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When a rotating rod is brought into a polymer melt or concentrated polymer solution, the meniscus
climbs the rod. This spectacular rod climbing is due to the normal stresses present in the polymer fluid
and is thus a purely non-Newtonian effect. A similar rod climbing of an interface between two fluids
has therefore been taken as a signature that one of the fluids exhibits normal stress effects.We show here,
however, that the effect can occur with simple Newtonian fluids: it occurs when a Taylor-Couette
instability happens in the less viscous of the two liquids but not in the more viscous one.

DOI: 10.1103/PhysRevLett.93.214503 PACS numbers: 47.20.–k, 83.60.Hc
One of the textbook illustrations [1] of the remarkable
flow behavior of polymer melts and solutions is the so-
called rod-climbing or Weissenberg effect: when a rotat-
ing rod is immersed in a normal Newtonian fluid, the
meniscus descends due to the centrifugal forces. However,
when a rotating rod is immersed in a concentrated poly-
mer melt or solution, the meniscus climbs the rod. This
effect is due to the normal stresses that the shear induces
in the polymeric fluid: the shear stretches and orients the
polymers. The difference in the normal components of the
stress tensor that this anisotropy induces is such that the
fluid is pulled inwards and climbs the rod [1].

In this Letter, we demonstrate that when a rotating rod
is immersed into a beaker with two immiscible
Newtonian fluids, surprisingly the interface between the
two fluids can also climb the rod, provided the less
viscous liquid is also the heavier one. However, if the
viscosity contrast between the two fluids is inverted, the
meniscus is observed to descend. In addition, we find that
there is a clear threshold for the onset of rod climbing.
All these observations can be understood in terms of the
occurrence of a Taylor-Couette (TC) instability [2,3] in
the less viscous of the two fluids.

Thus, although the effect is visually akin to the spec-
tacular rod climbing of polymeric fluids, it should not be
mistaken as a signature of normal stress effects in one of
the two fluids. In fact, our study was partly motivated by
the occurrence of rod climbing in a two-phase surfactant
system of liposomes. For this system, the rod climbing
was taken as evidence of unusual normal stress effects
due to an entangled tubular network in one of the two
coexisting phases [4]. However, when performing the
rheology of this system, we did not find any measurable
normal stress effect for shear rates between 10�2 and
1000 s�1 (data not shown), our detection level being on
the order of 5 Pa. The fact that our own rheological
measurements did not, in fact, exhibit any non-
Newtonian behavior led us to investigate the effect in
detail.
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We therefore performed the rotating rod experiment on
two perfectly Newtonian fluids. A typical experiment
consists of simply lowering a rod into a beaker filled
with water (of viscosity � � 1 mPas) and a viscous sili-
con oil (� � 100 mPas). When the rod is made to rotate,
the meniscus starts to climb the rod [Fig. 1(a)]. If the
viscosity contrast is inverted using viscous glucose syrup
(� � 100 mPas) as the lower phase and a light silicon oil
(� � 10 mPas) as the upper phase, the effect inverses: the
meniscus descends into the lower phase [Fig. 1(b)]. This
symmetry between ascend and descend is consistent with
simple estimates that show that centrifugal forces are
negligible.

In the following, we focus on the rod climbing, i.e.,
with the less viscous fluid as the heavier phase. For the
climbing, we found that one has to exceed a certain
rotation rate �c (�5 Hz if the lower fluid is water) in
order for the rod climbing to occur: the height h is zero
below �c, and increases roughly linearly with frequency
above the critical rotation rate [Fig. 2(a)]. Experiments
with a cylinder that is much longer (30 cm) show the same
results, showing that the effect is not due to the finite
depth of the fluid. Upon varying the viscosity of the two
phases independently, it became evident that the critical
rotation frequency �c depends on the viscosity of the less
viscous fluid but not notably on that of the more viscous
fluid. We find that the onset of rod climbing increases
linearly with increasing viscosity of the lower fluid
[Fig. 2(b)].

