Charge Detection Enables Free-Electron Quantum Computation

CW J Beenakker, ${ }^{1}$ D P DiVincenzo, ${ }^{23}$ C Emary, ${ }^{1}$ and M Kındermann ${ }^{4}$
${ }^{1}$ Instituut Lorentz, Unverstert Leiden PO Box 95062300 RA Leiden The Netheilands
${ }^{2}$ Depat iment of Nanoscience Delft Unver sut) of Technology, Lorentzueg I 2628 CJ Delft The Netheilands
${ }^{3}$ Instutue for Theoretcal Physes Valckentersticat 651018 XE Amsterdam The Netherlands
${ }^{4}$ Depal (ment of Ph>ics Massachusetts Instutute of Technolog) Cambındge Massachusetts 02139 USA (Recerved 19 February 2004, published 6 July 2004)
It 1 s known that a quantum computer operating on election spin qubits with single election Hamitonians and assisted by single-spin measuiements can be simulated efficiently on a classical computer We show that the exponential speedup of quantum algoithms is restored if single-chatge measurements are added These enable the constiuction of a CNOT (contiolled NOT) gate for fiee feimions, using only beam splitters and spin iotations The gate is nearly detemmistic if the charge detector counts the number of elections in a mode, and fully deter minstic if it only measures the panty of that number

DOI 10 1103/PhysRevLett 93020501

Flying qubits tianspoit quantum information between distant memor y nodes and form an essential ingiedient of a scalable quantum computer [1] Flying qubits could be photons [2], but using conduction elections in the solid state for this puipose removes the need to convert mateial qubits to radiation Since the Coulomb interaction between free elections is stiongly scieened, an interac-tion-fiee mechanism for logical operations on electionic flying qubits could be desiable The search tor such a mechanism is stiongly constianed by a no-go theorem [3,4], which states that the exponential speedup of quantum over classical algoithms cannot be reached with single-election Hamıltomans assisted by single-spin measurements Here we show that the full power of quantum computation is iestored if single-charge measurements are added These enable the constuction of a CNOT (controlled NOT) gate for fiee fermons, using only beam splitters and spin otations

The no-go theorem [3,4] applies only to fermions, not to bosons Indeed, in an influential paper [2], Knıll, Laflamme, and Milbuin showed that the exponential speedup over a classical algoithm afforded by quantum mechanics can be reached using only linear optics with single-photon detectors The detectors interact with the qubits, providing the nonlineality needed for the computation, but qubit-qubit interactions (e g, nonlinear optical elements) are not requied in the bosonic case This difference between bosons and fermions explains why the topic of "fiee-election quantum computation" (FEQC) is absent in the literature, in contiast to the active topic of "lineal optics quantum computation" (LOQC) [5-12] Here we would hike to open up the former topic, by demonstiating how the constiant on the efficiency of quantum algot thms for fiee teimions can be removed We accomplish this by using the fact that the election callying the qubit in its spin degiee of freedom has also a
charge degree of fieedom Spin and charge commute, so a measurement of the chatge leaves the spin qubit unaffected To measure the charge the qubit should interact with a detector, but no qubit-qubit interactions ate needed

Charge detectors play a prominent role in a varety of contexts as which-path detectors they contiol the visibility of Ahatonov-Bohm oscillations [13], in combination with a beam splitter they piovide a way to entangle two noninteracting paiticles [14], in combination with spindependent tunneling they enable the readout of a spin qubit $[15,16]$ The experimental realization uses the effect of the electuc field of the chatge on the conductance of a nearby point contact [17] The effect is weak, because of scieening, but measuable if the point contact is near enough Such a device functions as an electrometer It can count the occupation number of a spatial mode (0,1 , oi 2 elections with opposite spin) If the point contact is replaced by a quantum dot with a resonant conductance, then it is possible to operate the device as a parity meter It can distinguish occupation number one (when it is on resonance) from occupation number 0 or two (when it is off resonance) -but it cannot distinguish between 0 and 2 We will consider both types of chaige detectors in what follows

The general for mulation of fermionic quantum computation [18] is in tei ms of local modes which can be eitheı empty or occupied The annihilation operator of a local mode is $a_{i s}$, with spatial mode index $l=1,23$, and spin index $s=\uparrow \downarrow$ For nonintetacting feimions the Hamiltonian is bilineai in the cieation and anmihilation operators A local measurement in the computational basis has projection operdtors $n_{t s}=a_{t s}^{\dagger} a_{t s}$ and $1-n_{i s}=$ $a_{1 s} a_{t s}^{\dagger}$ Terhal and one of the authors [3] showed that the probabilly of the outcome of any set of such local measurements is the square root of a determant Since a
determinant of order N can be evaluated in a time which scales polynomally with N, the quantum algoithm can be simulated efficiently on a classical computer This is the no-go theorem mentioned in the introduction

We now add measurements of the local chatge $Q_{i}=$ $n_{t \uparrow}+n_{t \downarrow}$ to the algonthm The ergenvalues of Q_{1} are $0,1,2$ The probability that chaige one is measured is given by the expectation value of the piojection operator

$$
\begin{equation*}
P_{t}=1-\left(1-Q_{t}\right)^{2}=a_{i \uparrow}^{\dagger} a_{t \uparrow} a_{t \downarrow} a_{t \downarrow}^{\dagger}+a_{t \downarrow}^{\dagger} a_{t \downarrow} a_{17} a_{i \uparrow}^{\dagger} \tag{1}
\end{equation*}
$$

