Crossover from weak localization to weak antilocalization in a disordered microbridge

M G A Crawford and P W Biouwes
Laboratory of Atomic and Solid State Physics, Cornell University Ithaca New York 148532501
C W J Beenakkeı
Instituut Lorentz, Leiden Univeisty PO Box 9506, 2300 RA Leiden The Nethetlands

(Recerved 18 September 2002, published 17 March 2003)

Abstract

We calculate the weak localization concction in the double crossovet to broken time reversal and spinrotational symmetry for a disordered miciobridge or a short disordered witc using a scattering matix approach Whereas the correction has universal limiting values in the three basic symmetiy classes, the functional form of the magnetoconductance is affected by eventual nonhomogeneities in the miciobndge

DOI 10 1103/PhysRevB 67115313
PACS number(s) $7320 \mathrm{Fz}, 7321 \mathrm{Hb}, 7323$-b, 7343 Qt

Interference of time-reversed paths causes a small negative quantum conection to the conductance of a disordered metal termed the weak localization ${ }^{1-4}$ This conection is suppressed by a time-reversal symmetty breaking magnetic field, whereas in the presence of stiong spin-orbit scattering, the sign of the correction is reveised ${ }^{5}$ In that case, the interference contection is known as weak antulocalization

In a wire geometry at zero temperature, the weak localization correction takes a patticularly simple and universal form ${ }^{6}$

$$
\begin{equation*}
\delta G=\frac{2 e^{2}(\beta-2)}{3 \beta h} \tag{I}
\end{equation*}
$$

where the symmetry parameter β denotes the appiopiate symmetiy class In the piesence of an applied magnetic field $\beta=2$ and without a magnetic field $\beta=4$ of 1 with or without stiong spin-orbit scatteing, iespectively Equation (1) was obtaned using random-matix theory ${ }^{7-9}$ and dagiammatic perturbation theory, ${ }^{48}$ and is valid if the length L of the wire is much smaller than the localization length ξ and the dephasing length L_{ϕ}, but much latger than the mean free path l The validity of Eq (1) extends to the case when sample parameters are nonhomogeneous, e g, for wires of vatying cioss section, mean fiee path, or election density ${ }^{10}$

For wies with weak spin-oibit scattering, a ciossover between weak localization and weak antilocalization takes place when the spin-orbit scattering length $l_{s o}$ becomes compatable to L or L_{ϕ} (whichever is smaller) Experimentally, this ciossover regime has been well studied in wies with length $L \gtrdot L_{\phi}{ }^{11-13}$ In this regime, weak (anti)localization takes the form of a small conection to the conductivity of the wue, ather than of a conection to the conductance Theoretically, the weak localization to weak antilocalization clossover in the regime $L \gtrdot L_{\phi}$ has been considered in Refs $14-16$ using diagiammatic peiturbation theory The opposite tegime $L \preccurlyeq L_{\phi}$, where the universal contection (1) to the conductance G can be obsei ved, would be televant for relatively short high-puity metal wires, ${ }^{17}$ or disordered miciobudges

The goal of this paper is theefold (1) to generalize the random-matuix methods for quantum whes to the crossover between weak localization and weak antilocalization, thus extending the equivalence of the two methods to the interpo-
lation between the thee symmetry classes, (ii) to find an explicit expiession for δG for $L \ll L_{\phi}$, and (iii) to extend the theory for the crossover regime to the case of nonhomogeneous wires, for which the electron density, impunity concentration, or cioss section vartes along the sample In this case, both the crossover scale and the functional form of δG in the crossover are affected by nonhomogeneities The fact that the ciossover scale, characterized by the spin-orbit length $l_{\text {SO }}$ and the magnetic length l_{H}, is nonuniversal is well known, both for homogeneous and for nonhomogeneous miciobidges ${ }^{18}$ Our finding that the functional form of the ciossover is affected by the nonhomogenerty is markedly different fiom ciossovers between the thee basic symmetiy classes in quantum dots, where the functional forms are universal and given by random-matux theory ${ }^{6}$ For homogeneous wies, δG is a universal function of $L / l_{\text {SO }}$ and L / l_{H}

