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Discovery of six Lyα emitters near a radio galaxy at z ∼ 5.2
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Abstract. We present the results of narrow-band and broad-band imaging with the Very Large Telescope� of the field sur-
rounding the radio galaxy TN J0924–2201 at z = 5.2. Fourteen candidate Lyα emitters with a rest-frame equivalent width of
>20 Å were detected. Spectroscopy of 8 of these objects showed that 6 have redshifts similar to that of the radio galaxy. The
density of emitters at the redshift of the radio galaxy is estimated to be a factor 1.5–6.2 higher than in the field, and comparable
to the density of Lyα emitters in radio galaxy protoclusters at z = 4.1, 3.1 and 2.2. The Lyα emitters near TN J0924–2201 could
therefore be part of a structure that will evolve into a massive cluster. These observations confirm that substantial clustering of
Lyα emitters occurs at z > 5 and support the idea that radio galaxies pinpoint high density regions in the early Universe.
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1. Introduction

One of the most intriguing questions in modern astrophysics
concerns the formation of structure in the early Universe (e.g.
Bahcall et al. 1997). The narrow-band imaging technique can
efficiently select objects with a strong Lyα line in a narrow red-
shift range, and is therefore ideal for finding and investigating
overdense regions at high redshift (Steidel et al. 2000; Möller
& Fynbo 2001; Shimasaku et al. 2003; Palunas et al. 2004).
For example, Steidel et al. (2000) used narrow-band imaging
to map the extent of a large-scale structure at z ∼ 3.09, discov-
ered in a survey for continuum-selected Lyman-break galax-
ies. Shimasaku et al. (2003) serendipitously found a large-scale
structure at z ∼ 4.9 while searching for Lyα emitters in the
Subaru Deep Field. Their results demonstrate that Mpc-scaled
structures have already formed by z ∼ 4.9 and that Lyα emitters
must be very biased tracers of mass in the early Universe.

Narrow-band imaging of distant powerful radio galaxies
at z = 2−4 has shown that these objects are often located in
rich environments, possibly the early stages in the formation of
massive clusters (Pascarelle et al. 1996; Le Fèvre et al. 1996;

� Based on observations carried out at the European Southern
Observatory, Paranal, Chile, programs LP167.A-0409 and 70.A-0589.

Pentericci et al. 2000; Venemans et al. 2002, 2003; Kurk et al.
2004). An interesting question is out to which redshift such
large-scale structures (protoclusters) can be detected. The most
distant known radio galaxy is TN J0924–2201, with a redshift
of z = 5.2 (van Breugel et al. 1999). In this letter, we describe
broad- and narrow-band observations of this radio galaxy, and
report the discovery of 6 Lyα emitters in the field whose red-
shifts are close to that of the radio galaxy1.

2. Observations and candidate selection

2.1. Imaging observations and candidate selection

To search for candidate Lyα emitters near TN J0924–2201,
narrow-band and broad-band (I- and V-band) imaging of the
field were carried out during two separate observing sessions
in 2002 March and April with the VLT Yepun (UT4), using
the FOcal Reducer/low dispersion Spectrograph 2 (FORS2).
The custom made narrow-band filter had a FWHM of 89 Å
and a central wavelength of 7528 Å, which encompasses the

1 Throughout this Letter, magnitudes are in the AB system and a
Λ-dominated cosmology with H0 = 65 km s−1 Mpc−1, ΩM = 0.3, and
ΩΛ = 0.7 is assumed.
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wavelength of the Lyα emission line at z ∼ 5.2. The effective
exposure times are 36 860 s (narrow-band), 9750 s (I-band) and
3600 s (V-band). The seeing in the narrow-band, I-band and
V-band images is 0.′′8, 0.′′8 and 1.′′05 respectively. The 3σ lim-
iting magnitudes in an aperture with a 2.′′0 diameter are 26.29,
26.65 and 26.80 for the narrow-band, I and V-band respec-
tively. For a Lyα emitter at z ∼ 5.2 with negligible continuum,
the 5σ limiting line luminosity is Llim(Lyα) = 3 × 1042 erg s−1.
The images have an area useful for detecting Lyα emitters of
46.8 �′.

