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We 1eexamine the pioblem of the ‘ Loschmidt echo ™ that measures the sensitivity to perturbation of
quantum-chaotic dynamics The overlap squated M (1) of two wave packets evolving under shightly different
Hamiltoman 1s shown to have the double-exponential mnitial decay o exp(—constantX e>*o’) in the mam part of

the phase space The coefficient Aq 1s the self averaging Lyapunov exponent The aveiage decay M«e

Ayt 1S

single exponential with a different coefficient A; The volume of phase space that contributes to # vanishes 1n
the classical imit #—0 for times less than the Ehienfest tme 7z= %)\0"1|1n #| It 1s only after the Ehrenfest
time that the average decay 1s representative for a typical mitial condition
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Chaos 1n classical mechanics 1s chaiactetized by an expo-
nential sensitivity to mitial conditions The sepaiation of two
tiajectories that are mitially close together increases in time
e with a rate given by the Lyapunov exponent A Theie 1s
no such sensitivity 1in quantum mechanics because the over-
lap of two wave functions 1s time ndependent This elemen-
tary observation 1s at the onigim of a large literature (1eviewed
n a textbook [1]) on quantum characterizations of chaotic
dynamics

One paiticulaily frurtful line of 1esearch goes back to the
proposal of Schack and Caves [2], motvated by eailier work
of Peres [3], to chaiactenize chaos by the sensitivity to pet-
turbations Indeed, if one and the same state i, evolves un-
der the action of two different Hamiltonians A and H
+ 6H, then the overlap

M(,):K¢O|ez(H+8H)t/heﬂHz/ﬁl¢0>|2 (1)

1s not constiamed by umitarity Jalabert and Pastawski [4]
discovered that M(¢) (which they referred to as the
“Loschmidt echo”) decays «e ™ if ¢, 1s a nariow wave
packet 1 a chaotic 1egion of phase space, providing an ap-
pealing connection between classical and quantum chaos
The discovery of Jalabeit and Pastawski gave a new mm
petus [5] to what Schack and Caves called ‘“‘hypeisensitivity
to pertuibations” of quantum-chaotic dynamics The piesent
papet differs from thus body of literatuie m that we consider
the statistics of M(t) as iy vaues ovelr the chaotic phase

space We find that the aveiage decay M (t)xe ™M 1s due to
1egions of phase space that become vanishingly small 1n the
classical limit 7 —0 (The effective Planck constant #i.q
=7/Sy 15 set by the mvetse of a typical action Sq ) The
dommant decay 1s a double exponential «exp(—constant
X e, so 1t 1s tiuly hypersensitive The slower single-
exponential decay 1s 1ecoveied at the Ehtenfest time 7p
= A" Infieq]

Before presenting our analytical theoty, we show mm Fig 1
the data fiom a numerical simulation that illustiates the hy-
persensitivity mentioned above The Hamuiltonian 1s the
quantum kicked 1otator [ 1]
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N

The pertwbed Hamiltonian H'=H + §H 1s obtained by the
ieplacement K— K+ 86K The coordinate x 1s periodic, x
=x+27 To woik with a finite dumensional Hilbert space,
we discretize x,=2mk/N, k=12, ,N The momentum
pm=mhk 18 a multiple of #, to ensure single valued wave-
functions Fot A= =2 7/N the 1estriction to the fitst Bril-
loumn zone 1esults 1 a single band p,=27m/N, m
=1,2, ,N The time evolution e =" after n pett-
ods, of the imtial Gaussian wave packet ¢
= N"exp(mN ™ [2umgk—(k—ky)*]), 1s girven by the Floquet
operator 1n the x-1epiesentation

1 (k' —k)*  NK 2k
Uk,k=—\/ﬁexp —7—1—;(:05——— (3)

N 2 N
We use the fast Fourier tiansfoim algonthm to compute U”
for N up to 10° [6]
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FIG 1 The overlap M at t=n for the quantum kicked rotatol
for thiee diffetent ways of averagmg O M ¢ exp(lnM), @
exp(—exp[In(—InM)]) We took K=10 6K=16X10"3 N
=10% Averages ate taken over 2000 1andom 1mtial conditions of a
Gaussian wave packet The dotted line shows the Lyapunov decay
e "™ with \;=11 Atn=3, we have only an uppe: bound for
the logarithmic averages because cancellations m the calculation
linit the accuracy
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We study the statistics of M(t) by compaiing in Fig 1
thiee differtent ways of averaging over mmtial positions
(mgq,ky) of the Gausstan wave packet We used K=10, 6K
=16x10 3 and N=10° (A z=628%x10"% While the av-

etage M decays exponentially, the two logaithmic avelages
have a much moie rapid mnitial decay We estimate that M
<1072 at n=3 for about 30% of 1andomly chosen tnitial
condrtions For the same point n=3, only 9% of mitial con-
ditions (cortesponding to M >02) account for 80% of the

total value of M The typical decay of M(z) 1s therefore
much mote 1apid than the exponential decay of the aveiage