The main assumption underlying our calculations is that the wue width $W \preccurlyeq L$, 1 e , quasi-one-dimensionality We also assume that the wire is well in the diffusive regime, l $\ll L, l_{\text {SO }}, l_{H} \ll \xi$, where l is the elastic mean free path, and, for a nonhomogeneous miciobildge, that the number of piopagating channels at the Fermı level N has only one mınımum along the wire (excluding the possibility of a "cavity") We first discuss our calculations for homogeneous whes, the case of nonhomogeneous samples is discussed at the end of this paper

Starting point of our calculation is a andom-matix model similar to that used by Dorokhov ${ }^{19}$ A disordered wie with N propagating channels at the Feimı level is modeled by N one-dimensional channels and periodically inserted scatteiers that scatter within and between the channels The electionic wavefunction is represented by a 2 N -component vector of spinots The $2 N$ components of the wavefunction refer to the tiansverse channel and to the left/ight mover index Linearring the kinetic energy in each of the channels, the Hamiltonian H takes the form of a differential operator with respect to the cooidinate x along the wire and a $2 N$-dimensional quaternion matıix with respect to the channel and left/ıght mover indices and spinor degree of treedom

$$
\begin{equation*}
H=-\imath \sigma_{0} \otimes \tau_{3} \otimes \mathbb{1}_{N} \frac{\partial}{\partial \lambda}+\sum_{J} V_{1} \delta(x-\jmath a), \tag{2}
\end{equation*}
$$

with σ_{0} the 2×2 unit matix for the spinor degtee of fieedom, τ_{3} the Paulı matin in left-movei/1ight-mover grading, l_{N} the $N \times N$ unit matix in the channel giading, V, a He1mitian $2 N \times 2 N$ quatermon matix repiesenting the j th scatteret along the wie, and a the distance between scatteres A quaternion is a 2×2 matiox acting in the spinor grading with special iules for tiansposition and complex conjugation ${ }^{20}$ The "dual" X^{R} of a quater mon matux is $X^{R}=\sigma_{2} X^{\mathrm{T}} \sigma_{2}$, the quaternion complex conjugate is defined as $X^{\prime}=\left(X^{\prime}\right)^{R}$ We have chosen units such that the Fermi velocity is one A model similar to Eq (2) has been used in Ref 21 to study weak localization in unconventional supeiconducting wies

The ensemble-averaged conductance $\langle G\rangle$ of the wree is given by the Landauer formula

$$
\begin{equation*}
\langle G\rangle=\frac{e^{2}}{h} g, \quad g=\left\langle\operatorname{ta}\left(1 \cdots,^{\dagger} r\right)\right\rangle \tag{3}
\end{equation*}
$$

where r is the $N \times N$ quaternon eflection matrix of the wue To calculate r, we stant fiom a wue of zero length and add shces of length a at the wre's ends The scattering matiox of the j th scatterer is

$$
S_{l}=\left(\begin{array}{ll}
t_{J} & r_{l}^{\prime} \tag{4}\\
r_{1} & t_{l}^{\prime}
\end{array}\right)=\frac{2 l-V_{l}}{2 t+V_{l}}
$$

Hence, if a scatterer is added at the lead end of the wire, the new reflection matix of the wie is calculated according to the composition rule

$$
\begin{equation*}
\rightarrow r_{1}+t_{l}^{\prime} r\left(1-r_{1}^{\prime} r\right)^{-1} t_{1} \tag{5}
\end{equation*}
$$

(A similat composition iule, involving both tiansmission and reflection matıices of the disordered wie, applies if a scatterer is added at the far end of the wire ${ }^{6}$)

