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Transition from pure-state to mixed-state entanglement by random scattering
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We calculate the effect of polarization-dependent scattering by disorder on the degree of polarization en-
tanglement of two beams of radiation. Multimode detection converts an initially pure state into a mixed state
with respect to the polarization degrees of freedom. The degree of entanglement decays exponentially with the
number of detected modes if the scattering mixes the polarization directions and algebraically if it does not.

DOI: 10.1103/PhysRevA.70.032325 PACS nunibper03.67.Mn, 42.50.Dv, 03.65.Ud, 42.25.Dd
I. INTRODUCTION 1 ., .
— v =—=(U, vy +U D). (2.1
A pair of photons in the Bell stat§HV)+|VH))/\2 can nomr g o mr - Tt

be transported over long distances with little degradation of

the entanglement of their horizont@) and verticalV) po-  The indicesne{1,2,... M}, me{1,2,... M,} label the
larizations. Polarization-dependent scattering has little effecansverse spatial modes and the indiees e {+,-} label

on the degree of entanglement, as long as it remains lineghe norizontal and vertical polarizations. The first pair of
(hence describable by a scattering materd as long as the jndicesn, o refers to the first photon and the second pair

photons are detected in a single spatial mode only. This rosf jndicesm, 7 refers to the second photon. The scattering
bustness of photon entanglement was demonstrated dfamaéﬂr'nplitudes u-_ relate the incoming modegl, *) of
cally in a recent experimeifit] and theory[2,3] on plasmon-  ine  first photon to the outgoing modén,o), and

assisted entanglement transfer. o similarly for the second photon. The two
Polarlzatlon-dependen_t scattering may s_lgmflcantly O_Ie'vectors (U US,, o U U U, U ) and

grade the entanglement in the case of multimode detectmreu_ U U U U 1 w, ) of scatt:arin amoli

Upon summation oveN spatial modes the initially pure state 1+’ 72+ = =My Fl=r 52=0 =20 EM, - g. ) P

of the Bell pair is reduced to a mixed state with respect to thdudes of the first photon are orthonormal, and similarly for

polarization degrees of freedom. This loss of purity dimin-the second photon.

ishes the entanglement—even if the two polarization direc-, A Subset ofN, out of theM, modes are detected in the
tions are not mixed by the scattering. first detector. We relabel the modes so thatl,2,..N; are

The transition from pure-state to mixed-state entanglelhe detected modes. This subset is contained in the four vec-
ment will in general depend on the detailed form of the scat-

tering matrix. However, a universal regime is entered in the Pe g i

case of randomly located scattering centra. This is the regime fa ® o N,
of applicability of random-matrix theory4,5]. As we will fe * %, o

show in this paper, the transmission of polarization- " ‘. . D
entangled radiation through disordered media reduces the de- Pt T

gree of entanglement in a way which, on average, depends fe ‘e

only on the numbeN of detected modegThe average refers Ll

to an ensemble of disordered media with different random > &
positions of the scatterejsThe degree of entanglemeas e ®,®

quantified either by the concurrenfd or by the violation of e o

a Bell inequality[7,8]) decreases exponentially withif the .. o
disorder randomly mixes the polarization directions. If the i % e D
polarization is conserved, then the decrease is a power law Lot T

(<N~ if both photons are scattered amdN~*2 if only one .' N;
photon is scattered .t

