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We calculate the effect of polarization-dependent scattering by disorder on the degree of polarization en-
tanglement of two beams of radiation. Multimode detection converts an initially pure state into a mixed state
with respect to the polarization degrees of freedom. The degree of entanglement decays exponentially with the
number of detected modes if the scattering mixes the polarization directions and algebraically if it does not.
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I. INTRODUCTION

A pair of photons in the Bell statesuHVl+ uVHld /Î2 can
be transported over long distances with little degradation of
the entanglement of their horizontalsHd and verticalsVd po-
larizations. Polarization-dependent scattering has little effect
on the degree of entanglement, as long as it remains linear
(hence describable by a scattering matrix) and as long as the
photons are detected in a single spatial mode only. This ro-
bustness of photon entanglement was demonstrated dramati-
cally in a recent experiment[1] and theory[2,3] on plasmon-
assisted entanglement transfer.

Polarization-dependent scattering may significantly de-
grade the entanglement in the case of multimode detection.
Upon summation overN spatial modes the initially pure state
of the Bell pair is reduced to a mixed state with respect to the
polarization degrees of freedom. This loss of purity dimin-
ishes the entanglement—even if the two polarization direc-
tions are not mixed by the scattering.

The transition from pure-state to mixed-state entangle-
ment will in general depend on the detailed form of the scat-
tering matrix. However, a universal regime is entered in the
case of randomly located scattering centra. This is the regime
of applicability of random-matrix theory[4,5]. As we will
show in this paper, the transmission of polarization-
entangled radiation through disordered media reduces the de-
gree of entanglement in a way which, on average, depends
only on the numberN of detected modes.(The average refers
to an ensemble of disordered media with different random
positions of the scatterers.) The degree of entanglement(as
quantified either by the concurrence[6] or by the violation of
a Bell inequality[7,8]) decreases exponentially withN if the
disorder randomly mixes the polarization directions. If the
polarization is conserved, then the decrease is a power law
(~N−1 if both photons are scattered and~N−1/2 if only one
photon is scattered).

II. FORMULATION OF THE PROBLEM

We consider two beams of polarization-entangled photons
(Bell pairs) that are scattered by two separate disordered me-
dia (see Fig. 1). Two photodetectors in a coincidence circuit
measure the degree of entanglement of the transmitted radia-
tion through the violation of a Bell inequality. The scattered
Bell pair is in the pure state

Cns,mt =
1
Î2

suns
+ vmt

− + uns
− vmt

+ d. s2.1d

The indicesnP h1,2, . . . ,M1j, mP h1,2, . . . ,M2j label the
transverse spatial modes and the indicess ,tP h+,−j label
the horizontal and vertical polarizations. The first pair of
indices n, s refers to the first photon and the second pair
of indicesm, t refers to the second photon. The scattering
amplitudes uns

± relate the incoming mode(1, 6) of
the first photon to the outgoing modesn,sd, and
similarly for the second photon. The two
vectors su1+

+ ,u2+
+ , . . . ,uM1+

+ ,u1−
+ ,u2−

+ , . . . ,uM1−
+ d and

su1+
− ,u2+

− , . . . ,uM1+
− ,u1−

− ,u2−
− , . . . ,uM1−

− d of scattering ampli-
tudes of the first photon are orthonormal, and similarly for
the second photon.

A subset ofN1 out of theM1 modes are detected in the
first detector. We relabel the modes so thatn=1,2, . . .N1 are
the detected modes. This subset is contained in the four vec-

FIG. 1. Schematic diagram of the transfer of polarization-
entangled radiation through two disordered media. The degree of
entanglement of the transmitted radiation is measured by two mul-
timode photodetectors(Ni modes) in a coincidence circuit(repre-
sented by the box with “&” inside). The combination of
polarization-dependent scattering and multimode detection causes a
transition from a pure state to a mixed state in the polarization
degrees of freedom, and a resulting decrease of the detected
entanglement.
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tors un
++;un+

+ , un
+−;un−

+ , un
−+;un+

− , un
−−;un−

− of length N1
each. We write these vectors in bold face,u±±, omitting the
mode index. Similarly, the second detector detectsN2 modes,
contained in vectorsv±±. A single or double dot between
two pairs of vectors denotes a single or double contrac-
tion over the mode indices:a·b=on=1

Ni anbn, ab:cd
=on=1

N1 om=1
N2 anbmcmdn.

