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Hypersensitivity to perturbations of quantum-chaotic wave-packet dynamics
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We leexamine the pioblem of the ' Loschmidt echo " that measures the sensitivily lo perturbaüon of
quantum-chaoüc dynamics The overlap squaied M(t) of two wave packets evolving under shghtly diffeient
Hamiltoman is shown to have the double-exponential initial decay ^exp(-constantXe2Xo ') in the mam part of
the phase space The coefficient X0 is the seif averagmg Lyapunov exponent The aveiage decay M*e λ'' is

single exponential with a different coefficient λ ] The volume of phase space that contnbutes to M vanishes in
the classical hmit Ä—»0 for times less than the Ehienfest time TE= jX^ ' | ln h\ It is only after the Ehrenfest
time that the average decay is representative for a typical initial condition
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Chaos in classical mechamcs is chatacteuzed by an expo-
nential sensitivity to initial conditions The sepai ation of two
tiajectones that are mitially close together mcreases m time
oc<jx ' with a rate given by the Lyapunov exponent λ Theie is
no such sensitivity in quantum mechamcs because the ovei-
lap of two wave functions is time independent This elemen-
taiy obsei vation is at the ongm of a large hteiature (leviewed
in a textbook [1]) on quantum chaiactenzations of chaotic
dynamics

One paiticulaily fruitful line of icseaich goes back to the
pioposal of Schack and Caves [2], motivated by eaihei work
of Peres [3], to chaiactenze chaos by the sensitivity to pei-
tuibations Indeed, if one and the same state ψ0 evolves un-
dei the action of two diffeient Hamiltomans H and H
+ öH, then the oveilap

,i(H+SH)t/he~iHtffi
l<Ao> | 2 (D

is not constiamed by umtanty Jalabert and Pastawski [4]
discoveied that M(t) (which they referred to äs the
"Loschmidt echo") decays ccg~x ' if ψ0 is a nanow wave
packet in a chaotic legion of phase space, pioviding an ap-
pealmg connection between classical and quantum chaos

The discoveiy of Jalabeit and Pastawski gave a new im
petus [5] to what Schack and Caves called "hypei sensitivity
to peituibations" of quantum-chaotic dynamics The piesent
papei diffeis fiom this body of hteiatuie in that we consider
the statisttcs of M(t) äs ψ0 vanes ovei the chaotic phase

space We find that the aveiage decay M(t)<^e~^' is due to
legions of phase space that become vamshmgly small m the
classical hmit Äefl—>0 (The effective Planck constant Aeff

= h/S0 is set by the inveise of a typical action S0 ) The
dominant decay is a double exponential ocexp(—constant
Xe 2 X ' ) , so it is tiuly hypei sensitive The slowet single-
exponential decay is lecoveied at the Ehienfest time TE

Befoie piesentmg oui analytical theoiy, we show in Fig l
the data fiom a numencal Simulation that illustiates the hy-
persensitivity mentioned above The Hamiltoman is the
quantum kicked lotatoi [1]

P~
—
2.

h d
δ(ί-η), p=--r- (2)

The peituibed Hamiltoman H' = H+SH is obtamed by the
leplacement Κ—^Κ+δΚ The coordmate χ is penodic, χ
=χ + 2ττ Το woik with a finite dimensional Hilbert space,
we discretize xk = 2vk/N, £=1,2, ,N The momentum
p„, = mh is a multiple of A, to ensure single valued wave-
functions Foi ϊι = ϋ^=2πΙΝ the lestnction to the fiist Bnl-
loum zone lesults in a single band ρ,,, = 2πιη/Ν, m
= 1,2, ,N The time evolution e~'Hn/li=tj" aftei n pen-
ods, of the initial Gaussian wave packet i//k

= N~U2e.xp(TrN~l[2im0k— (k—k^)2]), is given by the Floquet
operatoi in the jc-iepiesentation