M

Statistical fluctuations also affect the decay 1ate of M set
by the Lyapunov exponent according to Ref [4] The defint
tion of the Lyapunov exponent

No=lm,_, .z~ 'In| 8x(2)/ 5¢(0)|

gives Ag=1 65 for the classical kicked 1otator with K=10
However, M (t) m Fig 1 has exponent Ay =1 1, defined by

\,=—hm(y¢) " 'In|8x(¢)/ 6x(0)|~/ )

1=

Since fluctuations of ¢~ n|&x(r)/&x(0)| decrease like ¢~ 12,
the Lyapunov exponent X\, s self-averaging [7], while the
A,’s ate not

For an analytical desciiption, we start fiom the Gaussian
one-dimenstonal wave packet

1/4 _ 2
w<x>=(§%) exp(zf’;;—x+<zﬁ—a>(—x§;°—) )

The wave packet 1s centered at the point x(¢),po(¢) which
moves along a classical tiajectory Inmtially, 8(¢=0)=0 and
a(t=0)=1 Divergence of trajectoties leads to the exponen
tial bioadening of the packet, thus a(f)*exp(—2\f) Since
a<] for t>1/\, the wave packet 1n phase space becomes
highly elongated with length [j= VA ( 1+ 8%/« and width
[, =f/lj The parameter B=Ap/Ax 1epiesents the tilt angle
of the elongated wave packet [8] The Gaussian appioxima-
tion (5) bieaks down at the Ehienfest time 7p=1X"!|Inf|
when /| becomes of the oider of the size of the system

We assume that ¢ evolves according to Hamuiltonian
H(K) and ' accoiding to H'=H(K+ 6K) The oveilap
M=|{¢'|$)|* of the two Gaussian wave packets 1s

y aa’ ( a(p—Béx)*  aa'dx?

* 2(a*+468H)h  2ah

€
Zraopt "
(©)

i terms of the (weighted) mean a=(a+a’)/2, B=(B8'a
+Ba’M(a+a’), and diffetence Sp=py—po., r=x;
—xg, ba=a'—a, 6=pB"—F In oder of magnitude,
8B/ B=0Sala=5K<1 The displacement vector (&x,5p)
has component Aj=5Ke™ paallel to the elongated wave
packets and component A | = §K perpendiculat to them (see
Fig 2)
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FIG 2 Schematic llustiation of two perturbed wave packets in
phase space for t<<7g

Depending on the stiength of pettuibation, one may dis
tinguish thiee main 1egimes SK <7, A<SK< \/—ﬁ—, and 6K
>\ We will consider n detail the mteimediate tegime 7
< 8K < \Ji and discuss the two other regimes mote biiefly at
the end of the paper (The simulations of Fig 1 are at the
upper end of the intermediate regime, smce SK=16
%x107% and VA=25X10"%) The thiee 1egimes may be
chatacterized by the 1elative magnitude of the Ehienfest time
7r and the peitwbation dependent time scale 7
=4iA"!YIndK| In the intermediate regime, one has §7p
<7< 7Tg

To estimate the 1elative magnitude of the two teums 1 the
exponent of Eq (0), we wiite

p—Box=(1+B*"A, =foK, <)
C—l’ 62)\I

=Q= 8

a’+45p° © 1+ (ge?5K)? ®

Hete, fand g aie functions of the otder of unity of time ¢ and
the wnitial location x, ,p, of the wave packet The second term

m the exponent (6) 1s of the order adx?/fi= 6K 1%, while
the fist teim 1s of the ordet QS8K%/A Since Q1 for ¢
<27y, and 273> 7 1 the mtermediate 1egime, we may ne
glect the second term 1elative to the fust tetm within the
entue 1ange ¢ << 7 of validity of the Gaussian approximation
Equation (6) thus simplifies to