In left-move1/1ight-mover grading, the potential V, is parametızed as

$$
V=\left(\begin{array}{ll}
v_{L L} & v_{L R} \tag{6}\\
v_{R L} & v_{R R}
\end{array}\right)
$$

where $v_{L L}, v_{L R}, v_{R L}$, and $v_{R R}$ ate $N \times N$ quaternion matices

$$
\begin{align*}
v_{L L}\left(\alpha_{f}, \eta_{f}\right)= & v_{R R}^{+}\left(\alpha_{f},-\eta_{f}\right) \\
= & \sqrt{\frac{a}{l_{f} N}}\left[\left(u_{f}^{0}+\eta_{f} x_{f}\right) \otimes \sigma_{0}\right. \\
& \left.+\iota \alpha_{f} \sum_{\mu=1}^{3} u_{f}^{\mu} \otimes \sigma_{\mu}\right] \tag{7a}\\
v_{L R}\left(\alpha_{b}, \eta_{b}\right)= & v_{R L}^{\dagger}\left(\alpha_{b}, \eta_{b}\right) \\
= & \sqrt{\frac{a}{l(N+1)}}\left[\left(u_{b}^{0}+\eta_{b} x_{b}\right) \otimes \sigma_{0}\right. \\
& \left.+\iota \alpha_{b} \sum_{\mu=1}^{3} u_{b}^{\mu} \otimes \sigma_{\mu}\right] \tag{7b}
\end{align*}
$$

In Eq (7), u_{f}^{0} and x_{f} ate 1 andom Hermutran $N \times N$ matıces, $u_{f}^{\mu}, \mu=1,2,3$, is a andom anti-Hermitian matrix, u_{b}^{0} is a random symmetic matix, and $u_{b}^{\mu}, \mu=1,2,3$ and x_{b} are random antisymmetuc matuces All of these 1 andom matuces have independent and Gaussian distibutions with zeio mean and unt varance (Vaurances are specified for the offdiagonal elements, diagonal elements have double vairance for symmetuc matuces and ate zeio for antisymmetic matuces) The parameters α_{b} and α_{f} descube the strength of the breaking of spin totational symmetiy The parameters η_{b} and η_{f} describe the strength of the breaking of time-reversal symmetiy Finally, l_{f} is the elastic mean fiee path for forwatd scattering and l is the transport mean fiee path

To find the conductance of the wire we calculate the change of g if one scattere1 is added to the wie To this end, we expand the scattering matıix S, of Eq (4) in powers of V_{J}, use the composition iule (5), and calculate the Gaussian average over the potental V, In the limit $a<l l$ of weak disorder we thus find

$$
\begin{equation*}
-2 N l \frac{\partial}{\partial L} g=g^{2}-h_{0}+3 h_{1} \tag{8}
\end{equation*}
$$

We abbieviated

$$
\begin{gather*}
h_{0}=\left\langle\mathrm{t}\left(1-r^{\dagger} r\right)\left(1-,^{i},^{R}\right)\right\rangle, \tag{9a}\\
h_{1}=\frac{1}{3} \sum_{\mu=1}^{3}\left\langle\mathrm{t}\left(1-r^{\dagger},\right) \sigma_{\mu}\left(1-r^{\dagger},^{R}\right) \sigma_{\mu}\right\rangle, \tag{9b}
\end{gather*}
$$

and omitted teims that vanish in the diffusive regime l $\ll L, l_{S O}, l_{H}<N l$ The subsciıpts 0 and 1 refer to singlet and tuplet contıbutions, espectıvely

To leading oider in N, Eq (8) can be solved without the interference conections h_{0} and h_{1}, with the result

$$
\begin{equation*}
g=\frac{2 N l}{L}+O(1) \tag{10}
\end{equation*}
$$

conesponding to the Diude law for the conductance The O (1) correction in Eq (10) gives the weak localization colrection δg, which we now compute

To find the weak localization conection, we need to calculate h_{0} and h_{1} Proceeding as before, we find that the L dependence of $h_{m}, m=0,1$ is governed by the evolution equation

$$
\begin{equation*}
2 N l \frac{\partial h_{m}}{\partial L}=-2\left(\frac{2 N l}{L}+k_{m}\right) h_{m}+\frac{8 N^{2} l^{2}}{L^{2}}, \quad m=0,1 \tag{11}
\end{equation*}
$$

where we abbreviated

$$
\begin{equation*}
k_{0}=\left\langle\mathrm{t}\left(1-r^{\prime},\right)\right\rangle, \quad k_{1}=\frac{1}{3} \sum_{\mu=1}^{3}\left\langle\mathrm{t}\left(1-r \sigma_{\mu} \prime \sigma_{\mu}\right)\right\rangle \tag{12}
\end{equation*}
$$

