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Crossover from weak localization to weak antilocalization in a disordered microbridge
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We calculate the weak localization cortection 1 the double crossover to broken time reversal and spin-
rotational symmetry for a disordered miciobridge or a short disordered wiic using a scattering mattix approach
Wheieas the correction has universal limiting values in the three basic symmeltty classes, the functional form
of the magnetoconductance 15 affected by eventual nonhomogeneities 1n the miciobridge
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Inteiference of time-reversed paths causes a small nega-
tive quantum coriection to the conductance of a disoidered
metal termed the weak localization '™ This cotrection 1s
supptessed by a time-revetsal symmetty breaking magnetic
field, wheteas 1n the presence of stiong spin-orbit scattering,
the sign of the coniection 1s 1eversed 3 In that case, the mter-
ference cortection 1s known as weak antilocalization

In a wire geomety at zero tempeiatute, the weak local-
1zat1%n cortection takes a patticulaily sumple and umiversal
form

2e%(B—2)
8G=—3 T (1
where the symmetiy parameter S denotes the appiopiiate
symmetty class In the piesence of an apphed magnetic field
B=2 and without a magnetic field B8==4 o1 I with o1 without
strong spin-oibit scattering, respectively Equation (1) was
obtamned using random-matiix theoty,” and diagtammatic
pertutbation theoty,*® and 1s valid 1f the length L of the wne
1s much smaller than the localization length & and the
dephasing length L, but much laiger than the mean fiee
path [ The validity of Eq (1) extends to the case when
sample patameters are nonhomogeneous, e g, for wues of
varying c1oss section, mean fiee path, or election density 10

For wues with weak spin-o1bit scattering, a ciossover be-
tween weak localization and weak antilocalization takes
place when the spin-oibit scattering length /¢, becomes com-
paiable to L o1 Ly (whichever 1s smaller) Expetimentally,
this crossover regime has been well studied m wnes with
length L>L, U=1% In this 1egime, weak (anti)localization
takes the form of a small coirection to the conductivity of the
wie, 1ather than of a conection to the conductance Theo-
retically, the weak localization to weak antilocalization
crossovel 1n the tegime L> L » has been considered n Refs
14—16 using diagrammatic pertwbation theoty The opposite
regime L<<L ,, where the universal conection (1) to the con-
ductance G can be obsetved, would be 1elevant for relatrvely
short high-purity metal wies,!” o1 disordered miciobridges

The goal of this paper 1s thieefold (1) to geneiahze the
random-matiix methods fo1 quantum wites to the ciossovel
between weak localization and weak antilocalization, thus
extending the equivalence of the two methods to the interpo-
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lation between the thiee symmetty classes, (11) to find an
explicit expression for 6G for L<<L,, and (1) to extend the
theoty foi the crossover regime to the case of nonhomoge-
neous wires, for which the electron density, impuiity concen-
tratton, o1 c1oss section varies along the sample In this case,
both the ciossover scale and the functional form of §G 1n the
crossovel ate affected by nonhomogeneities The fact that the
clossover scale, chaiacterized by the spm-oibit length lgq
and the magnetic length [, 15 nonuntveisal 1s well known,
both for homogeneous and for nonhomogeneous micio-
bridges '® Owr finding that the functional form of the cioss-
over 1s affected by the nonhomogeneity 1s maikedly different
fiom crossovers between the thiee basic symmetiy classes
quantum dots, wheie the functional forms aie universal and
given by random-matiix theoty ¢ For homogeneous wues,
6G 15 a umveisal function of L/lgq and L/l y

The main assumption undetlying our calculations 1s that
the wne width W<L, 1 e, quasi-one-dimensionality We also
assume that the wne 15 well in the diffusive 1egime, /
<L,lgo, <<€, where [ 1s the elastic mean free path, and, for
a nonhomogeneous miciobridge, that the number of propa-
gating channels at the Fermi level N has only one mimimum
along the wue (excluding the possibility of a “cavity”) We
fitst discuss our calculations for homogeneous wues, the
case of nonhomogeneous samples 1s discussed at the end of
this papet