In order to understand these observations, note that a
beaker with a rotating rod is, in fact, a version of a Taylor-
Couette cell, in which a liquid is confined between two
concentric cylinders [2,3]. When the inner cylinder of a
Taylor-Couette cell is made to rotate, the basic laminar
(azimuthal) flow becomes unstable at a critical rotation
rate �TC whose value is determined by the Taylor number.
The critical Taylor number can be calculated [2]; if one is
not in the limit of small gap, the expression becomes
rather complicated, but can easily be evaluated numeri-
2004 The American Physical Society 214503-1
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FIG. 2 (color online). (a) Newtonian rod climbing: height of
the meniscus as a function of the rotation frequency of the rod.
Lower fluid: water; upper fluid: silicon oil, viscosity 300 mPas.
(b) Critical frequency determined from the intersect of the low
and high frequency branches as shown in (a), as a function of
the viscosity of the lower fluid. Viscosity of the upper fluid is
300 mPas. Filled symbols are the calculated critical frequen-
cies for the onset of the Taylor-Couette instability in our setup.
(c) Interfacial tension and critical frequency as a function of
the surfactant concentration; viscosity of the lower fluid is
10 mPas. The drawn line gives the theoretical result for the
critical frequency without surface tension.

FIG. 1 (color online). Pictures of the interface deformations
taken at the interface of the two liquids. (a) Newtonian rod
climbing: the lower fluid is water, the upper fluid a 500 mPas
silicon oil (f � 15 Hz). (b) If the viscosity contrast is inversed,
the interface descends; the lower fluid is glucose syrup (vis-
cosity 300 mPas) and the upper fluid a light silicon oil (vis-
cosity 10 mPas) (f � 20 Hz). (c),(d) Destabilization of the
interface for the Newtonian rod climbing; the lower fluid is
water, the upper fluid a 500 mPas silicon oil (f � 28 and 32 Hz,
respectively). The setup is a cylindrical glass cell with an inner
diameter of 55 mm and a height of 90 mm. The cell is filled
with the heavier liquid, after which the lighter liquid is depos-
ited gently on top of the first liquid. A stainless steel rod of
5 mm diameter and 100 mm height is then placed in the center
and made to rotate.
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cally; it depends on the ratio of the radii R1 and R2 of the
inner and outer cylinders. For us, the relevant feature is
that �TC is proportional to the kinematic viscosity � of
the fluid, with a prefactor that can be evaluated explicitly
214503-2
for our cell geometry. Furthermore, from the earlier work
it is known that just beyond threshold, at dimension-
less control parameters " � ����TC�=�TC < "c �
0:3, a periodic vortex flow state appears and for " > "c
a temporally modulated ‘‘wavy vortex flow’’ state occurs
[5–8].
214503-2



FIG. 3. Velocity field in radial-height plane the lower fluid
measured by particle imaging velocimetry. Only half of the
cell is shown: the left boundary of the graph corresponds to the
rotating rod, whereas the right boundary is the wall of the
cylinder. Lower fluid is water, and the rotation rate 10 Hz.
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In our experiments, the flow state that occurs for small
� is the same in the two fluids, since the azimuthal flow
field below the TC threshold is independent of the fluid
viscosity [2]. However, when � becomes sufficiently
large, the bulk flow in the lower viscosity fluid becomes
unstable to Taylor vortex flow at a critical rotation rate
�TC, while the flow in the more viscous fluid remains
essentially in the viscometric regime; the recirculations
in the lower liquid are then at the origin of the rod
climbing [9]. This is borne out by a direct measurement
of the flow field in the lower fluid using PIV (particle
image velocimetry). An example of the flow pattern is
shown in Fig. 3, which clearly shows the recirculations
that occur beyond the onset of the Taylor-Couette
instability.

Changing the viscosity of the lower fluid should con-
sequently change the onset of rod climbing, which is
indeed what we observe. The critical frequency �c of
the rod climbing (obtained by extrapolating our data for
height as a function of frequency to zero height) increases
linearly with the viscosity of the lower fluid, as one would
expect if the Taylor-Couette instability is at the origin of
the climbing. We can compare the critical frequencies
with those for the onset of the Taylor-Couette instability
[2,8]. Since we are not in the limit of the small aspect
ratio, the onset Taylor number has to be calculated nu-
merically. Comparing the calculation with the experi-
mental results [Fig. 2(b)], we observe that the two lines
are parallel, but do not have the same intercept: the rod
climbing becomes visible only well after the Taylor-
Couette instability has set in.