l nr(k'-k)2 NK

N

2irk\

We use the fast Founei tiansfoim algonthm to compute U"
for N up to l O6 [6]
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FIG l The overlap M at t = n foi the quantum kicked rotatoi
for thiee diffeient ways of aveiaging O M 0 exp(InM), ·
exp(-exp[ln(-lnM)]) We took K=\Q SK = l 6X 10~3, N
= 106 Averages aie taken ovei 2000 mndom initial conditions of a
Gaussian wave packet The dotted line shows the Lyapunov decay
ve "λ ' with \ != l l Al « = 3, we have only an uppei bound for
the loganthmic averages because cancellations in the calculation
hmit the accuracy
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We study the statistics of M (t) by compaimg m Fig l
thiee diffeient ways of aveiagmg ovei initial positions
(m0 ,£0) of the Gaussian wave packet We used K= 10, 8K
= 16X10 3, andyv=10 6 (Ä e f f =628X10~ 6 ) While the av-
eiage M decays exponentially, the two loganthmic aveiages
have a much moie rapid initial decay We estimate that M
<10~23 at n = 3 foi about 30% of landomly chosen initial
conditions Foi the same pomt n = 3 , only 9 % of initial con-
ditions (conespondmg to M>02) account foi 80% of the
total value of M The typical decay of M (t) is therefoie
much moie lapid than the exponential decay of the aveiage
M

Statistical fluctuations also affect the decay täte of M set
by the Lyapunov exponent accoidmg to Ref [4] The defim
tion of the Lyapunov exponent

gives X0= l 65 foi the classical kicked lotator with K= 10
Howevei, M(r) m Fig l has exponent λ] = 1 l, defined by

λ, = - 'In) δχ(ί)/δχ(0)\' (4)

Since fluctuations of t 1\η\δχ(ί)/δχ(ΰ)\ decrease hke t 1/2,
the Lyapunov exponent X0 is self-aveiagmg [7], while the
\;'s aie not

Foi an analytical descnption, we stau fiom the Gaussian
one-dimensional wave packet

1/4

= |:ZFJ exP 2h
(5)

The wave packet is centeied at the pomt x0(t),p0(t) which
moves along a classical tiajectoiy Imtially, ß(t = 0) = 0 and
α(ί = 0) = l Diveigence of trajectones leads to the exponen
tial bioadening of the packet, thus a(f)«exp(—2λί) Since
a<äl foi t>l/\, the wave packet in phase space becomes
highly elongated with length /||= \Μ·(1 + ß2~)/a and width
/± = Ä//|| The paiametei β = Δρ/Δχ icpiesents the tilt angle
of the elongated wave packet [8] The Gaussian appioxima-
tion (5) bieaks down at the Ehienfest time r £ =|-X~ 1 | lnA |
when / u becomes of the oidei of the size of the System

We assume that ψ evolves accoidmg to Harmltoman
H (K) and ψ' accoidmg to Η'=Η(Κ+δΚ) The oveilap
M = | {ψ'\ φ} \ 2 of the two Gaussian wave packets is

/ α(δρ-βδχ)2

Ά -Γ7=Γ
αα' δχ~

2äh
(6)

δχ=χ'0

m teims of the (weighted) mean a = (a+a')/2, ß =
+ ßa')/(a+ a'), and diffeience δρ=ρ^—ρ
-x0, δα=α'-α, δβ = β'-β In oidei of magnitude,

δβ/β— δα/α—δΚ<ζ[ The displacement vectoi (δχ,δρ)
has component Δ\\—δΚβ^' paiallel to the elongated wave
packets and component Δ±= δΚ peipendiculai to them (see
Fig 2)

FIG 2 Schematic illustiation of two perturbed wave packets m
phase space for t< TO

Depending on the stiength of peituibation, one may dis
tmguish thiee mam icgimes δK<h, h<BK<^Jh, and SK
>\[h We will considei in detail the mteimediate legime h
< δΚ< ψί and discuss the two other legimes moie bnefly at
the end of the papei (The simulations of Fig l are at the
uppei end of the mtermediate regime, since δΚ= l 6
X l O ~ 3 and VÄ = 25X10~ 3 ) The thiee legimes may be
chaiactenzed by the lelative magnitude of the Ehienfest time
rr and the peituibation dependent time scale TO

= ϊ\~ι\ΙηδΚ\ In the mtermediate regime, one has \TE

<TO<TE

To estimate the lelative magnitude of the two teims in the
exponent of Eq (6), we wnte

δρ - β δχ = ( l + β2) 1/2Δ± =fSK,

„2λ/

(7)

(8)

Heie,/and g aie functions of the oidei of umty of time t and
the initial location x, ,p, of the wave packet The second teim

in the exponent (6) is of the oider αδχ2/Ά—δΚ2/ή, while
the fiist teim is of the oidei QSK2/h Since Q>1 foi t
<2r0, and 2r0> TE in the mtermediate legime, we may ne
glect the second term lelative to the fast teim within the
entne lange t< TE of validity of the Gaussian approximation
Equation (6) thus simphfies to