The pure state has density matrixCns,mtCn8s8,m8t8
* . By

tracing over the detected modes the pure state is reduced to a
mixed state with respect to the polarization degrees of free-
dom. The reduced density matrix is 434, with elements

rst,s8t8 =
1

Z
su+sv−t + u−sv+td:sv−t8

* u+s8
* + v+t8

* u−s8
* d,

s2.2d

Z = o
s,t

su+sv−t + u−sv+td:sv−t
* u+s

* + v+t
* u−s

* d. s2.3d

The complex numbers that enter into the density matrix are
conveniently grouped into a pair of Hermitian positive defi-
nite matricesa and b, with elementsast,s8t8=ust ·us8t8

* ,
bst,s8t8=vst ·vs8t8

* . One has

Zrst,s8t8 = a+s,+s8b−t,−t8 + a−s,−s8b+t,+t8 + a−s,+s8b+t,−t8

+ a+s,−s8b−t,+t8. s2.4d

The degree of entanglement of the mixed state with 4
34 density matrixr is quantified by the concurrenceC,
given by [6]

C = maxh0,Îl1 − Îl2 − Îl3 − Îl4j. s2.5d

The li’s are the eigenvalues of the matrix product

r · ssy ^ syd · r * · ssy ^ syd,

in the orderl1ùl2ùl3ùl4, with sy a Pauli matrix. The
concurrence ranges from 0(no entanglement) to 1 (maximal
entanglement).

In a typical experiment[1], the photodetectors cannot
measureC directly, but instead infer the degree of entangle-
ment through the maximal violation of the Bell-CHSH
(Clauser-Horne-Shimony-Holt) inequality [7,8]. The maxi-
mal valueE of the Bell-CHSH parameter for an arbitrary
mixed state was analyzed in Refs.[9,10]. For a pure state
with concurrenceC one has simplyE=2Î1+C2 [11]. For a
mixed state there is no one-to-one relation betweenE andC.
Depending on the density matrix,E can take on values be-
tween 2CÎ2 and 2Î1+C2, soE.2 impliesC.0 but not the
other way around. The general formula

E = 2Îu1 + u2 s2.6d

for the dependence ofE on r involves the two largest eigen-
valuesu1,u2 of the real symmetric 333 matrix RTR con-
structed fromRkl=Trrsk ^ sl. Here s1,s2,s3 refer to the
three Pauli matricessx,sy,sz, respectively.

We will calculate both the true concurrenceC and the
pseudoconcurrence

C8 ; Îmaxs0,E2/4 − 1d ø C s2.7d

inferred from the Bell inequality violation. As a special case
we will also consider what happens if only one of the two
beams is scattered. The other beam reaches the photodetector
without changing its mode or polarization, so we setvms

±

=dm,1ds,±. This impliesbst,s8t8=ds,tds8,t8, hence

Zrst,s8t8 = at̄s,t̄8s8, s2.8d

where we have definedt̄=−t. The normalization is now
given simply byZ=os,tast,st.

III. RANDOM-MATRIX THEORY

For a statistical description we use results from the
random-matrix theory(RMT) of scattering by disordered
media[4,5]. According to that theory, the real and imaginary
parts of the complex scattering amplitudesunt

s are statisti-
cally distributed as independent random variables with the
same Gaussian distribution of zero mean. The variance of the
Gaussian drops out of the density matrix; we fix it at 1. The
assumption of independent variables ignores the orthonor-
mality constraint of the vectorsu, which is justified if N1
!M1. Similarly, for N2!M2 the real and imaginary parts of
vnt

s have independent Gaussian distributions with zero mean
and a variance which we may set at 1.

The reduced density matrix of the mixed state depends on
the two independent random matricesa andb, according to
Eq. (2.4). The matrix elements are not independent. We cal-
culate the joint probability distribution of the matrix ele-
ments, using the following result from RMT[12]: Let W be
a rectangular matrix of dimensionp3 sk+pd, filled with
complex numbers with distribution

PshWnmjd ~ exps− cTrWW†d, c . 0. s3.1d

Then the square matrixH=WW† (of dimensionp3p) has
the Laguerre distribution

PshHnmjd ~ sdetHdkexps− cTrHd. s3.2d

Note thatH is Hermitian and positive definite, so its eigen-
values hn sn=1,2, . . . ,pd are real positive numbers. Their
joint distribution is that of the Laguerre unitary ensemble

Pshhnjd ~ p
n

hn
ke−chnp

i, j

shi − hjd2. s3.3d

The factor shi −hjd2 is the Jacobian of the transformation
from complex matrix elements to real eigenvalues. The
eigenvectors ofH form a unitary matrixU which is uni-
formly distributed in the unitary group.