These observations can be understood in a more quan-
titative way as follows. The instability being supercritical,
the amplitude of the velocity of the Taylor vortex flow
will grow as

���

"
p

. Measurements in the wavy vortex flow
regime [6] have shown that this

���

"
p

scaling even extends
far into this regime. A realistic calculation of the effect of
the vortex velocity field on the interface is difficult, but
we can understand the flow-induced ‘‘rod climbing’’ as
follows. The pressure �pgrav needed to displace the me-
niscus a distance h upwards is �
gh, where �
 is the
density difference between the two fluids and g the gravi-
tational acceleration. For our water–silicon oil system,
with a 3% density difference, the pressure needed to
displace the fluid by 1 mm is about 0.3 Pa. The other
two terms with which �pgrav has to balance at the inter-
face are the capillary pressure �pcap � �=R, where R is a
typical radius of curvature of the interface, and the ef-
fective pressure �pflow induced by the flow. Let us start
with the case of negligible �pcap. The flow-induced pres-
sure �pflow is estimated from Bernouilli’s equation to be
of order �pflow � 
v2=2, where 
 is the density of the
fluid where the instability occurs, and where v is the
typical amplitude of the velocity [9]. Clearly, �pflow is
linear in ", since as we saw above v�

���

"
p

, leading h �

v2=�2�
g�. From [6,8] it follows that v � 10��=
d�

���

"
p

,
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with d � R2 � R1 the gap between the cylinders, and thus
h � 100
�2=�2�
g
2d2�". This shows that the rod
climbing should set in above the Taylor instability, and
that the effect is linear ", hence linear in ���TC, as is
found in the experiments. However, if we put in the
numbers, the prefactor is found to be too small by at least
2 orders of magnitude to give a h of a few millimeters
for " � 1.

In the above argument we ignored the capillary pres-
sure �pcap which tends to keep the meniscus flat; for our
water-oil interface and for a typical radius of curvature R
of the order of a cm, �pcap � 35 Pa, much larger �pgrav.
Therefore, �pflow is much too small to overcome the
capillary term, and the surface will not rise visibly—in
effect, the rod climbing will become significant only
further above threshold, once the velocity has grown
large enough. When the capillary term is reduced, the
onset of the rise should shift towards the onset of the
Taylor vortex flow.

To test this, we performed measurements in which the
capillary pressure term was reduced by adding a surfac-
tant (L77 trisiloxane) that allows one to vary the oil-
water interfacial tension continuously by more than an
order of magnitude [Fig. 2(c)]. We find that the onset
frequency is strongly affected by the lowering of the
tension. In Fig. 2(c) we see that when the interfacial
tension is reduced, �c drops. These results confirm that
the Taylor-Couette instability is at the origin of the
climbing: when the interfacial tension is reduced suffi-
ciently, �c and �TC coincide within the experimental
accuracy.

The last problem we need to address is therefore the
amplitude of the effect. The above estimates show that the
bulk flow is too small to explain the effect quantitatively.
The example of the flow pattern shown in Fig. 3 shows
that already near �c the flow is significantly enhanced
214503-3
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near the meniscus—the order of magnitude of the flow
amplitude away from the meniscus is in agreement with
experimental and theoretical values, but near the menis-
cus the flow amplitude is enhanced by up to a factor of 10.
When we use the order of magnitude of the measured flow
amplitude in the above estimate for the height of the rod
climbing, we do get values of order mm indeed. As a final
point, we note that one cannot rule out that the perturba-
tion of the flow field near the meniscus makes the behav-
ior weakly subcritical. Our visual observations presently
do not exclude a weak subcritical behavior for height
elevations of less than about 0.5 mm.

In summary, rod climbing may occur when one looks
at the interface between two immiscible Newtonian flu-
ids, provided the heavier fluid has the lower viscosity. If
surface tension is negligible, the critical rotation rate for
the onset of climbing coincides with that of the Taylor-
Couette instability. Our observations reconcile the para-
doxical ‘‘inverse Weissenberg effect’’ reported at the in-
terface between two coexisting phases in a surfactant
solution [4] with our finding that the viscosity and nor-
mal stresses of these solutions show Newtonian behavior:
the climbing is not a non-Newtonian effect but the
Newtonian flow-induced climbing effect studied here.

One potential application of the Newtonian rod-
climbing effect is in emulsification: when the climbing
of the meniscus becomes comparable to the height of the
upper phase, a series of secondary instabilities occurs
[Figs. 1(c) and 1(d)] leading to the breakup of the inter-
face near the free surface. Through this breakup, a spray
of small droplets of the dense fluid forms in the upper
phase. The onset frequency (30 Hz for water) is found not
to depend significantly on the fluid height of either fluid,
nor on the viscosity of the more viscous fluid. The effi-
ciency of this emulsification process is so large that at
every time that this happened during the experiments, we
had to throw away the upper fluid, since in a few seconds
it had become completely opaque. Whether or not such
instabilities are due to the stratified flow near the inter-
214503-4
face [2], induced by the Taylor-Couette instability of the
low-viscosity fluid, is at present unclear to us.
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