINDERMANN, BEENAKKER

pair. The transmission matrix $t_{0}=T^{1 / 2} V$ and reflection matrix $r_{0}=(1-T)^{1 / 2} V^{\prime}$ in this case are equal to a scalar times a unitary matrix V, V^{\prime}. Any 2×2 unitary matrix Ω can be parameterized by

$$
\Omega=e^{\imath \theta}\left(\begin{array}{cc}
e^{\imath \alpha} & 0 \tag{12}\\
0 & e^{-\imath \alpha}
\end{array}\right)\left(\begin{array}{cc}
\cos \xi & \sin \xi \\
-\sin \xi & \cos \xi
\end{array}\right)\left(\begin{array}{cc}
e^{\imath \beta} & 0 \\
0 & e^{-\imath \beta}
\end{array}\right)
$$

in terms of four real parameters $\alpha, \beta, \theta, \xi$. The angle ξ governs the extent to which Ω mixes the degrees of freedom (no mixing for $\xi=0, \pi / 2$, complete mixing for $\xi=\pi / 4$).

If we set $\Omega=\sigma_{y} V^{\prime} \sigma_{y} V^{\mathrm{T}}$ we obtain for the matrix γ of Eq. (3) the parametrization

$$
\gamma=e^{\imath \theta} \sqrt{T(1-T)}\left(\begin{array}{cc}
e^{\imath \phi_{2}+\imath \alpha} & 0 \tag{13}\\
0 & e^{\imath \phi_{2}-\imath \alpha}
\end{array}\right)\left(\begin{array}{cc}
\cos \xi & \sin \xi \\
-\sin \xi & \cos \xi
\end{array}\right)\left(\begin{array}{cc}
e^{\imath \psi_{1}+\imath \beta} & 0 \\
0 & e^{\imath \psi_{2}-\imath \beta}
\end{array}\right)
$$

In the same parametrization, the matrix $r t^{\dagger}$ which appears in Eq. (9) takes the form

$$
r t^{\dagger}=e^{\imath \theta^{\prime}-\imath \theta} \sqrt{T(1-T)}\left(\begin{array}{cc}
e^{\imath \phi_{1}-\imath \alpha} & 0 \tag{14}\\
0 & e^{\imath \phi_{2}+\imath \alpha}
\end{array}\right)\left(\begin{array}{cc}
\cos \xi & \sin \xi \\
-\sin \xi & \cos \xi
\end{array}\right)\left(\begin{array}{cc}
e^{-\imath \psi_{1}-\imath \beta} & 0 \\
0 & e^{-\imath \psi_{2}+\imath \beta}
\end{array}\right)
$$

with $e^{\imath \theta^{\prime}}=\operatorname{Det} V^{\prime}$. We have used the identity $V^{\prime} V^{\dagger}=\left(\operatorname{Det} V^{\prime}\right)\left(\sigma_{y} V^{\prime} \sigma_{y} V^{\mathrm{T}}\right)^{*}$ to relate the parametrization of $r t^{\dagger}$ to that of γ. Note that

$$
\begin{equation*}
\operatorname{Tr} \gamma \gamma^{\dagger}=2 T(1-T)=\operatorname{Tr} r t^{\dagger} t r^{\dagger} \tag{15}
\end{equation*}
$$

independent of the phase shifts ϕ_{2} and ψ_{2}.
To average the phase factors we assume that the phase shifts at the left and the right of the tunnel barrier are independent, so $P\left(\phi_{1}, \phi_{2}, \psi_{1}, \psi_{2}\right)=P_{L}\left(\phi_{1}, \phi_{2}\right) P_{R}\left(\psi_{1}, \psi_{2}\right)$. The complex dephasing parameters η_{L} and η_{R} are defined by

$$
\begin{equation*}
\eta_{L}=\int d \phi_{1} \int d \phi_{2} P_{L}\left(\phi_{1}, \phi_{2}\right) e^{\imath \phi_{1}-\imath \phi_{2}}, \quad \eta_{R}=\int d \psi_{1} \int d \psi_{2} P_{R}\left(\psi_{1}, \psi_{2}\right) e^{\imath \psi_{1}-\imath \psi_{2}} \tag{16}
\end{equation*}
$$