To apply this to the matrixa we setc=1/2, p=4, k=N1
−4. We first assume thatN1ù4, to ensure thatkù0. Then

Pshast,s8t8jd ~ sdetadN1−4expS−
1

2
Tr aD , s3.4d

Pshanjd ~ p
n

an
N1−4e−an/2p

i, j

sai − ajd2, s3.5d

wherea1,a2,a3,a4 are the real positive eigenvalues ofa. The
434 matrix U of eigenvectors ofa is uniformly distributed
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in the unitary group. IfN1=1,2,3 we setc=1/2, p=N1, k
=4−N1. The matrixa has 4−N1 eigenvalues equal to 0. The
N1 nonzero eigenvalues have distribution

Pshanjd ~ p
n

an
4−N1e−an/2p

i, j

sai − ajd2. s3.6d

The distribution of the matrix elementsbst,s8t8 and of the
eigenvaluesbn is obtained upon replacement ofN1 by N2 in
Eqs.(3.4)–(3.6).

IV. ASYMPTOTIC ANALYSIS

We wish to average the concurrence(2.5) and pseudocon-
currence(2.7) with the RMT distribution of Sec. III. The
result depends only on the number of detected modesN1,N2
in the two photodetectors. Microscopic details of the scatter-
ing media become irrelevant once we assume random scat-
tering. The averageskCl, kC8l can be calculated by numerical
integration[13]. Before presenting these results, we analyze
the asymptotic behavior forNi @1 analytically. We assume
for simplicity thatN1=N2;N.

It is convenient to scale the eigenvalues as

an = 2Ns1 + and, bn = 2Ns1 + bnd. s4.1d

The distribution of thean’s andbn’s takes the same form

Pshanjd ~ expS− No
n=1

4

fan − lns1 + andg + Os1dD ,

s4.2d

where Os1d denotesN-independent terms. The bulk of the
distribution(4.2) lies in the regiononan

2&1/N!1, localized
at the origin. Outside of this region the distribution decays
exponentially~ expf−Nfshanjdg, with

fshanjd = o
n=1

4

fan − lns1 + andg. s4.3d

The concurrenceC and pseudoconcurrenceC8 depend on
the rescaled eigenvaluesan, bn and also on the pair of 4
34 unitary matricesU, V of eigenvectors ofa andb. Both
quantities areindependentof N, because the scale factorN in
Eq. (4.1) drops out of the density matrix(2.4) upon normal-
ization.

The two quantitiesC andC8 are identically zero when the
an’s and bn’s are all !1 in absolute value. For a nonzero
value one has to go deep into the tail of the eigenvalue dis-
tribution. The average ofC is dominated by the “optimal
fluctuation”an

opt, bn
opt, Uopt, Vopt of eigenvalues and eigenvec-

tors, which minimizesfshanjd+ fshbnjd in the regionC.0.
The decay

kCl . exp„− Nffshan
optjd + fshbn

optjdg… ; e−AN s4.4d

of the average concurrence is exponential inN, with a coef-
ficient A of order unity determined by the optimal fluctua-
tion. The averagekC8l.e−BN also decays exponentially with
N, but with a different coefficientB in the exponent. The
numbersA andB can be calculated analytically for the case
that only one of the two beams is scattered.

Scattering of a single beam corresponds to a density ma-
trix r which is directly given by the matrixa, cf. Eq. (2.8).
To find A, we therefore need to minimizefshanjd over the
eigenvalues and eigenvectors ofa with the constraintC.0,

A = min
hanj,U

hfshanjduC„rshanj,Ud… . 0j. s4.5d

The minimum can be found with the help of the following
result [14]: The concurrenceCsrd of the two-qubit density
matrix r, with fixed eigenvaluesL1ùL2ùL3ùL4 but arbi-
trary eigenvectors, is maximized upon unitary transformation
by

FIG. 2. Average concurrencekCl (squares) and pseudoconcur-
rence kC8l (triangles) as a function of the numberN of detected
modes. Closed symbols are for the case that only one of the two
beams is scattered and open symbols for the case that both beams
are scattered. The decay ofkC8l in the latter case could not be
determined accurately enough and is therefore omitted from the
plot. The solid lines are the analytically obtained exponential de-
cays, with constantsA=3 ln 3−4 ln 2 andB=lns11+5Î5d−ln 2, cf.
Eqs.(4.8) and (4.12).