FIG. 1. Schematic diagram of the transfer of polarization-
Il. FORMULATION OF THE PROBLEM entangled radiation through two disordered media. The degree of
) o entanglement of the transmitted radiation is measured by two mul-
We consider two beams of polarization-entangled photongmode photodetectoré\; modes in a coincidence circuitrepre-
(Bell pairg that are scattered by two separate disordered Mesented by the box with “&" inside The combination of
dia (see Fig. 1 Two photodetectors in a coincidence circuit polarization-dependent scattering and multimode detection causes a
measure the degree of entanglement of the transmitted radigansition from a pure state to a mixed state in the polarization
tion through the violation of a Bell inequality. The scattereddegrees of freedom, and a resulting decrease of the detected
Bell pair is in the pure state entanglement.
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tors Uy = Uy, UST=UR, Uyt =Up,, Up"=Up_ of length N, ' = \max0,e4-1 =C 2.7
each. We write these vectors in bold face,, omitting the _ o .
mode index. Similarly, the second detector detébtsnodes, inferred from the Bell inequality violation. As a special case
contained in vectors,,. A single or double dot between We will also consider what happens if only one of the two
two pairs of vectors denotes a single or double contracbeams is scattered. The other beam reaches the photodetector
tion over the mode indices:a-b=3N.,a b, ab:cd W|thout changing its mode or polarization, so we sg},
=3NL SN2 a b Gl =6m10,.+ This impliesb,,, , =46, ,8, ., hence

The pure state has density matr‘anmT\If;,U,_’m,T,. By ZPror 1 = By 710t (2.8
tracing over the detected modes the pure state is reduced to a o o
mixed state with respect to the polarization degrees of freewhere we have defined=-7. The normalization is now
dom. The reduced density matrix is<x#4, with elements given simply byZ=%, a,, ;.

1( o e Ill. RANDOM-MATRIX THEORY
1% o’ r = —(Ug Vo +U_ V AVv__Uu , TtV U_ ), . ..
onoT sz et T Tt T e For a statistical description we use results from the

(2.2) random-matrix theoryRMT) of scattering by disordered
media[4,5]. According to that theory, the real and imaginary
. parts of the complex scattering amplitude& are statisti-
Z= 2 (UpVoy t UV (Vo UL, + Vi U). (2.3) cally distributed as independent random variables with the
7 same Gaussian distribution of zero mean. The variance of the
The complex numbers that enter into the density matrix arésaussian drops out of the density matrix; we fix it at 1. The
conveniently grouped into a pair of Hermitian positive defi- assumption of independent variables ignores the orthonor-
mality constraint of the vectors, which is justified if N,

nite matricesa and b, with elementsa,,, =U,, uU,T,,
b =v_.v'. . One has <M;. Similarly, for N,<<M, the real and imaginary parts of
or,o’' ~Vor o' o . . . . . .
vy have independent Gaussian distributions with zero mean
pA L W] SR Y- WO o WU - B! o R and a variance which we may set at 1.
The reduced density matrix of the mixed state depends on
+ g -gborir (2.9 the two independent random matricesind b, according to

The degree of entanglement of the mixed state with 4 Fa. (2.4. The matrix elements are not independent. We cal-

; o I late the joint probability distribution of the matrix ele-
X 4 density matrixp is quantified by the concurrendg cu
given by[6] ments, using the following result from RM[IL2]: Let W be

a rectangular matrix of dimensiopX (k+p), filled with
C=max0,\\; = VAo — YAz — VA ). (2.5)  complex numbers with distribution

P{W,) o« exp(— cTr'wW), ¢>0. (3.

Then the square matrikl=WW (of dimensionpx p) has
the Laguerre distribution

The \;'s are the eigenvalues of the matrix product

P'(U'y®0'y)'P* '(O'y® Uy)y

in the orderh;=\,=N\3=\y4, with oy a Pauli matrix. The P({H,) = (detH) expg(— cTrH). (3.2)
concurrence ranges from(@io entanglemento 1 (maximal
entanglement Note thatH is Hermitian and positive definite, so its eigen-