Evolution equations for k_{0} and k_{1} are obtained similarly and read

$$
\begin{align*}
& 2 N l \frac{\partial k_{0}}{\partial L}=\left(\frac{2 N l}{l_{H}}\right)^{2}-k_{0}^{2}, \tag{13a}\\
& 2 N l \frac{\partial k_{1}}{\partial L}=\left(\frac{2 N l}{l_{H}^{\prime}}\right)^{2}-k_{1}^{2}, \tag{13b}
\end{align*}
$$

where the length scales l_{H} and l_{H}^{\prime} are defined in terms of the parameters of the random-matrix model (7),

$$
\begin{gather*}
l_{H}^{-2}=2\left(l^{-2} \eta_{b}^{2}+l^{-1} l_{f}^{-1} \eta_{f}^{2}\right), \tag{14a}\\
l_{\mathrm{SO}}^{-2}=6\left(l^{-2} \alpha_{b}^{2}+l^{-1} l_{f}^{-1} \alpha_{f}^{2}\right), \tag{14b}\\
\left(l_{H}^{\prime}\right)^{-2}=l_{H}^{-2}+\frac{4}{3} l_{\mathrm{SO}}^{-2} . \tag{14c}
\end{gather*}
$$

Equations (11) and (13) have the solution

$$
\begin{gather*}
k_{0}=\frac{2 N l}{l_{H}} \operatorname{cotanh} \frac{L}{l_{H}}, \tag{15a}\\
h_{0}=\frac{2 N l}{L}\left(1+\frac{l_{H}}{L} \operatorname{cotanh} \frac{L}{l_{H}}-\operatorname{cotanh}^{2} \frac{L}{l_{H}}\right) . \tag{15b}
\end{gather*}
$$

Expressions for k_{1} and h_{1} are obtained from Eq. (15) after the substitution $l_{H} \rightarrow l_{H}^{\prime}$. Substitution of h_{0} and h_{1} into Eq. (8) then allows for the calculation of the weak-localization correction to the conductance

$$
\begin{equation*}
\delta g=\frac{l_{H}}{L} \operatorname{cotanh} \frac{L}{l_{H}}-\frac{l_{H}^{2}}{L^{2}}-3\left(\frac{l_{H}^{\prime}}{L} \operatorname{cotanh} \frac{L}{l_{H}^{\prime}}-\frac{\left(l_{H}^{\prime}\right)^{2}}{L^{2}}\right) \tag{16}
\end{equation*}
$$

At zero magnetic field, Eq. (16) simplifies to

$$
\begin{equation*}
\delta g=\frac{1}{3}+\frac{9 l_{\mathrm{SO}}^{2}}{4 L^{2}}-\frac{3 l_{\mathrm{SO}} \sqrt{3}}{2 L} \operatorname{cotanh} \frac{2 L}{l_{\mathrm{SO}} \sqrt{3}} . \tag{17}
\end{equation*}
$$

Equation (17) reproduces the limits $\delta G=-2 e^{2} / 3 h$ without spin-orbit scattering and $\delta G=e^{2} / 3 h$ with strong spinorbit scattering. Without spin-orbit scattering, Eq. (16) agrees with the weak localization correction calculated in Ref. 22. For large magnetic fields, $L \geqslant l_{H}$, Eq. (16) simplifies to

$$
\begin{equation*}
\delta g=\frac{1}{L}\left[l_{H}-3\left(l_{H}^{-2}+\frac{4}{3} l_{\mathrm{SO}}^{-2}\right)^{-1 / 2}\right] \tag{18}
\end{equation*}
$$

which has the same functional form as the weak localization obtained using diagrammatic perturbation theory. ${ }^{14-16,23}$ Comparison of Eq. (18) and Refs. 14-16,23 allows us to identify $l_{\text {SO }}$ as the spin-orbit length, and, for a channel (with width $W \gg l$) in a two-dimensional electron gas in a perpendicular magnetic field B,