FIG. 3. Average concurrencekCl as a function of the numberN
of detected modes, for the case of polarization-conserving scatter-
ing of both beams(open squares) and one beam(closed squares).
The data points are the result of a numerical average. The dashed
line is the asymptotic result(5.6) and the dotted line is the analyti-
cal result (5.8). The pseudoconcurrenceC8 is identical to C for
polarization-conserving scattering.
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max
V

CsVrV†d = maxh0,L1 − L3 − 2ÎL2L4j. s4.6d

(The matrixV varies over all 434 unitary matrices.) With
this knowledge, Eq.(4.5) reduces to

A = min
hanj

hfshanjdua1 − a3 − 2Îs1 + a2ds1 + a4d . 0j, s4.7d

where we have ordereda1ùa2ùa3ùa4. This yields for the
optimal fluctuationa1

opt=1, a2
opt=a3

opt=a4
opt=−1/3 and

A = 3 ln 3 − 4 ln 2 = 0.523. s4.8d

The asymptotic decaykCl~e−AN is in good agreement with a
numerical calculation for finiteN, see Fig. 2.

The asymptotic decay of the average pseudoconcurrence
kC8l for a single scattered beam can be found in a similar
way, using the result[10]

max
V

C8sVrV†d = Îmaxh0,2sL1 − L4d2 + 2sL2 − L3d2 − sL1 + L2 + L3 + L4d2j. s4.9d

To obtain the optimal fluctuation we have to solve

B = min
hanj

hfshanjdu2sa1 − a4d2 + 2sa2 − a3d2

− s4 + a1 + a2 + a3 + a4d2 . 0j, s4.10d

which gives

a1
opt =

1

2
s− 1 + 2Î2 +Î5d, a2

opt = a3
opt =

1

2
s1 −Î5d,

a4
opt =

1

2
s− 1 − 2Î2 +Î5d, s4.11d

hence

B = lns11 + 5Î5d − ln 2 = 2.406. s4.12d

The decaykC8l~e−BN is again in good agreement with the
numerical results for finiteN (Fig. 2).

If both beams are scattered, a calculation of the optimal
fluctuation is more complicated because the eigenvalues
hanj, hbnj and the eigenvectorsU, V get mixed in the density
matrix (2.4). The numerics of Fig. 2 giveskCl~e−3.3N for the
asymptotic decay of the concurrence. The averaged
pseudoconcurrence for two-beam scattering could not be de-
termined accurately enough to extract a reliable value for the
decay constant.

V. COMPARISON WITH THE CASE
OF POLARIZATION-CONSERVING SCATTERING

If the scatterers are translationally invariant in one direc-
tion, then the two polarizations are not mixed by the scatter-
ing. Such scatterers have been realized as parallel glass fibers
[15]. One polarization corresponds to the electric field paral-
lel to the scatterers(TE polarization), the other to parallel
magnetic field(TM polarization). The boundary condition
differs for the two polarizations(Dirichlet for TE and Neu-
mann for TM), so the scattering amplitudesu++, v++, u−−, v−−
that conserve the polarization can still be considered to be
independent random numbers. The amplitudes that couple

different polarizations vanish:u+−, v+−, u−+, v−+ are all zero.
The reduced density matrix(2.4) simplifies to

Zrst,s8t8 = ds,t̄ds8,t̄8ass,s8s8btt,t8t8, s5.1d

with t̄=−t, t̄8=−t8. We will abbreviateAst;ass,tt, Bst

;bss,tt. The concurrenceC and pseudoconcurrenceC8 are
calculated from Eqs.(2.5) and (2.7), with the result

C = C8 =
2uA+−uuB+−u

A++B−− + A−−B++
. s5.2d

It is again our objective to calculatekCl for the caseN1

=N2=N. The distribution of the matricesA andB follows by
substitutingN1−4→N−2 in Eq. (3.4):

PshAstjd ~ sdetAdN−2expS−
1

2
Tr AD . s5.3d

The average over this distribution was done numerically, see
Fig. 3. For largeN we may perform the following asymptotic
analysis.

We scale the matricesA andB as

A = 2Ns1 + Ad, B = 2Ns1 + Bd. s5.4d

In the limit N→` the Hermitian matricesA andB have the
Gaussian distribution

PshAstjd ~ e−s1/2dNTrAA†
. s5.5d

(The same distribution holds forB.) In contrast to the analy-
sis in Sec. IV the concurrence does not vanish in the bulk of
the distribution. The average of Eq.(5.2) with distribution
(5.5) yields the algebraic decay

kCl =
p

4

1

N
, N @ 1, s5.6d

in good agreement with the numerical calculation for finiteN
(Fig. 3).