A total of 3471 objects were detected in the narrow-band
image with a signal-to-noise greater than 5 using the program
SExtractor (Bertin & Arnouts 1996). For each object, the ob-
served equivalent width was calculated using a method that will
be described in a future paper (Venemans et al., in preparation).
Lyα emitters at z ∼ 5.19 with a rest-frame equivalent width of
EW0 > 20 Å would have an observed equivalent width (EWλ)
of 124 Å. We find 24 such objects in the field. The V-band im-
age was used to identify low redshift interlopers with an emis-
sion line falling in the narrow-band filter. Ten of the 24 objects
with EWλ > 124 Å were also detected in the V-band with a
signal-to-noise greater than 2, and had V − I colors that were
much bluer (V−I < 1.2) than a V−I color of ∼2.75 as expected
for a galaxy at z ∼ 5.2 (e.g. Songaila 2004). The remaining
14 candidates were our high priority candidates for follow-up
spectroscopy.

2.2. Spectroscopy

For the spectroscopy, a mask was constructed which included
the radio galaxy and 8 of the 14 high priority candidate Lyα
emitters. This was the maximum number that could be fitted on
the mask. The rest of the mask was filled with objects having
an excess flux in the narrow-band, but with a lower equivalent
width than our selection criterion and/or with a blue V− I color.
The observations were carried out on 2003 March 3 and 4 us-
ing FORS2 on the VLT Yepun. The mask was observed through
the 600RI grism (with a peak efficiency of 87%) with 1.′′4 slits.
The pixels were 2 × 2 binned to decrease the readout time and
noise, giving a spatial scale of 0.′′25 pixel−1 and a dispersion
of 1.66 Å pixel−1. The total exposure time was 20 676 s. The
mean airmass was 1.23 and the seeing in the individual frames
varied between 0.′′7 and 1.′′0, giving a spectral resolution of
185–265 km s−1 for point sources. For the wavelength calibra-
tion, exposures were taken of He, HgCd, Ar and Ne lamps.
The rms of the wavelength calibration was always better than
0.25 Å (∼10 km s−1).

3. Results

The radio galaxy and all of the 8 observed candidate Lyα emit-
ters showed an emission line near 7500 Å. The redshift of the
radio galaxy of z = 5.1989 ± 0.0006 is consistent with the red-
shift of z = 5.2, reported by van Breugel et al. (1999).

Two of the 8 candidate Lyα objects (emitters #463
and #559) are identified with [O ] λ5007 at z ∼ 0.5, con-
firmed by the accompanying lines [O ] λ4959 and Hβ (Fig. 1
and Table 1). The other six spectra (Fig. 1) did not show any

Fig. 1. Part of the spectra of the eight spectroscopically observed high
priority emitters and the radio galaxy. For clarity the spectra are off-
set by 1.5 × 10−18 erg s−1 cm−2. The solid lines indicate the zeropoint
of the spectra, the dotted lines the 1σ uncertainty in the data, and the
dashed lines are the scaled transmission curves of the narrow-band
filter. The regions in the spectrum where strong telluric skylines dom-
inate are indicated with hashed lines.

other emission line in a wavelength range covering more than
3300 Å (see Table 1).

To distinguish high redshift Lyα emitters from low redshift
interlopers various tests can be applied (see Stern et al. 2000,
for a review).