FIG. 1. The weak localization correction δg plotted (a) as a function of the magnetic field strength (characterized by the dimensionless ratio $l_{H}^{-1} L$) for fixed value of the spin-orbit scattering rate (characterized by $l_{\mathrm{SO}}^{-1} L$). From bottom to top, the curves correspond to $L / I_{\text {SO }}=0.1,2,4,6,10,30$, and ∞. (b) as a function of length L for fixed $l_{H}^{-1} l_{\text {SO }}$. From bottom to top, the curves correspond to $l_{H}^{-1} l_{\mathrm{SO}}=2,0.3,0.2,0.1$, and 0 .

$$
\begin{equation*}
l_{H}^{2}=3(\hbar / W B e)^{2} . \tag{19}
\end{equation*}
$$

The case of a cylindrical wire of radius $R \geqslant l$ and magnetic field perpendicular to the wire is obtained by the substitution $W^{2} \rightarrow 3 R^{2} / 2$. For $l>W$ (or $l>R$) the crossover length l_{H} has a more complicated l-dependent expression. ${ }^{24}$

Figure 1 (a) shows $\delta \mathrm{g}$ as a function of the magnetic field for several values of the spin-orbit coupling. In Fig. 1(b) we show δg as a function of $l_{\text {SO }}^{-1} L$ for several values of the magnetic field.

We now turn to a description of the weak localization correction in a nonhomogeneous microbridge. Examples of nonhomogeneous microbridges with varying widths are shown in the inset of Fig. 2. If the wire cross section or the electron density vary with the coordinate x along the wire, the number of propagating channels at the Fermi level N also varies with x. We assume that $N(x)$ has a minimum for x $=0$ and that $d N / d x>0(d N / d x<0)$ for all $x>0(x<0)$. Further, x dependence of the impurity concentration, the

FIG. 2. The weak localization correction δg as a function of the magnetic field strength for three different shapes of a disordered microbridge (channels in a two-dimensional electron gas). The three different shapes are characterized by $s(x)=1, s(x)=1+4|2 x / L|$ and $s(x)=1+4(2 x / L)^{2},-L / 2<x<L / 2$, see Eq. (21). as shown in the inset. The three groups of curves corrcspond to strong, intermediate, and weak spin-orbit scattering from top to bottom, with $/{ }_{\text {sO }}$ in the intermediate case chosen for each case to render the same correction as $I_{H}^{-1} \rightarrow 0$. The magnetic field strength is measured in terms of the effective magnetic length $l_{H, \text { eft }}$, see Eq. (23).
smoothness of the boundary, the shape of the cioss section, etc, causes an x dependence of the length scales l, l_{H}, and $l_{\text {SO }}$

The reflection matux of the wie is constucted by bulding the wire fiom thin slices, starting at the nariowest point $x=0$ This way, the number of channels in the slices added to both ends of the wire can increase, but not dectease For the constiuction of an evolution equation for the conductance g and for the auxiliay functions h_{0}, h_{1}, k_{0}, and k_{1}, we distunguish between two types of added slices A thin shice that contans a scatterng site but for which the number of channels remains constant, and a thin slice without scatterei in which N incieases by unity Addition of a slice of the former type causes a small change in the reflection matix $;$, which is the same as for a quantum wire of constant thickness, see Eq (5) above Addition of a slice for which N mereases by unity does not cause a change of the conductance g or of the auxillaty functions h_{0}, h_{1}, k_{0}, or k_{1}, as can seen by inspecting the cases $x>0$ and $x<0$ separately For $x>0$, an mciease of N does not cause additional reflection, and hence does not affect the reflection matrix r, for $x<0$, an inciement of N changes the dimension of the eflection matıix r by 1 ,