(9)

We seek the statistics of M (t) geneiated by vaiymg
x, ,p, The statistics is nontiivial because fluctuations in/of
the oidei of umty cause exponentially laige fluctuations m M
if Q8K2lh^>\, which is the case foi 2τ0-τ£<ί<τ£ The
aveiage of M is then dommated by the nodal hnes x„(p) m
phase space at which / vamshes (at a paiticulai time t) If
Δχη is the typical spacmg of these hnes at constant p, then
the denvative dfldx, at xn is of oidei 1/Δχη This yields

dx

Δχη

exp
'•QSK2

(10)

Assummg mdependent fluctuations m the (peituibation de-
pendent) distnbution of nodal hnes and m the late of divei-
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gence of tiajectoiies foi the individual Harmltonian, we m-
coipoiate fluctuations in λ in Eq (10) via exp(—λ?)—>exp
(—λ]ί), in accoidance with Eq (4) Hence, we iccovei the
exponential decay of the Loschmidt echo [4], although with
the exponent λι instead of X 0 (in agieement with the numer-
ics of Fig 1) The exponential decay sets in foi t>2r0

-TC, while foi shoitei times, M lemains close to unity [9]
The volume V of phase space neai the nodal hnes contnb

utmg to M is of the oider V=(n/Q8K2)m This volume
decieases exponentially m time for t< r0, leachmg the mini-
mal value V0= \Jk/SK<l at TO Foi laiger times, V m-
cieases satuiatmg at a value of the oidei of unity at TE We,

therefoie, conclude that the aveiage M is only lepiesentative
foi the typical decay, if t> TE Foi smallei times, the aveiage
is dommated by laie fluctuations that lepiesent only a small
fiaction of the chaotic phase space

To obtam an aveiage quantity that is lepiesentative foi a
typical point in phase space, we take loganthmic aveiages of
Eq (9) Foi t<r0, one has

(H)

(12)

(The coefficient λ_ 2 m In M appeais because we aveiage the
squaie of displacement) The double loganthmic aveiage
(12), given by the self-aveiagmg Lyapunov exponent X0, is
least sensitive to fluctuations and is lepiesentative foi the
mam pait of phase space The typical oveilap thus has the
double-exponential decay

(13)

down to a minimal value Μ0—&χρ( — δΚ/Κ) at t= TO

The initial decay (13) for t<r0 is the same äs obtamed m
Ref [10] foi the classical fidelity (defined äs the oveilap of
two classical phase space densities) In that pioblem, the lole
of h is played by the mitially occupied volume of phase
space A supei exponential decay of the classical fidelity has
also been obtamed by Eckhai dt [11]

The ougin of the decay (13) is illustiated in Fig 2 Foi

t<T0, the wave packets aie neaily paiallel (δβ^α), dis-
placed lateially by an amount Δ±νδΚ Theu oveilap is an
exponential function «:exp(—Δ2//^), wheie the width l± of
each wave packet decieases exponentially m time oce~

x '
Hence, we obtam the double-exponential decay

Foi t>r0 (when δβ>α), the oveilap of the two wave
packets is dommated by theu ciossing point x( ,p( The
oveilap M = exp(—constX x( — XQ\2/l2) now mcieases with
time because/||θ:£λί Since λ( -χ0\ — Δλ/δβ—/, the cioss-
mg point falls outside the lange of vahdity of the Gaussian
appioximation unless |/| < l The lesult (10) is justified (be-
cause it is dommated by nodes ot /), but we cannot use the
Gaussian appioximation to extend the foimula (13) foi the
typical decay to t> τϋ The typical decay and the aveiage
decay become the same at TC, so the typical M should in
ciease üom its minimal value M0 at TO to the value Mc

FIG 3 Two perturbed wave packets m phase space for rE<t
<τΕ + 2τα The hnes show ρ(λ) (solid) and p ' ( x ) (dashed) ex
tracted from the Husimi function evolved with the quanlum kicked
rolator, for N= l O6, K = l, SK=0 l, n = 5 Dots show the crossmg
pomts x] that contnbule to the overlap m stationary phase appioxi-
mation

λτι =ή/δΚ at TE Both M0 and ME are «l,
but MO is exponentially small in δΚ/h, while ME is only
algebiaically small