Asymmetric line profile: A characteristic feature of a high
redshift Lyα line is the flux decrement on the blue wing of
the Lyα emission (e.g. Dawson et al. 2002). Following Rhoads
et al. (2003), the asymmetry of an emission line can be de-
scribed by the parameters aλ and af . These parameters mea-
sure the ratio of the line width and line flux redward and blue-
ward of the line peak and depend both on the characteristics
of the line (line width, amount of absorption, merged doublet)
and on the resolution of the spectrum (Rhoads et al. 2003,
and reference therein). Simulations of observed spectra indi-
cate that Gaussian Lyα lines with a FWHM of 150–800 km s−1

and with the blue side fully absorbed have aλ = 1.0−1.6 and
af = 1.0−1.4, while [O ] λ3727 emitters have aλ ≈ 0.9 and
af = 0.8−0.9. This is consistent with values found by Rhoads
et al. (2003), who measure typical values of 0.9 < af < 1.9
and 0.9 < aλ < 3.1 for a sample of high redshift Lyα emitters
and for [O ] emitters at z ∼ 1 af ≈ 0.8 and aλ ≈ 0.9. Only
two of the emission lines (of emitters #1388 and #2881) have
a signal-to-noise that is high enough to measure the asymme-
try. These two lines are (marginally) asymmetric (with aλ =
2.0 ± 0.9(2.2 ± 0.6) and af = 1.7 ± 0.8(1.4 ± 0.6) for emit-
ter #1388 (2881)), an indication that emitters #1388 and #2881
are Lyα emitters at z ∼ 5.2.

Continuum break: A high redshift Lyα emitter must have a
continuum break across the Lyα line, caused by the Lyα for-
est between the galaxy and the observer. Madau (1995) predict
a break of a factor ∼5 across the Lyα line at z ∼ 5. To mea-
sure continuum in our spectra, regions that were not effected
by strong telluric lines were chosen redward and blueward of
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Table 1. Properties of the eight spectroscopically observed high priority candidates and the radio galaxy.

Object Position z Flux EW0 FWHM SFRUV SFRLyα

αJ2000 δJ2000 erg s−1 cm−2 Å km s−1 M� yr−1 M� yr−1

259 09 24 07.07 −22 02 09.2 5.1834 ± 0.0002 8.8 ± 0.8 ×10−18 >103 208 ± 39 <3.2 3.9 ± 0.7

524 09 24 09.41 −22 02 00.5 5.1683 ± 0.0003 1.2 ± 0.1 ×10−17 97+866
−21 392 ± 25 9.1 ± 3.6 10.4 ± 1.2

1388 09 24 16.68 −22 01 16.9 5.1772 ± 0.0003 4.1 ± 0.5 ×10−18 59+476
−14 295 ± 38 5.1 ± 2.0 3.5 ± 0.5

2688 09 24 25.67 −22 03 01.1 5.1731 ± 0.0003 3.1 ± 0.4 ×10−18 >88 167 ± 63 <2.9 3.0 ± 0.6

2849 09 24 24.30 −22 02 30.9 5.1765 ± 0.0003 8.0 ± 0.9 ×10−18 47+785
−13 249 ± 32 6.1 ± 2.7 3.3 ± 0.7

2881 09 24 23.88 −22 03 44.8 5.1683 ± 0.0005 1.4 ± 0.2 ×10−17 42+45
−9 479 ± 28 13.7 ± 3.4 6.8 ± 1.1

463a 09 24 08.48 −22 00 04.0 0.4983 ± 0.0001 4.7 ± 0.7 ×10−18 339+1966
−91 <200 – –

559a 09 24 09.51 −22 00 18.3 0.51515 ± 0.00003 1.3 ± 0.1 ×10−17 207+160
−47 <70 – –

RG 09 24 19.90 −22 01 42.0 5.1989 ± 0.0006 2.1 ± 0.2 ×10−17 83+148
−14 1161 ± 55 11.6 ± 3.5 11.4 ± 0.7

a [O ] λ5007 emitter.

the emission line. Four spectra had a significant (>3σ) detec-
tion of continuum emission redward of the emission line, re-
sulting in 2σ lower limits on their flux decrements of 3.6–5.3.
Such large breaks in the optical are exclusively found in high
redshift objects (e.g. Stern et al. 2000). Hammer et al. (1997)
showed that observed [O ] emitters at 0.5 < z < 1.0 have
a total 4000 Å and Balmer break of factor <3. Therefore, the
continuum break measured in four of the emitters is most likely
caused by neutral H  absorption, and hence these emitters can
be identified with Lyα emitters at z ∼ 5.2.