Starting point of ow calculation 15 a tandom-matiix model
similar to that used by Doiokhov ' A disordered wue with N
propagating channels at the Fermi level 1s modeled by N
one-dimensional channels and periodically nserted scatteieis
that scatter within and between the channels The electionic
wavefunction 15 1epiesented by a 2N-component vector of
spmots The 2N components of the wavefunction 1efer to the
tansveise channel and to the left/1ight mover index Linea-
1zing the kinetic energy 1 each of the channels, the Hamul-
tonian H takes the form of a diffeiential operator with 1espect
to the cooirdmnate 1 along the wue and a 2N-dimensional
quaternion mattix with 1espect to the channel and left/night
mover indices and spinor degiee of freedom

a
H=—10'0®73®JIN5;+2 V,6(x—ja), (2)
7
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with o the 2X2 unit matiix for the spmor degiee of fiee-
dom, 75 the Paull mati1x 1 left-movei/right-mover giading,
ly the NXN unit matiix m the channel giading, V, a Hei-
mitian 2N X 2N quateinion matiix 1epresenting the sth scat-
terer along the wiie, and a the distance between scatteiels A
quaternion 18 a 2X2 matiix acting in the spmot grading with
special 1ules for tiansposition and complex conjugation %
The “dual” X® of a quateinion matiix 15 Xf=0,X"0,, the
quaternion complex conjugate 1s defined as X' =(X")® We
have chosen umits such that the Fermi velocity 18 one A
model stmilar to Eq (2) has been used in Ref 21 to study
weak localization m unconventional supeiconducting wiies

The ensemble-averaged conductance (G) of the wite 1s
given by the Landauer formula

o2
(G>=?g, g={tu(l—:1Tr)), 3)

where r 15 the N X N quaternion teflection matrix of the wue
To calculate 7, we stait fiom a wne of zero length and add
shices of length a at the wne’s ends The scattermg matiix of
the jth scatteier 1s

t, r\ 21—V
S=( ! f)— ! @)
]

vyt 2l+V]

Hence, 1f a scatterer 1s added at the lead end of the wire, the
new 1eflection matux of the wue s calculated according to
the composition rule

r—>r,+t;r(1—r/'r)_1t/ (3)

(A similat composition 1ule, involving both transmssion and
teflection matiices of the disordered wue, applies if a scat-
terel 1s added at the fa1 end of the wie 6)

In left-movei/iight-mover grading, the potential V, 18 pa-
1ametiized as

U ULR
V= , (6)
URL URR

whete v;;, vg, Ugy, and vpg ale N XN quaternion mati-
ces

ULL(af’Wf)zv;éR(afa“ 77[)

a
Vi

3
+lan2=1 u?‘@oﬂ

0
(uf+77fx/)®0'0

, (7a)

verlay,n,)= U}q[,(ab »Mp)

. a
" VIUN+D

3

+i0 El uhy®ao,
=

(u+ mpx,) ® 0

(7b)
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In Eq (7), u? and x; aie 1andom Hermutian N XN matiices,
ufg, p=123, 15 a 1andom anti-Heimitian matix, ug 1s a
tandom symmetiic matiix, and «}, ©=1,2,3 and x, aie ran-
dom antisymmettic mattices All of these 1andom matiices
have mdependent and Gaussian distibutions with zeto mean
and umt vanance (Vaiances aie specified for the off-
diagonal elements, diagonal elements have double vanance
for symmetiic matiices and aie zeio for antisymmetiic ma-
tiices ) The parameters a, and a, desciibe the stiength of the
bieaking of spm 1otational symmetiy The paiameters », and
7y describe the stiength of the bieaking of time-ieversal
symmety Finally, /¢ 1s the elastic mean fiee path for for-
waid scattering and [ 1s the transport mean fiee path

To find the conductance of the wire we calculate the
change of g 1if one scatteier 1s added to the wue To this end,
we expand the scatteting matiix S, of Eq (4) m poweis of
V,, use the composition 1ule (5), and calculate the Gaussian
average over the potential ¥V, In the it a<€/ of weak
disorder we thus find

d
—2N13—L—g=g2—-ho+3hl (8)
We abbieviated

ho=(ta (L=rtr)(1 =141 %)), (9a)

|3
/11=§ 2 (tl(l—l’tl)o’lu(l—l‘k/R)O'/‘), (9b)

u=1

and omutted teims that vanish m the diffusive 1egime [
<€L,ls0,ly<€NI The subsciipts 0 and | 1efer to smglet and
tuplet contitbutions, 1espectively

To leading order n N, Eq (8) can be solved without the
mteiference corlections iy and iy, with the result

2NI
g=T+O(1), (10)
cortesponding to the Diude law for the conductance The
O(1) cotrection in Eq (10) gives the weak localization cor-
tection 8g, which we now compute
To find the weak localization coriection, we need to cal-
culate iy and &, Pioceeding as befoie, we find that the L
dependence of h,,, m=0,1 1s goveined by the evolution
equation