The density matrix (6) of the mixed particle-hole state has, in the parametrization (13), the elements

$$
\rho=\frac{1}{2}\left(\begin{array}{cccc}
\cos ^{2} \xi & \tilde{\eta}_{R} \cos \xi \sin \xi & -\tilde{\eta}_{L}^{*} \cos \xi \sin \xi & \tilde{\eta}_{L}^{*} \tilde{\eta}_{R} \cos ^{2} \xi \tag{17}\\
\tilde{\eta}_{R}^{*} \cos \xi \sin \xi & \sin ^{2} \xi & -\tilde{\eta}_{L}^{*} \tilde{\eta}_{R}^{*} \sin ^{2} \xi & \tilde{\eta}_{L}^{*} \cos \xi \sin \xi \\
-\tilde{\eta}_{L} \cos \xi \sin \xi & -\tilde{\eta}_{L} \tilde{\eta}_{R} \sin ^{2} \xi & \sin ^{2} \xi & -\tilde{\eta}_{R} \cos \xi \sin \xi \\
\tilde{\eta}_{L} \tilde{\eta}_{R}^{*} \cos ^{2} \xi & \tilde{\eta}_{L} \cos \xi \sin \xi & -\tilde{\eta}_{R}^{*} \cos \xi \sin \xi & \cos ^{2} \xi
\end{array}\right) .
$$

We have defined $\tilde{\eta}_{L}=\eta_{L} e^{-2 \imath \alpha}, \tilde{\eta}_{R}=\eta_{R} e^{2 \imath \beta}$. The concurrence \mathcal{C}, calculated from Eq. (7), has a complicated expression. For $\left|\eta_{L}\right|=\left|\eta_{R}\right| \equiv \eta$ it simplifies to

$$
\begin{equation*}
\mathcal{C}=\max \left\{0,-\frac{1}{2}\left(1-\eta^{2}\right)+\frac{1}{4} \sqrt{16 \eta^{2}+2\left(1-\eta^{2}\right)^{2}(1+\cos 4 \xi)}\right\} \tag{18}
\end{equation*}
$$

Notice that $\mathcal{C}=\eta^{2}$ for $\xi=0$.
For the Bell inequality we first note that the ratio of correlators (11) can be written as

$$
\begin{equation*}
E\left(U_{L}, U_{R}\right)=\frac{1}{2 T(1-T)}\left\langle\operatorname{Tr} U_{L}^{\dagger} \sigma_{z} U_{L} r t^{\dagger} U_{R}^{\dagger} \sigma_{z} U_{R} t r^{\dagger}\right\rangle \tag{19}
\end{equation*}
$$

We parameterize

$$
\begin{align*}
U_{L}^{\dagger} \sigma_{z} U_{L} & =n_{L,} \sigma_{x}+n_{L . y} \sigma_{y}+n_{L . z} \sigma_{z} \equiv \hat{n}_{L} \cdot \vec{\sigma} \tag{20}\\
U_{R}^{\dagger} \sigma_{z} U_{R} & =n_{R r} \sigma_{x}+n_{R, y} \sigma_{y}+n_{R, z} \sigma_{z} \equiv \hat{n}_{R} \cdot \vec{\sigma} \tag{21}
\end{align*}
$$

in terms of two unit vectors \hat{n}_{L}, \hat{n}_{R}. Substituting the parametrization (14), Eq. (19) takes the form

$$
E\left(U_{L}, U_{R}\right)=\frac{1}{2} \operatorname{Tr}\left(\begin{array}{cc}
n_{L, z} & \tilde{\eta}_{L}^{*} \nu_{L}^{*} \tag{22}\\
\tilde{\eta}_{L} \nu_{L} & -n_{L . z}
\end{array}\right)\left(\begin{array}{cc}
\cos \xi & \sin \xi \\
-\sin \xi & \cos \xi
\end{array}\right)\left(\begin{array}{cc}
n_{R, z} & \tilde{\eta}_{R}^{*} \nu_{R}^{*} \\
\tilde{\eta}_{R} \nu_{R} & -n_{R, z}
\end{array}\right)\left(\begin{array}{cc}
\cos \xi & -\sin \xi \\
\sin \xi & \cos \xi
\end{array}\right),
$$

where we have abbreviated $\nu_{L}=n_{L, a}+\imath n_{L, y}, \nu_{R}=n_{R x}+\imath n_{R y}$.
Comparing Eqs. (17) and (22), we see that

$$
\begin{equation*}
E\left(U_{L}, U_{R}\right)=\operatorname{Tr} \rho\left(\hat{n}_{L} \cdot \vec{\sigma}\right)^{\mathrm{T}} \otimes\left(\hat{n}_{R} \cdot \vec{\sigma}\right) \tag{23}
\end{equation*}
$$

(The transpose appears because of the transformation from electron to hole operators at the left of the barrier.) This is an explicit demonstration that the noise correlator (11) measures the density matrix (6) of the projected electron-hole state - without the vacuum contribution.