M=(aQ)"exp[ — 3 Q(fSK)*/#] 9)

We seek the statistics of M(z) generated by varying
x,,p, The statistics 1s nontivial because fluctuations 1n f of
the order of unity cause exponentially laige fluctuations in M
if Q8K?/A> 1, which 1s the case fo1 27— 7p<t<7; The
avelage of M 1s then domunated by the nodal lines x,(p) m
phase space at which f vamshes (at a patticular time ) If
Ax, 1s the typical spacing of these Iines at constant p, then
the detivative df/dx, at x,, 1s of oider 1/Ax,, This yields

x—x,\*Q8K?
- Ax, 2%

o= 4x
M=(aQ) Ax P

=(ah! K 2= (\Jh15K)e ™™ (10)

Assuming ndependent fluctuations in the (pertwibation de-
pendent) disttibution of nodal lines and 1n the 1ate of diver-
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gence of tigjectories for the mdividual Hamultonan, we m-
cotpotate fluctuations i A m Eq (10) via exp(—Ar)—exp
(=\9), m accordance with Eq (4) Hence, we 1ecover the
exponential decay of the Loschmidt echo [4], although with
the exponent A ; wstead of Ay (in agteement with the numer-
ics of Fig 1) The exponential decay sets m for r>27,

— 71, while for shoiter times, M remams close to unity [9]
The volume V of phase space near the nodal lines contrib

uting to M 1s of the order V=(A/Q5K*)"? This volume
decieases exponentially in time for ¢ << 7, 1eaching the mini-
mal value Vy=Ai/dK<1 at 7y, For laiger times, V m-
creases saturating at a value of the oider of unity at 7o We,

therefore, conclude that the average M 1s only iepiesentative
for the typical decay, if 1> 7 For smaller times, the average
1s dominated by 1aie fluctuations that 1epresent only a small
fiactton of the chaotic phase space

To obtamn an average quantity that 1S 1epiesentative for a
typical pomt m phase space, we take logaiithmic averages of
Eq (9) Foi 1<y, one has

In M=—(5K*#)exp(2\_,1), (11)
InIn(1/M)=2X\ot —In(A/5K>)+0O(1) (12)

(The coefficient A _, 1n In M appeais because we average the
squate of displacement ) The double loganthmic aveiage
(12), given by the self-averaging Lyapunov exponent Ag, 1S
least sensitive to fluctuations and 1s iepresentative for the
main pait of phase space The typical ovetlap thus has the
double-exponential decay

M =exp[ — constX (5K*/#)e* '], (13)

down to a minimal value My=exp(—oK/#) at =7,

The mmtial decay (13) for t<€ 7 1s the same as obtamed
Ref [10] for the classical fidelity (defined as the oveilap of
two classical phase space densities) In that problem, the 10le
of 7 15 played by the imttally occupied volume of phase
space A supeiexponential decay of the classical fidelity has
also been obtained by Eckhaidt [11]

The ouigin of the decay (13) 1s illustated in Fig 2 Fo
1<7y, the wave packets aie neaily paallel (S8<a), dis-
placed laterally by an amount A, 6K Theu oveilap 1s an
exponential function Ocexp(—Ai/li), wheie the width I, of
each wave packet decieases exponentially m time e
Hence, we obtain the double-exponential decay

For t>17; (when 58> a), the oveilap of the two wave
packets 1s dominated by then ciossmg pomnt x,,p, The
oveilap M =exp(—constX |x, —xolz/luz) now ucreases with
time because [joce™ Smce |a, —xg|=A, /5B=F, the c10ss-
mg point falls outside the 1ange of validity of the Gaussian
appioximation unless |f|<€1 The 1esult (10) 15 justified (be-
cause 1t 1s dominated by nodes ot f), but we cannot use the
Gaussian apptroximation to extend the formula (13) for the
typical decay to t>7, The typical decay and the aveiage
decay become the same at 75, so the typical M should n
ciease {iom 1ts minimal value M, at 7y to the value M
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FIG 3 Two perturbed wave packets in phase space for 7p<t
<75+27; The lines show p(x) (solid) and p’(x) (dashed) ex
tracted from the Husimi function evolved with the quantum kicked
rotator, for N=10%, K=7, 8K=01, n=5 Dots show the crossing
points x, that contribute to the overlap in stationary phase appioxi-
mation

=(\A!6K)e M =#/6K at 7z Both My and My are <1,
but Mg 1s exponentially small mn §K/#A, while Mg 1s only
algebtarcally small