8N212
h +T, m=0,1,

2N1ah’” ) 2NI
L AT

m

(11)
whete we abbieviated
L2
ko=(tt (L—=1"1)), k=5 #Zl (a(l=r1r0,0,)
(12)

Evolution equations for kg and k; are obtamed similaily and
1ead
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dky [2NI\E
T?Z: —Z—H— —~ kg, (13a)
ok, [ani\?
ZNZ‘(?—EZ 7— —ki, (13b)
H

where the length scales / and [}, are defined in terms of the
parameters of the random-matrix model (7),

2

IF2=20 2+ 17N ), (14a)
153=6(1"2a;+ 17" a7), (14b)

ry -2 -2 4 -2
) 2=+ 3155 - (14c)

Equations (11) and (13) have the solution

2Nl L
ko=——cotanh—, (15a)

ly ly
B2 1 ot th) 15b
o=—7- 7 cotanh . cotan ) (15b)

Expressions for &, and s, are obtained from Eq. (15) after
the substitution I~ /;,. Substitution of /1y and 4, into Eq.
(8) then allows for the calculation of the weak-localization
correction to the conductance

Ly L i L (I)?
Sg =—cotanh — — — — 3| —cotanh— —
g L lH Lz L l[,i L2
(16)
At zero magnetic field, Eq. (16) simplifies to
1 9% 3l0\3 2L
Sg=z+ - cotanh . 17

Equation (17) reproduces the limits G = —2e?/3h with-
out spin-orbit scattering and G =¢2/3h with strong spin-
orbit scattering. Without spin-orbit scattering, Eq. (16) agrees
with the weak localization correction calculated in Ref. 22.
For large magnetic fields, L>1,, Eq. (16) simplifies to

1 . 4 _, —-172
8g= 7| 1u=3| la>+51s3 , (18)

which has the same functional form as the weak localization
obtained using diagrammatic perturbation theory.!4=16-
Comparison of Eq. (18) and Refs. 14-16,23 allows us to
identify lgq as the spin-orbit length, and, for a channel (with
width W>1[) in a two-dimensional electron gas in a perpen-
dicular magnetic field B,
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FIG. 1. The weak localization correction dg plotted (a) as a
function of the magnetic field strength (characterized by the dimen-
sionless ratio [;,'L) for fixed value of the spin-orbit scattering rate
(characterized by / S_OIL). From bottom to top, the curves correspond
to L/ls5=0.1, 2, 4, 6, 10, 30, and . (b) as a function of length L
for fixed {;'lgo. From bottom to top, the curves correspond to
I;'lso=2, 0.3, 0.2, 0.1, and 0.

1}=3(hIWBe)>. (19)

The case of a cylindrical wire of radius R>/ and magnetic
field perpendicular to the wire is obtained by the substitution
W?—3R2/2. For I>W (or [>R) the crossover length [ has
a more complicated /-dependent expression.*

Figure 1(a) shows Jg as a function of the magnetic field
for several values of the spin-orbit coupling. In Fig. 1(b) we
show &g as a function of /gL for several values of the
magnetic field.

We now turn to a description of the weak localization
correction in a nonhomogeneous microbridge. Examples of
nonhomogeneous microbridges with varying widths are
shown in the inset of Fig. 2. If the wire cross section or the
electron density vary with the coordinate x along the wire,
the number of propagating channels at the Fermi level N also
varies with x. We assume that N(x) has a minimum for x
=0 and that dN/dx>0 (dN/dx<0) for all x>0 (x<0).
Further, x dependence of the impurity concentration, the

0.4
= N—
-0.4
—0-8; 5 10 15 20
~1 L
Hell

FIG. 2. The weak localization correction dg as a function of the
magnetic field strength for three different shapes of a disordered
microbridge (channels in a two-dimensional electron gas). The three
different shapes are characterized by s(x)=1, s(x)=1+4{2x/L|
and s(x)=1+4(2x/L)%, — LI2<x<L/2, see Eq. (21). as shown in
the inset. The three groups of curves correspond to strong, interme-
diate, and weak spin-orbit scattering from top to bottom, with /5 1n
the intermediate case chosen for each case to render the same cor-
rection as [ 150. The magnetic field strength is measured in terms
of the effective magnetic length {5 ., see Eq. (23).
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smoothness of the boundaiy, the shape of the cioss section,
etc, causes an x dependence of the length scales [, I,
and I5o