The maximal value $\mathcal{E}_{\max }$ of the Bell-CHSH parameter (10) for an arbitrary mixed state was analyzed in Refs. [19, 20]. For a pure state with concurrence \mathcal{C} one has simply $\mathcal{E}_{\text {max }}=2 \sqrt{1+\mathcal{C}^{2}}$ [21]. Fol a mixed state there is no one-to-one relation between $\mathcal{E}_{\max }$ and \mathcal{C}. Depending on the density matrix, $\mathcal{E}_{\max }$ can take on values between $2 \mathcal{C} \sqrt{2}$ and $2 \sqrt{1+\mathcal{C}^{2}}$. The general formula

$$
\begin{equation*}
\mathcal{E}_{\max }=2 \sqrt{u_{1}+u_{2}} \tag{24}
\end{equation*}
$$

for the dependence of $\mathcal{E}_{\text {max }}$ on ρ involves the two largest eigenvalues u_{1}, u_{2} of the real symmetric 3×3 matrix $R^{\mathrm{T}} R$ constructed fiom $R_{k l}=\operatorname{Tr} \rho \sigma_{k} \otimes \sigma_{l}$. Fol our density matiix (17) we find from Eq. (24) a simple expıession if $\left|\eta_{L}\right|=\left|\eta_{R}\right| \equiv \eta$. It reads

$$
\begin{equation*}
\mathcal{E}_{\max }=\sqrt{2} \sqrt{\left(1+\eta^{2}\right)^{2}+\left(1-\eta^{2}\right)^{2} \cos 4 \xi} \tag{25}
\end{equation*}
$$

4. Discussion

The result $\mathcal{E}_{\max }=2\left(1+\eta^{4}\right)^{1 / 2}$ which follows from Eq. (25) for $\xi=0$ was found in Ref. [5] in a somewhat different context. This conesponds to the case that the two edge channels are not mixed at the tumel baırier. The Bell-CHSH inequality $\mathcal{E}_{\text {max }} \leq 2$ is then violated for arbitrarily strong dephasing. This is not

Figure 2 Relation between the maximal violation $\mathcal{E}_{\text {max }}$ of the Bell-CIISH mequality and the concuisence \mathcal{C} calculated from Eqs (18) and (25) for mixing parameters $\xi=0$ (tıangles, no mixing) and $\xi=\frac{\tau}{4}$ (squares, complete mixing) The dephasmg parameter η decreases fiom 1 (upper right corner, no dephasing) to 0 (lower left, complete dephasing) with steps of 005 The dotted line is the relation between $\mathcal{E}_{\text {max }}$ and \mathcal{C} for a puie state, which is also the largest possible value of $\mathcal{E}_{\text {max }}$ for given \mathcal{C}
true in the more general case $\xi \neq 0$, when $\mathcal{E}_{\max }$ drops below 2 at a finite value of η.
In Fig 2 we compare $\mathcal{E}_{\max }$ and \mathcal{C} for $\xi=0$ (no mixing) and $\xi=\frac{\pi}{4}$ (complete mixing). For $\xi=0$ the same relation $\mathcal{E}_{\max }=2 \sqrt{1+\mathcal{C}^{2}}$ between $\mathcal{E}_{\max }$ and \mathcal{C} holds as for pure states (dotted curve). Violation of the Bell mequality is then equivalent to entanglement. For $\xi \neq 0$ there exist entangled states $(\mathcal{C}>0$) without violation of the Bell inequality ($\mathcal{E}_{\max } \leq 2$). Violation of the Bell inequality is then a sufficient but not a necessary condition for entanglement. We define two characteristic dephasing parameters $\eta_{\mathcal{E}}$ and $\eta_{\mathcal{C}}$ by the smallest values such that

$$
\begin{equation*}
\mathcal{E}_{\max }>2 \text { for } \quad \eta>\eta_{\mathcal{E}}, \quad \mathcal{C}>0 \quad \text { fol } \quad \eta>\eta_{\mathcal{C}} \tag{26}
\end{equation*}
$$

The number $\eta_{\mathcal{E}}$ is the dephasing palameter below which Bell's inequality cannot be violated; The dephasing parameter $\eta_{\mathcal{C}}$ gives the border between entanglement and no entanglement. From Eqs. (18) and (25) we obtain

$$
\begin{equation*}
\eta_{\mathcal{C}}=\sqrt{\frac{5-\cos 4 \xi-2 \sqrt{2} \sqrt{3-\cos 4 \xi}}{1-\cos 4 \xi}}, \quad \eta_{\mathcal{E}}=\sqrt{\frac{-1+\cos 4 \xi+\sqrt{2-2 \cos 4 \xi}}{1+\cos 4 \xi}} . \tag{27}
\end{equation*}
$$

The two dephasing parameters are plotted in Fig. 3. The inequality $\eta_{\mathcal{E}} \geq \eta_{\mathcal{C}}$ reflects the fact that $\mathcal{E}_{\text {max }}$ is an entanglement witness.