Foi t> 7, one can use the semiclassical WKB desciip-
tion of elongated wave packets, along the lines of Ref [12]
The phase space iepiesentation of the wave function ¢ 15
concentiated along the lime on the totus p(x) of length
2\/%6)">1, see Fig 3 The function p(x) 1s multivalued
and each branch k has a WKB wave function with amplitude
pi= 1/l and phase oy

¢:§ Vo't pi=doylda (14)

Fo1 §K>1, the oveilap of two oscillating wave functions
¢, " of the form (14) may be found n a stationary phase
approxmmation The stationaly poimts are given by the c10ss-
ings p(x,) =p’(x,) of the two Iines p(x), p'(x) given by the
evolutton with Hamiltomans H,H' For 7p<t<7g+27,
the number of crossings N, 1s propottional to [ and indepen-
dent of 6K This 1s because both the lateral displacement of
p and p’ and theu 1elative angles are of the same oider 6K

(In Fig 3, we have [y=20N_. ) Each crossing contitbutes to
(¢gly'), an amount

P,=Vp(x)p' (%) j dxexp

=(e'11)) VA1 5K, (15)

wheie k=d*(0=0")/dx’|, =K and hp=o(x) =0 (x))
The phase ¢, vaues randomly fiom one ciossmg to the other,
leadmg to

K(x——x])2

l~—'—2ﬁ +i¢,

o N g %
E el(¢,—¢,)2__:£e~>~1/ (16)

M:
lﬁg]{”,_] ZH5K oK

Due to the laige number of ciossings, there 1s now little
difference between M and loganthmic averages For t> 7
+27y, the number of ciossings becomes N(:5Klﬁ (The
distance between almost paiallel segments of p'(x) 1s of the
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order 1/, and the lie p(x) crosses at the angle 5K about
K1 > 1 segments per unit length ) This leads to satwation
of the overlap at M=%

This completes our discussion of the intermediate 1egume
hA<6K< \/% We conclude with a brief discussion of the two
other regimes For 6K> VA, the longitudinal displacement
of the packets exceeds theu lengths, A >/ The logatithmic

averages now 1emain the same, but M 1s changed The domi-
nant contributions to M are now given by the 1aie events fot

which both A, and Ay vamsh This leads to M
=(#h/6K?)e M for t<27, (The same Lyapunov decay as
in the intermediate 1egime, but with a much smaller prefac-
tor) For 274<t<7g, the length of each wave packet 1e-
mains small, / = \[f{e"’ <, but the displacement saturates at
the maxmmal value Ay==1 In this time range, the aveiage

ovetlap has a plateau at M=#/5K Finally, for t> 7, the

decay (16) M=(\Jh/5K)e ™" 1s recovered

In the 1emaming 1egime K<, we find from Eq (6) that
M(t) remains close to umty fo1 ¢<<7g, regardless of the
mitial location of the wave packet (This also 1esults i n-
sensitivity to the way of averaging ) The golden-rule decay
(5], with rate I'=(5K/#)?, sets n only after the Ehrenfest

ume M=exp[—T'(t—7)] for t>7; These 1esults are de-
picted m Fig 4 The golden-rule decay peisists until the
Heisenbeig time ty==1/A or the saturation time I'~!|In7],
whichever 1s smaller (Only the imitial decay 1s shown 1 Fig
4 ) The Gaussian decay [5] sets n for >, provided that
SK<#t3?

In summary, we have shown that statistical fluctuations
play a dommant 1ole 1 the problem of the Loschmudt echo
on time scales below the Ehienfest ime While the decay of
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FIG 4 Decay of the average overlap for the quantum kicked
iotator (K=10) m the golden-rule regime We keep T
=0023(NSK)* fixed by taking §K=1/N Circles from bottom to
top give M for N=10%,10%,10°,10%,4X 105 The inset demonstates
that ng scales with In N, as expected for the Ehrenfest time

the squaied oveirlap M (¢t) of two pertuibed wave packets 18
exponential on an average, as obtained pireviously [4], the
typical decay 1s double exponential It 1s only after the
Ehrenfest time that the main pait of phase space follows the

single-exponential decay of M The Ehrenfest tume has been
heavily studied 1n connection with the quantum-to-classical
correspondence [5] The 1ole that this tume scale plays in
suppressing statistical fluctuations has not been anticipated
this farge body of literatuie
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