$$
t \rightarrow\left(\begin{array}{ll}
1 & 0 \tag{20}\\
0 & 1
\end{array}\right)
$$

but does not change the conductance g or the functions h_{0}, h_{1}, k_{0}, or k_{1} Combining the two types of slices, we conclude that the only effect of the x dependence of N and l is indirect, through the explicit appearance of N and l in statistics of the scatteing matix of the added slice, see Eq (7) In the diffusive regime, $N(x)$ and $l(x)$ only appeat in the combination

$$
\begin{equation*}
s(x)=N(x) l(x) / N_{0} l_{0}, \tag{21}
\end{equation*}
$$

where N_{0} and l_{0} are number of propagating channels and mean fiee path at $x=0$ For large N the function $s(x)$ may be consideted continuous, and the evolution equations become differential equations which now include explicit ieference to the function $s(x)$ If the wie length L is ieplaced by the effective length \bar{L},

$$
\begin{equation*}
\bar{L}=\int \frac{d x}{s(x)} \tag{22}
\end{equation*}
$$

the evolution equations for g, h_{0}, h_{1}, k_{0}, and k_{1} keep the same form as for homogeneous wires, provided we make the substitutions $N \rightarrow N_{0}, L \rightarrow \bar{L}, l \rightarrow l_{0}, l_{H} \rightarrow \overline{l_{H}}=l_{H} / s(x)$, and $l_{\mathrm{SO}} \rightarrow \overline{l_{\mathrm{SO}}}=l_{\mathrm{SO}} / s(x)$

The functional form of the leading-in- N contubution to the conductance remans unchanged, $G=\left(e^{2} / h\right)\left(2 N_{0} l_{0} / \bar{L}\right)$ Also, for the limiting cases of no spm-orbit scatteing and strong spin-orbit scattering, the weak localization conection δG is still given by the universal tesult $\mathrm{Eq}(1){ }^{10}$ However,
because of the x dependence of the length scales $\overline{l_{I I}}$ and $\overline{l_{\mathrm{SO}}}$, δg acquies an explicit dependence on the shape of the disordered miciobudge or the nonhomogenerty of the mean fiee path or the election density in the crossovel region between the symmetiy classes For a lange magnetic field ($l_{I I}^{-1} L$ $\geqslant 1$), the weak-localization conection can be found m closed form

$$
\begin{gather*}
\delta g=\frac{1}{\bar{L}}\left(l_{H \text { eff }}-3 l_{H \text { eff }}^{\prime}\right), \\
l_{H \text { eff }}=\frac{1}{\bar{L}} \int \frac{l_{H}(x) d x}{s(x)^{2}}, \quad l_{H \text { eff }}^{\prime}=\frac{1}{\bar{L}} \int \frac{l_{H}^{\prime}(x) d x}{s(x)^{2}} \tag{23}
\end{gather*}
$$

Equation (23) simplifies to Eq (18) in the case of $s(x)$ constant The same result follows if Eq (18) is inter pieted as a quantum interference conection to the one-dimensional 1 e sistivity and l_{H} is taken x dependent For weaker magnetic fields with $l_{H}^{-1} L$ of order unity, a numerical solution of the evolution equations is iequied

In Fig 2, we show results of a numerical solution of δg for the examples $s(x)$ constant, $s(x)=1+4|2 \lambda / L|$ and $s(x)=1+4(2 x / L)^{2}, \quad-L / 2<x<L / 2$ These functional forms conespond to diffusive microbidges in a twodimensional election gas of the form shown in the inset of Fig 2 with uniform impunty concentiation and mean fiee path $l \preccurlyeq W$ The three sets of curves in the figure represent strong. intermediate and weak spin-orbit scattering, respectively For the intermedrate case (middle set of curves in Fig 2), thiee different values of $l_{\text {SO }}$ were chosen so that the weak-localization contection $\delta g=0$ is equal in the three cases for zero magnetic field The magnetic field is chatacterized by the ratio l_{H}^{-1} eff L, see Eq (23), in order to remove a spunous shape dependence for the large-field asymptotes While there is no dependence on the form of the function $s(x)$ in the limiting cases of zeio and lange magnetic fields, we observe that, indeed, δg depends on the precise form of the nonhomogenerty for intermediate magnetic field stiengths, although, with proper scaling, the difference between the results for the three cases we considered is less than 10%