Figure 3 The Bell-CHSH inequalıty is volated for dephasing parameters $\eta>\eta_{\mathcal{E}}$, whle entanglement is preserved for $\eta>\eta_{c}$. The shaded region indicates dephasing and mixing parameters for which there is entanglement without violation of the Bell-CHSH inequality.

In conclusion, we have shown that the extent to which dephasing prevents the Bell inequality from detecting entanglement depends on the mixing of the degrees of freedom at the tumel barrier. No mixing $(\xi=0)$ means that the maximally entangled electron-hole pair produced by the tumel barier is in one of the two Bell states

$$
\begin{equation*}
\left|\psi_{\alpha}\right\rangle=\frac{1}{\sqrt{2}}\left(|\uparrow \downarrow\rangle+e^{2 \alpha}|\downarrow \uparrow\rangle\right), \quad\left|\phi_{\alpha}\right\rangle=\frac{1}{\sqrt{2}}\left(|\uparrow \uparrow\rangle+e^{i \alpha}|\downarrow \downarrow\rangle\right) . \tag{28}
\end{equation*}
$$

(In oun case the Landau level indcx $\uparrow=1,2$ replaces the spin index \uparrow, \downarrow.) Then there is finte entanglement and finite violation of the Bell inequality for aıbitiarıly stıong dephasing [5], and noleover there is the same one-to-one relation between degree of entanglement and violation of the Bell inequality as for pure states. All this no longer holds for non-zero mixing $(\xi \neq 0)$, when the maximally entangled electron-hole pair is in a superposition of $\left|\phi_{\alpha}\right\rangle$ and $\left|\psi_{\alpha^{\prime}}\right\rangle$. Then the entanglement disappeas for a finite dephasing strength and the Bell inequality is no longer capable of unambiguously detecting entanglement.

VAN VELSEN, KINDERMANN, BEENAKKER

Acknowledgements

This work was supported by the Dutch Science Foundation NWO/FOM and by the U S Aımy Research Office (Grant No DAAD 19-02-0086)

References

[1] M A Nielsen and I L Chuang, Quantum Computatzon and Quantum Information (Cambridge University Press, Cambridge, 2000)
[2] J C Egues, P Recher, D S Saraga, V N Golovach, G Burkaid, E V Sukhorukov, and D Loss, in Quantum Nouse, edited by Yu V Nazarov and Ya M Blanter, NATO Scıence Series II Vol 97 (Kluwer, Dordrecht, 2003)
[3] T Martın, A Crepleux, and N Chtchelkatchev, in Quantum Nozse, edited by Yu V Nazarov and Ya M Blanter, NATO Science Seı 1 es II Vol 97 (Kluwer, Doıdrecht, 2003)
[4] G Burkard and D Loss, cond-mat/0303209
[5] P Samuelsson, E V Sukhorukov, and M Buttiker, cond-mat/0303531
[6] C W J Beenakker, C Emary, M Kındeımann, and J L van Velsen, cond-mat/0305110
[7] J S Bell, Physics, 1, (1964), 195
[8] B M Terhal, M M Wolf, and A C Doherty, Phys Today, 56 (4), (2003), 46
[9] R F Werner, Phys Rev A, 40, (1989), 4277
[10] L Mandel and E Wolf, Optıcal Coherence and Quantum Optzcs (Cambridge University, Cambudge, 1995)
[11] E Altewischer, M P van Exter, and J P Woerdman, Nature, 418, (2002), 304
[12] J L van Velsen, J Tworzydło, and C W J Beenakker, quant-ph/0211103
[13] F Marquardt and C Brudeı, cond-mat/0306504
[14] Y J1, Y Chung, D Sprmzak, M Herblum, D Mahalu, and H Shtrikman, Nature, 422, (2003), 415
[15] W K Wootters, Phys Rev Lett, 80, (1998), 2245
[16] J F Clauser, M A Horne, A Shumony, and R A Holt, Phys Rev Lett 23, (1969), 880
[17] N M Chtchelkatchev, G Blatter, G B Lesovik, and T Martin, Phys Rev B, 66, (2002), 161320(R)
[18] M Buttıker, Phys Rev Lett, 65, (1990), 2901
[19] R Horodeckı, P Hoıodeckı, and M Horodeckı, Phys Lett A, 200, (1995), 340
[20] F Verstraete and M M Wolf, Phys Rev Lett 89, (2002), 170401
[21] N Gism, Phys Lett A 154, (1991), 201