Equivalent width: The emission line objects have observed
equivalent widths in excess of ∼250 Å. The two emitters which
do not show a convincing line asymmetry and do not show con-
tinuum both redward and blueward of the emission line, have
observed equivalent widths of EWλ > 540 Å. This would cor-
respond to a rest-frame equivalent width of >269 Å if the emis-
sion line is [O ] λ3727 at z ∼ 1.0. Such high [O ] equivalent
width emitters are rare. The total number of z ∼ 1 [O ] emit-
ters expected in our field, derived from Teplitz et al. (2003), is
∼1. However, the fraction of [O ] emitters with a rest-frame
EW > 200 Å is <2.5% (Teplitz et al. 2003), which indicates
that these two emission line objects are probably not [O ]
emitters at z ∼ 1, but Lyα emitters at z = 5.2.

Emission line ratios: As mentioned above, no other emis-
sion lines were found in the spectra of the emitters. To es-
timate the likelihood that the emitters are [O ] emitters, we
can derive an upper limit on the flux of the [Ne ] λ3869 line
and compare that to local emission line galaxies (Fynbo et al.
2001). Stacking the six spectra to increase the signal-to-noise,
we find an upper limit on the ratio of [Ne ] line flux over
the [O ] flux of flux ([Ne ])/flux([O ])< 0.07 (2σ). Using
the spectrophotometric catalogue of local emission line galax-
ies of Terlevich et al. (1991), we found that only 5 out of a
sample of 151 of the galaxies with both [O ] and [Ne ] lines
detected (5/151 ≈ 3%) have such a weak neon line. With the
estimated number of [O ] emitters (see above), we expect that
<1 of our 6 emission line galaxies is an [O ] emitter.

On the basis of these four lines of arguments, we conclude
that these 6 line emitters are almost certainly Lyα emitters at
z = 5.2.

The extracted Lyα lines were fitted with a Gaussian func-
tion to estimate the redshift, line flux and widths (FWHMs).
In Table 1 the properties of the Lyα emitters are summarised.
The IDs correspond to the object’s number in the catalogue. To
correct for the instrumental broadening, the observed FWHM
was deconvolved with the resolution. The star formation rates
(S FRUV and S FRLyα) were calculated from the measured
UV continuum fluxes and line fluxes in the images assuming
a flat fν spectrum and UV flux density to SFR conversion of
Madau et al. (1998).

The velocities of the six confirmed Lyα emitters cluster
within a range of 900 km s−1 in the rest-frame, while the
narrow-band filter is ∼3500 km s−1 wide. The peak of the Lyα
emission of the radio galaxy is roughly 1000 km s−1 away from
the central velocity of the emitters. This is different from other
z > 2 radio galaxy protoclusters, where the radio galaxy has
a velocity close to the average velocity of the Lyα emitters
(Pentericci et al. 2000; Kurk et al. 2004; Venemans et al. 2002).
This could be due to H  absorption on the Lyα emission line
of the radio galaxy. It has been shown that in radio galaxies
this absorption can cause a velocity shift of the Lyα line up
to 1000 km s−1 as compared to other UV emission lines (e.g.,
Röttgering et al. 1997).

Of the remaining objects covered by the mask, one is iden-
tified as a [O ] λ3727 emitter, also showing [Ne ] λ3869
emission and nine were identified as [O ] λ5007 emitters,
confirmed by various lines such as [O ] λ4959, Hβ, Hγ, Hδ,
[Ne ] λ3869 and [O ] λ3727. In total 11 [O ] emitters were
confirmed in the field, all having a redshift of z ∼ 0.5.