A completely analytical calculation for anyN can be done
in the case that only one of the beams is scattered. In that
caseBst=1 and the concurrence reduces to
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C =
2uA+−u

A++ + A−−
. s5.7d

Averaging Eq. (5.7) over the Laguerre distribution(5.3)
gives

kCl =
Îp

2

GsN + 1/2d
GsN + 1d

. s5.8d

For largeN, the average concurrence(5.8) falls off as

kCl =
Îp

2

1
ÎN

, N @ 1. s5.9d

This case is also included in Fig. 3.

VI. CONCLUSION

In summary, we have applied the method of random-
matrix theory(RMT) to the problem of entanglement trans-
fer through a random medium. RMT has been used before to
study production of entanglement[16–23]. Here we have
studied thelossof entanglement in the transition from a pure
state to a mixed state.

A common feature of all these theories is that the results
are universal, independent of microscopic details. In our
problem the decay of the degree of entanglement depends on
the number of detected modes but not on microscopic param-
eters such as the scattering mean free path.

The origin of this universality is the central limit theorem:
The complex scattering amplitude from one mode in the
source to one mode in the detector is the sum over a large
number of complex partial amplitudes, corresponding to dif-
ferent sequences of multiple scattering. The probability dis-
tribution of the sum becomes a Gaussian with zero mean
(because the random phases of the partial amplitudes average

out to zero). The variance of the Gaussian will depend on the
mean free path, but it drops out upon normalization of the
reduced density matrix. The applicability of the central limit
theorem only requires that the scattering medium is thick
compared to the mean free path, to ensure a large number of
terms in the sum over partial amplitudes.

The degree of entanglement(as quantified by the concur-
rence or violation of the Bell inequality) then depends only
on the numberN of detected modes. We have identified two
qualitatively different types of decay. The decay is exponen-
tial ~e−cN if the scattering mixes spatial modes as well as
polarization directions. The coefficientc depends on which
measure of entanglement one uses(concurrence or violation
of Bell inequality) and it also depends on whether both pho-
tons in the Bell pair are scattered or only one of them is. For
this latter case of single-beam scattering, the coefficientsc
are 3 ln 3−4 ln 2 (concurrence) and lns11+5Î5d−ln 2
(pseudoconcurrence). The decay is algebraic~N−p if the
scattering preserves the polarization. The powerp is 1 if both
photons are scattered and 1/2 if only one of them is.
Polarization-conserving scattering is special; it would require
translational invariance of the scatterers in one direction. The
generic decay is therefore exponential.

Finally, we remark that the results presented here apply
not only to scattering by disorder, but also to scattering by a
cavity with a chaotic phase space. An experimental search
for entanglement loss by chaotic scattering has been reported
by Woerdmanet al. [24].

ACKNOWLEDGMENTS

This work was supported by the “Stichting voor Funda-
menteel Onderzoek der Materie”(FOM), by the “Neder-
landse Organisatie voor Wetenschappelijk Onderzoek”
(NWO), and by the U.S. Army Research Office(Grant No.
DAAD 19-02-0086).

[1] E. Altewischer, M. P. van Exter, and J. P. Woerdman, Nature
(London) 418, 304 (2002).

[2] J. L. van Velsen, J. Tworzydło, and C. W. J. Beenakker, Phys.
Rev. A 68, 043807(2003).

[3] E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L.
Martín-Moreno, Phys. Rev. Lett.92, 236801(2004).

[4] C. W. J. Beenakker, Rev. Mod. Phys.69, 731 (1997).
[5] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys.

Rep. 299, 189 (1998).
[6] W. K. Wootters, Phys. Rev. Lett.80, 2245(1998).
[7] J. S. Bell, Physics(Long Island City, N.Y.) 1, 195 (1964).
[8] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys.

Rev. Lett. 23, 880 (1969).
[9] R. Horodecki, P. Horodecki, and M. Horodecki, Phys. Lett. A

200, 340 (1995).
[10] F. Verstraete and M. M. Wolf, Phys. Rev. Lett.89, 170401

(2002).
[11] N. Gisin, Phys. Lett. A154, 201 (1991).
[12] J. Verbaarschot, Nucl. Phys. B426, 559 (1994).
[13] The results of Fig. 2 are obtained by a combination of adaptive

integration over the simplex of eigenvalueshanj (andhbnj) and
a stochastic average over the unitary matrixU (and V). We
define the scaled eigenvalueshãnj by a2=a1ã2, a3=a1ã2ã3,
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