In a typical experimenfl], the photodetectors cannot valuesh, (n=1,2,... p) are real positive numbers. Their
measure’ directly, but instead infer the degree of entangle-joint distribution is that of the Laguerre unitary ensemble
ment through the maximal violation of the Bell-CHSH K —ch )
(Clauser-Horne-Shimony-Holtinequality [7,8]. The maxi- P({hy}) o Hh [T (hy = hy)?. (3.3
mal value& of the Bell-CHSH parameter for an arbitrary <]
mixed state was analyzed in Re{S,10. For a pure state The factor (h;—h)? is the Jacobian of the transformation
with concurrenceC one has simply¢=2y1+C? [11]. For a  from complex matrix elements to real eigenvalues. The
mixed state there is no one-to-one relation betwgamdC. eigenvectors ofH form a unitary matrixU which is uni-
Depending on the density matrig, can take on values be- formly distributed in the unitary group.
tween Z\2 and 2\1+C2 so&£>2 impliesC>0 but not the To apply this to the matrixa we setc=1/2, p=4, k=N,
other way around. The general formula —4. We first assume that; =4, to ensure tha=0. Then

=24 1
E=2Vup+up (2.6 P({agrqr5}) = (deta)Nl“‘exp(— ST a) , (3.9

for the dependence & on p involves the two largest eigen-
valuesu,,u, of the real symmetric 3 matrix R'R con- Ni-4 —a /2 2
structed fromRy=Trpo,® o). Here aq,0,,05 refer to the P({an}) = 1_[""nl e E(a a))°, (3.9
three Pauli matricesy, oy, 0,, respectively. '

We will calculate both the true concurrenceand the wherea,,a,,a3,a, are the real positive eigenvaluesafThe
pseudoconcurrence 4X 4 matrix U of eigenvectors of is uniformly distributed
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FIG. 2. Average concurrenc€) (squares and pseudoconcur-
rence(C’) (triangleg as a function of the numbeX of detected
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FIG. 3. Average concurrenc€) as a function of the numbéx
of detected modes, for the case of polarization-conserving scatter-

modes. Closed symbols are for the case that only one of the twing of both beamgopen squargsand one beaniclosed squargs
beams is scattered and open symbols for the case that both beamise data points are the result of a numerical average. The dashed

are scattered. The decay (') in the latter case could not be

line is the asymptotic resu(6.6) and the dotted line is the analyti-

determined accurately enough and is therefore omitted from theal result(5.8). The pseudoconcurrena® is identical toC for
plot. The solid lines are the analytically obtained exponential depolarization-conserving scattering.

cays, with constantd=3In3-41n2 anoB:In(11+5\s’§)—In 2, cf.
Egs.(4.8) and(4.12.

in the unitary group. IfN;=1,2,3 we set=1/2, p=Ny, k
=4-N;. The matrixa has 4-N; eigenvalues equal to 0. The
N; nonzero eigenvalues have distribution

P({a}) = [T ay Me 2] (a - a)>2.

i<j

(3.6

The distribution of the matrix elements,, ., and of the
eigenvalued, is obtained upon replacement Nf by N, in

Egs.(3.4~3.6).

IV. ASYMPTOTIC ANALYSIS

We wish to average the concurren@e5) and pseudocon-
currence(2.7) with the RMT distribution of Sec. lll. The
result depends only on the number of detected mbdehl,

in the two photodetectors. Microscopic details of the scatter-

4
fan) = 2 [an = In(1 +ay)]. (4.3
n=1

The concurrenc€ and pseudoconcurrencd depend on
the rescaled eigenvalues, B, and also on the pair of 4
X 4 unitary matricedJ, V of eigenvectors of andb. Both
quantities aréendependendf N, because the scale factdrin
Eq. (4.1) drops out of the density matri2.4) upon normal-
ization.

The two quantitie€ andC’ are identically zero when the
a,'s and B,'s are all <1 in absolute value. For a nonzero
value one has to go deep into the tail of the eigenvalue dis-
tribution. The average of is dominated by the “optimal
fluctuation” a2, 8P, U°P, /P! of eigenvalues and eigenvec-
tors, which minimizesf({a,,}) +f({8,}) in the regionC>0.
The decay

(€) = expl- N[f({ad™) + f(APH]) = 2N (4.4

ing media become irrelevant once we assume random scat-

tering. The average®), (C’) can be calculated by numerical
integration[13]. Before presenting these results, we analyz
the asymptotic behavior foN;>1 analytically. We assume
for simplicity thatN;=N,=N.