Foi t>TE, one can use the semiclassical WKB descnp-
tion of elongated wave packets, along the hnes of Ref [12]
The phase space lepiesentation of the wave function φ is
concentiated along the line on the toms p(\) of length l\\
— \/heXt>i, see Fig 3 The function p ( x ) is multivalued
and each bianch k has a WKB wave function with amphtude
pk^ lllN and phase ak

ισ, Ι h pk=dakldx (14)

Foi SK>h, the oveilap of two oscillatmg wave functions
ψ,ψ' of the foim (14) may be found in a stationary phase
appioximation The stationaiy pomts are given by the cioss-
mgs p ( x l ) = p ' ( x j ) of the two hnes p ( x ) , p'(x) given by the
evolution with Hamiltomans H,H' Foi τε<ί<τε + 2τ0,
the numbei of ciossings Nc is propoitional to l\\ and indepen-
dent of 3K This is because both the lateial displacement of
p and p' and then lelative angles aie of the same oidei δΚ
(In Fig 3, we have l\\ — 2QNc ) Each crossmg contnbutes to
{ψ\φ'), an amount

dx&xp

(15)

wheie κ = ά2(σ—σ') — δΚ and

The phase φ} vanes landomly fiom one ciossing to the other,
leadmg to

M-- T1

 β'
(φ>~φι) — =-—e~ xi ' (16)

ι ΐ δ κ , ϊ - ι ¥κ SK

Due to the laige numbei of ciossings, theie is now httle

diffeience between M and loganthmic aveiages Foi t>rE

+ 2τ0, the numbei of ciossings becomes Ν( = δΚ12\ (The
distance between almost paiallel segments of p ' ( x ) is of the
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order 1//μ , and the hne p ( x ) ciosses at the angle δΚ about
SKl^i Segments per unit length ) This leads to satuiation

of the oveilap at M — h
This completes our discussion of the mtei mediate legime

h < SK< \[h We conclude with a bi lef discussion of the two
othei legimes Foi SK> \jh, the longitudmal displacement
of the packets exceeds then lengths, Δ||>/|| The logauthmic

aveiages now lemain the same, but M is changed The domi-

nant contnbutions to M are now given by the laie events foi

which both Δ± and Δ|| vanish This leads to M
~(h/SK2)e~'Xl1 for t<2r0 (The same Lyapunov decay äs
in the intermediate legime, but with a much smaller prefac-
tor) For 2τ0<ί<τΕ, the length of each wave packet le-
mams small, l\\— Vftex '<§ l , but the displacement saturates at
the maximal value Δ||=1 In this time ränge, the aveiage

oveilap has a plateau at M — h/δΚ Finally, foi t>rc, the

decay (16) M-( ffiSK)e~Ki' is recoveied
In the lemaming legime SK^fi, we find from Eq (6) that

M(t) remams close to unity foi t<rE, regaidless of the
initial location of the wave packet (This also lesults m m-
sensitivity to the way of averagmg ) The golden-rule decay
[5], with rate T — (3K/h)2, sets in only aftei the Ehrenfest

time Μ=εχρ[-Γ(/-τΕ)] foi t>rE These lesults are de-
picted in Fig 4 The golden-rule decay peisists until the
Heisenbeig time t^—\lh or the Saturation time Γ~' |1ηΑ[,
whichever is smaller (Only the initial decay is shown m Fig
4) The Gaussian decay [5] sets in foi ?>?//, provided that

PHYSICAL REVIEW E 67, 025204(R) (2003)

o F

In summary, we have shown that statistical fluctuations
play a dominant lole in the problem of the Loschmidt echo
on time scales below the Ehienfest time While the decay of

12 14

FIG 4 Decay of the aveiage overlap for the quantum kicked
lotator (K= 10) in the golden-rule regnne We keep Γ
= 0023(NSK)2 fixed by lakmg δΚ^ΙΙΝ Circles from bottom to
top give M foi N= 103,104,105,106,4X l O6 The mset demonstiates
that ;i0 scales with In N, äs expected for the Ehrenfest time

the squaied oveilap M (t) of two pertuibed wave packets is
exponential on an aveiage, äs obtamed pieviously [4], the
typical decay is double exponential It is only aftei the
Ehrenfest time that the main pait of phase space follows the

single-exponential decay of M The Ehrenfest time has been
heavily studied in connection with the quantum-to-classical
correspondence [5] The lole that this time scale plays m
suppiessmg statistical fluctuations has not been anticipated in
this large body of hteiatuie
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