4. Discussion and conclusions

The fraction of foreground contaminants in our sample is es-
timated to be 2/8 ∼ 25%. There are 6 additional unconfirmed
high priority candidate Lyα emitters in the field. Based on the
fraction of contaminants in our sample, ∼4 of those are ex-
pected to be z ∼ 5.2 Lyα emitters.

Is there an overdensity of Lyα emitters near
TN J0924–2201? To investigate this question, we have
to compare the density of Lyα emitters in our field with
the density in blank fields. The largest survey near z ∼ 5
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for Lyα emitters is the search for Lyα emitters at z ∼ 4.79
in the Subaru Deep Field (SDF, Shimasaku et al. 2004).
This survey is comparable in depth to our observations
(Llim(Lyα) = 3 × 1042 erg s−1 for an emitter at z = 4.79 with no
continuum) and the selection criteria applied to identify Lyα
emitters are very similar to ours (EWλ > 80 Å, Shimasaku
et al. 2004). In the SDF, Shimasaku et al. find 51 candidate
Lyα emitters in an area of 25′ × 45′. However, there is no
spectroscopic confirmation of these candidates. We therefore
conservatively assume that all their candidates are Lyα emit-
ters at z ∼ 4.8, resulting in a number density of Lyα emitters
in the SDF of 2.1 ± 0.3 × 10−4 Mpc−3 (Shimasaku et al.
2004). Excluding the radio galaxy, the density of confirmed
Lyα emitters in our field is 5.3+3.2

−2.1 × 10−4 Mpc−3, which is a
factor 2.5+1.6

−1.0 higher than in the SDF. If the four unconfirmed
candidate Lyα emitters are included, this factor rises to 4.2+2.0

−1.4.
We used the data from the SDF to estimate the chance of
finding 6 or more Lyα emitters in within a single 6.′8× 6.′8
FORS2 field by counting the number of emitters in randomly
placed 6.′8× 6.′8 apertures. In only 7% of the cases, more than
6 Lyα emitters were found. This further indicates that the
TN J0924–2201 field is overdense in Lyα emitters.

Lyα emitters at high redshift show large cosmic variance in
their clustering properties (e.g. Shimasaku et al. 2004). Various
authors have found that the distribution of Lyα emitters on
the sky and/or in redshift space can be very inhomogeneous
(e.g. Ouchi et al. 2003; Fynbo et al. 2003; Shimasaku et al.
2003; Palunas et al. 2004; Hu et al. 2004). For example, most
of the Lyα emitters found at z = 4.86 in the SDF are con-
centrated within a large-scale structure with a radius of ∼6′
(∼2.5 Mpc, Shimasaku et al. 2003). It is therefore possible that
the Lyα emitters around TN J0924–2201 in the ∼6.′8× 6.′8 field
of view of FORS2 are located inside such a large-scale
structure.

It is interesting to compare the (over)density in this field
with the protoclusters that were found around radio galaxies
at z = 4.1, 3.1 and 2.2, each with at least 20 confirmed pro-
tocluster members and estimated masses of ∼1014−1015 M�
(Pentericci et al. 2000; Kurk et al. 2004; Venemans et al.
2002,Venemans et al. in prep.). In the TN 0924–2201 field
objects were selected with a (Lyα) line luminosity of >3 ×
1042 erg s−1. At z = 4.1, 3.1 and 2.2, this luminosity limit corre-
sponds to a limit of >1.5, 3.1 and 7.0× 10−17 erg s−1 cm−2. The
number of candidate (confirmed) emitters with a line brighter
than the luminosity limit in the z = 4.1, 3.1 and 2.2 protoclus-
ters is 10 (10), 12 (12) and 8 (6) respectively. This is roughly the
same number of Lyα emitters as in the TN J0924–2201 field,
which contains six confirmed and four possible Lyα emitters.
The Lyα emitters at z = 5.2 might therefore be the bright end
of a population of star forming galaxies in a protocluster at
z = 5.2, making it the most distant known protocluster. Deep
multi-color observations should confirm this by detecting other
populations of galaxies (e.g. Lyman break galaxies) in the pro-
tocluster.
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