It is convenient to scale the eigenvalues as

a,=2N(1 +ay), b, =2N(1+23,). (4.1
The distribution of then,’s and B,’s takes the same form

4
P({an}) & GX%— NE [an —In(1+ an)] + O(l)> )

n=1
(4.2

where O(1) denotesN-independent terms. The bulk of the
distribution(4.2) lies in the regiorEnaﬁs 1/N<1, localized

of the average concurrence is exponentiaNirwith a coef-
icient A of order unity determined by the optimal fluctua-
tion. The averagéC’)=e BN also decays exponentially with
N, but with a different coefficienB in the exponent. The
numbersA and B can be calculated analytically for the case
that only one of the two beams is scattered.

Scattering of a single beam corresponds to a density ma-
trix p which is directly given by the matrig, cf. Eq.(2.8).
To find A, we therefore need to minimiz&{a,}) over the
eigenvalues and eigenvectorsafvith the constraint >0,

A= {m}ir&{f({an})IC(p({an},U)) > 0. (4.9
The minimum can be found with the help of the following

result [14]: The concurrenc&€(p) of the two-qubit density
matrix p, with fixed eigenvalues ;= A,= A3= A, but arbi-

at the origin. Outside of this region the distribution decaystrary eigenvectors, is maximized upon unitary transformation

exponentiallye exd -Nf({a,})], with

by
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maxC(QpQ ") =max0,A; - Az— 2VA,A,}. (4.6 A=3In3-4In2=0.523. (4.8
9]

(The matrix{) varies over all 4<4 unitary matricesg.With

this knowledge, Eq(4.5) reduces to . . .
g 445 The asymptotic decafC) < e N is in good agreement with a

A=min{f({ap})|a; — a3 = 2V(1 + ay)(1 + a,) > 0}, 4.7 numerical calculation for finitdN, see Fig. 2.
{an} The asymptotic decay of the average pseudoconcurrence
where we have ordereg, = a,= a3= a,. This yields for the (C’) for a single scattered beam can be found in a similar

optimal fluctuationa{'=1, a§?'=a3'=a3?'=-1/3 and way, using the result10]
|
maxcC' (QpQh) = Vmax0,2(A; — )2+ 2(Ay = A% = (Ag+ Ay + Ag+ A g2 (4.9
Q
[
To obtain the optimal fluctuation we have to solve different polarizations vanishu, _, v,_, u_,, v_, are all zero.
) The reduced density matri2.4) simplifies to
B = min{f({ay})|2(ay — ay)® + 2(ap — a3)?
tan} Zpo’T,o”T’ = 50',750",?’a0'0',0"0’b77,-r’ L] (5 1)
— 2
(@+atatagta)”>0h 410 it 7=-7, 7=-7. We will abbreviateA,,=a, ., B,,
which gives =Db,, . The concurrenc€ and pseudoconcurrenc are
n 1 calculated from Eqg(2.5) and(2.7), with the result
opt_ —/_ [5 . e opt— opt_— ~/q _ &
a?' = Z(-1+2y2+15), ar” = a3 =-(1-5), 2IA. IIB..
2 2 c:c’:—|A+ IB.] _ (5.2
AB__+A B,
o= %(_ 1-22+5), (4.11) It is again our objective to calculat€) for the caseN;

=N,=N. The distribution of the matrice& andB follows by
substitutingN; —4— N-2 in Eq.(3.4):

hence
B=In(11+ SVE) -In2=2.406. (4.12 PH{A,}) = (detA)N'zexp<— %Tr A). (5.3
The decay(C')=e BN is again in good agreement with the
numerical results for finité\ (Fig. 2). The average over this distribution was done numerically, see

If both beams are scattered, a calculation of the optimalig- 3. For largeN we may perform the following asymptotic
fluctuation is more complicated because the eigenvalueghalysis.
{a,}, {B.} and the eigenvectotd, V get mixed in the density =~ We scale the matrice& andB as
matrix (2.4). The numerics of Fig. 2 give®) < e 3N for the A=2N(1+A), B=2N(1+B). (5.4
asymptotic decay of the concurrence. The averaged
pseudoconcurrence for two-beam scattering could not be dén the limit N—c the Hermitian matricest and B have the
termined accurately enough to extract a reliable value for th&aussian distribution
decay constant.