In conclusion, we have shown that the scatteing matiox appioach to quasi-one-dimensional weak localization can be used to obtain a detanled descinption of the coossover between the different universality classes We have recovered some results known fiom diagiammatic perturbation theory, and have discovered one aspect of the problem that has not been noticed previously The dependence of the functional form of the crossover on nonhomogenerties in the conductor

We thank V Ambegaoka1, N W Ashcioft, and D Davıdovic for discussions This work was suppoited by the NSF under Giant Nos DMR 0086509 and DMR 9988576, by the Packard Foundation, by the Natural Scrences and Engmeermg Research Council of Canada, and by the Dutch Scrence Foundation NWO/FOM
${ }^{1}$ P W Anderson, E Abrahams, and T V Ramakrıshnan, Phys Rev Lett 43, 718 (1979)
${ }^{2}$ L P Goi'kov, A I Larkin, and D E Khmel' nıtskir, JETP Lett 30, 228 (1979)
${ }^{3}$ G Beigmann, Phys Rep 107, 1 (1984)
${ }^{4}$ P A Lee and T V Ramakrishnan, Rev Mod Phys 57, 287 (1985)
${ }^{5}$ S Hikamı, A I Laıkin, and Y Nagaoka, Prog Theor Phys 63, 707 (1980)
${ }^{6}$ C W J Beenakker, Rev Mod Phys 69, 731 (1997)
${ }^{7}$ P A Mello, Phys Rev Lett 60, 1089 (1988)
${ }^{8}$ P A Mello and A D Stone, Phys Rev B 44, 3559 (1991)
${ }^{9}$ A M S Macêdo and J T Chalker, Phys Rev B 46, 14985 (1992)
${ }^{10}$ C W J Beenakker and J A Melsen, Phys Rev B 50, 2450 (1994)
${ }^{11}$ Ç Kurdak, A M Chang, A Chın, and T Y Chang, Phys Rev B 46, 6846 (1992)
${ }^{12}$ J S Moon, N O Birge, and B Goldıng, Phys Rev B 56, 15124 (1997)
${ }^{13}$ A B Gougam, F Pierre, H Pother, D Esteve, and N O Birge, J Low Temp Phys 118, 447 (2000)
${ }^{14} \mathrm{~B}$ Altshuler and A Aionov in Election Electron Interactions in Disordered Systems, edited by A L Efros and M Pollak (NorthHolland, Amsterdam, 1985)
${ }^{15} \mathrm{P}$ Santhanam, S Wind, and E Prober, in Proceedings of the Seventeenth Internatonal Conference on Low Temperature Phystcs, edited by W Eckern, A Schmıd, W Weber, and H Wuhl (Elsevier, New York, 1984), pp 495-496
${ }^{16}$ P Santhanam, S Wind, and D E Prober, Phys Rev B 35, 3188 (1987)
${ }^{17}$ F Prene, H Pothier, D Esteve, and M H Devoret, J Low Temp Phys 118, 437 (2000)
${ }^{18}$ C W J Beenakker and H van Houten, Solid State Phys 44, 1 (1991)
${ }^{19}$ O N Doıokhov, Phys Rev B 37, 10526 (1988)
${ }^{20}$ M L Mehta, Random Matrices (Academic, New York, 1991)
${ }^{21} \mathrm{P}$ W Brouwer, A Furusakı, and C Mudry. Phys Rev B 67, 014530 (2003)
${ }^{22}$ B L Altshuler, A G Aronov, and A Y Zyuzin, Sov Phys JETP 59, 415 (1984)
${ }^{23}$ B L Al'tshuler and A G Aronov, JETP Lett 33, 499 (1981)
${ }^{24}$ C W J Beenakker and H van Houten, Phys Rev B 38, 3232 (1988)