The 1eflection matiix of the wiie 1s constiucted by build-
g the wie fiom thin shices, staiting at the nartowest point
x=0 Ths way, the number of channels 1n the slices added
to both ends of the wite can inciease, but not deciease Fot
the consttuction of an evolution equation for the conductance
g and for the auxihaty functions hg, hy, kg, and k;, we
distinguish between two types of added slices A thm slice
that contains a scattering site but for which the numbe1 of
channels remains constant, and a thim slice without scatteier
m which N incieases by unity Addition of a slice of the
formes type causes a small change in the reflection matiix ¢,
which 18 the same as for a quantum wue of constant thick-
ness, see Eq (5) above Addition of a slice for which N
mcieases by unity does not cause a change of the conduc-
tance g o1 of the auxthary functions hy, iy, kg, 01 k4, as can
seen by mspecting the cases x>0 and x<<0 separately Fo1
x>0, an mciease of N does not cause additional reflection,
and hence does not affect the 1eflection matix r, for x<0,
an mciement of N changes the dimension of the 1eflection
matiix r by 1,

0
1—>(O 1), 20)

but does not change the conductance g o1 the functions /),
hy, kg, ot k; Combining the two types of slices, we con-
clude that the only effect of the x dependence of N and [ 1s
mdirect, through the explicit appearance of N and / 1n statis-
tics of the scatteiing mattix of the added slice, see Eq (7) In
the diffusive 1egime, N(x) and {(x) only appeat in the com-
bination

s(x)=N(x){(x)/Nyly, 21)

where Ny and [ ate number of propagating channels and
mean fiee path at x=0 For laige N the function s(x) may be
consideted continuous, and the evolution equations become
differential equations which now include explicit 1eference
to the function s(x) If the wire length L 1s 1eplaced by the

effective length L,

L f @ 22

- S(.x) s ( )
the evolution equations for g, iy, iy, kg, and k; keep the
same foim as for homogeneous wites, provided we make the
substitutions N—Ng, L—L, [—1y, ly—1;=1/s(x), and
lso—lso=1s0/s(x)

The functional form of the leading-in-N conttibution to
the conductance 1emains unchanged, G=(ez/h)(2Nolo /L)
Also, fot the limiting cases of no spin-oibit scatteing and
stiong spim-o1bit scattertng, the weak localization correction
8G 1s stull given by the universal 1esult Eq (1) ' However,
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because of the x dependence of the length scales I;; and Igq,
J0g acquures an explicit dependence on the shape of the dis-
ordered miciobridge o1 the nonhomogeneity of the mean fiee
path o1 the electton density n the crossover tegion between
the symmetty classes For a laige magnetic field (1;,1L
>1), the weak-localization conection can be found m
closed form

1
og= E(IH et 3141 o)

IJ Iy(x)dx lJ‘ [ (x)dx
; —  (23)

et L s)2 0 P s(x)?
Equation (23) simplifies to Eq (18) m the case of s(x) con-
stant The same 1esult follows if Eq (18) 1s inteipieted as a
quantum 1nteirference cotrection to the one-dimensional 1e-
sistivity and [ 1s taken x dependent For weaker magnetic
fields with l,;lL of oider umty, a numerical solution of the
evolution equations 1s 1equued

In Fig 2, we show 1esults of a numerical solution of g
for the examples s(x) constant, s(x)=1+4|21/L| and
s(x)=1+42x/L)?, —LR2<x<L/2 These functional
foums comnespond to diffustive miciobiidges m a two-
dimensional election gas of the foim shown m the mset of
Fig 2 with uniform impuiity concenttation and mean fiee
path [<€W The thiee sets of curves in the figuie 1epresent
stiong. mteimediate and weak spin-otbit scattering, 1espec-
tively For the intetmediate case (middle set of curves in Fig
2), thiee diffeient values of /gy weie chosen so that the
weak-localization cortection dg=0 15 equal m the thiee
cases for zero magnetic field The magnetic field 1s chaiac-
terized by the 1atio [ 1L, see Eq (23), m o1der to remove a
sputious shape dependence for the laige-field asymptotes
While theie 1s no dependence on the form of the function
s(x) n the limiting cases of zero and large magnetic fields,
we obseive that, mndeed, g depends on the piecise foim of
the nonhomogeneity for 1nteimediate magnetic field
stiengths, although, with proper scaling, the difference be-
tween the 1esults for the thiee cases we consideied 1s less
than 10%

In conclusion, we have shown that the scattering matrix
approach to quasi-one-dimensional weak localization can be
used to obtamn a detailed desciiption of the ciossover be-
tween the different univeisality classes We have 1ecovered
some 1esults known fiom diagirammatic pertuibation theory,
and have discovetred one aspect of the pioblem that has not
been noticed previously The dependence of the functional
foum of the ctossover on nonhomogeneities in the conductor
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