P({A,}) o e VNTEAAT, (5.5
V. COMPARISON WITH THE CASE (The same distribution holds f@&.) In contrast to the analy-
OF POLARIZATION-CONSERVING SCATTERING sis in Sec. IV the concurrence does not vanish in the bulk of

. . L ._the distribution. The average of E(p.2) with distribution
If the scatterers are translationally invariant in one dlrec-(5 5) yields the algebraic decay
tion, then the two polarizations are not mixed by the scatter-"
ing. Such scatterers have been realized as parallel glass fibers Tl

[15]. One polarization corresponds to the electric field paral- €= an L (5.6

lel to the scattererg$TE polarization, the other to parallel

magnetic field(TM polarizatior). The boundary condition in good agreement with the numerical calculation for filNte
differs for the two polarizationgDirichlet for TE and Neu- (Fig. 3.

mann for TM), so the scattering amplitudes,, v,,, U__, v__ A completely analytical calculation for arly can be done
that conserve the polarization can still be considered to bén the case that only one of the beams is scattered. In that

independent random numbers. The amplitudes that coupleaseB,,=1 and the concurrence reduces to
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2|A,_| out to zerg. The variance of the Gaussian will depend on the
C= m (5.7 mean free path, but it drops out upon normalization of the
* - reduced density matrix. The applicability of the central limit
Averaging Eq.(5.7) over the Laguerre distributiot5.3)  theorem only requires that the scattering medium is thick
gives compared to the mean free path, to ensure a large number of
— terms in the sum over partial amplitudes.
©) = VaI'(N+1/2) 5.9 The degree of entanglemefats quantified by the concur-
2 T(N+1) ° ' rence or violation of the Bell inequalitythen depends only
on the numbeN of detected modes. We have identified two
For largeN, the average concurren¢®.8) falls off as qualitatively different types of decay. The decay is exponen-
V,; 1 tial <N if the scattering mixes spatial modes as well as
(C)=——7=, N> 1. (5.9 polarization directions. The coefficientdepends on which
2 N measure of entanglement one ugesncurrence or violation

of Bell inequality) and it also depends on whether both pho-
tons in the Bell pair are scattered or only one of them is. For
this latter case of single-beam scattering, the coefficients
are 3In3-41In2 (concurrence and IN(11+5/5)-In2

In summary, we have applied the method of random-{pseudoconcurrengeThe decay is algebraiesN if the
matrix theory(RMT) to the problem of entanglement trans- scattering preserves the polarization. The popvisr1 if both
fer through a random medium. RMT has been used before tphotons are scattered and 1/2 if only one of them is.
study production of entanglemen{16-23. Here we have Polarization-conserving scattering is special; it would require
studied thdossof entanglement in the transition from a pure translational invariance of the scatterers in one direction. The
state to a mixed state. generic decay is therefore exponential.

A common feature of all these theories is that the results Finally, we remark that the results presented here apply
are universal, independent of microscopic details. In oumnot only to scattering by disorder, but also to scattering by a
problem the decay of the degree of entanglement depends @avity with a chaotic phase space. An experimental search
the number of detected modes but not on microscopic paranfer entanglement loss by chaotic scattering has been reported
eters such as the scattering mean free path. by Woerdmaret al. [24].

The origin of this universality is the central limit theorem:

The complex scattering amplitude from one mode in the ACKNOWLEDGMENTS
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This case is also included in Fig. 3.
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