The operator P_{1} is the sum of two local operators in the computational basis The probability that M spatial modes are singly occupied therefore consists of a sum of an exponentially large number (2^{M}) of deter minants, so now a classical simulation need no longeı scale polynomially with the number of modes Notice that a measurement of Q_{1} contains less information about the state than separate measurements of $n_{t \dagger}$ and $n_{t \downarrow}$ The fact that partial measurements can add computational power is a basic punciple of quantum algouthms [1]

Let us now see how these formal considelations could be implemented, by constiucting a CNOT gate using only beam splitters, spin otations, and charge detectors To constiuct the gate we need one of two new bulding blocks that are enabled by charge detectors The first building block is the Bell-state analyzeı shown in Fig 1 For this device it does not matter whether the charge detector operates as an electiometer or as a paity meter The second bulding block, shown in Fig 2, conveits a charge paity measurement to a spin paity measuiement We present each device in tuin and then show how to construct the CNOT gate

The Bell-state analyzer makes it possible to teleport [19] the spin state $\alpha|\mathfrak{\uparrow}\rangle+\beta|\downarrow\rangle$ of election A to anotheı

FIG 1 Bell state analyzer for noninteracting elections, consisting of thiee $50 / 50$ beam splittets (dashed hoizontal lines), tour minios (solid hoizonal lines), two local spin iotations (Paulı matıces σ_{1} and σ_{7}), and thiee charge detectors (squares) The charge detectors may operate cither as electiometers (counting the occupation $q_{1}=012 \mathrm{~m}$ an atm) or as paily meters (measuing $p_{t}=q_{i} \bmod 2$) The first chatge detector can identify the spin singlet state $\left|\Psi_{0}\right\rangle$, which is the only one of the fou1 Bell states (2)-(4) to show $\left(p_{1}=0\right)$ Since ($1 \otimes$ $\sigma)\left|\Psi_{1}\right\rangle=-\left|\Psi_{0}\right\rangle$ the second chatge detector can identify $\left|\Psi_{1}\right\rangle$ when $p_{2}=0$ Finally since $\left(\mathbb{1} \otimes \sigma_{1} \sigma\right)\left|\Psi_{2}\right\rangle=\left|\Psi_{0}\right\rangle$ the third chaige detector can identify the two remaining states $\left|\Psi_{2}\right\rangle$ (when $p_{3}=0$) and $\left|\Psi_{3}\right\rangle$ (when $p_{3}=1$)
election A^{\prime}, using a thind election B that is entangled with A^{\prime} The telepoitation is per formed by measuing the joint state of A and B in the Bell basıs

$$
\begin{align*}
& \left|\Psi_{0}\right\rangle=(|\uparrow\rangle-|\downarrow \uparrow\rangle) / \sqrt{2}, \tag{2}\\
& \left.\left.\left|\Psi_{1}\right\rangle=(|\uparrow \downarrow+| \downarrow\rceil\right\rangle\right) / \sqrt{2}, \tag{3}\\
& \left|\Psi_{2}\right\rangle=(|\uparrow\rangle+|\downarrow \downarrow\rangle) / \sqrt{2}, \tag{4}\\
& \left|\Psi_{3}\right\rangle=(|\uparrow\rangle-|\downarrow \downarrow\rangle) / \sqrt{2} \tag{5}
\end{align*}
$$

A no-go theorem $[20,21]$ says that such a Bell measurement cannot be done deterministically (meaning with 100% success piobability) without using interactions between the qubits Howeve, it has been noted that this theorem does not apply to qubits that possess an addıtional degree of freedom [22], and that is how we will woik around it

In Fig 1 we show how a deterministic Bell measuiement for fermions can be performed using three 50/50 beam splitters, thiee chaige detectors, and two local spin rotations (repiesented by Paulı matıices σ_{1} and σ) The beam splitter scatters two elections into the same aim (bunching) if they ate in the singlet state (2), and into two different aims (antibunching) if they are in one of the tıiplet states (3)-(5) (This can be easily undeıstood [23] from the antisymmetiy of the wave function under pa1ticle exchange, demanded by the Paulı pinciple The singlet state is antisymmetic in the spin degiee of fieedom, so the spatial pait of the wave function should be

FIG 2 Gate that converts a chatge patily measurement to a spin paity measurment The shaded box at the inght represents the cucurt shown at the left A pair of elections is incident in aıms a and b A polarizing beam splıtter (double dashed line) transmits spin up and reflects spin down A chaige detector records bunching $(p=0)$ or antibunching $(p=1)$ and passes the elections on to a second polarizing beam splitter If each election at the mput is in a spin etgenstate $|\uparrow\rangle$ or $|\downarrow\rangle$, then output equals input and p measues the spin paity ($p=1$ if the two spins axe aligned, and $p=0$ if they are opposite) The gate can be used to encode a qubit $|\dagger\rangle$ as the two particle state $|\uparrow\rangle|\uparrow\rangle$ and $|\downarrow\rangle$ as $|\downarrow\rangle|\downarrow\rangle$ For that purpose the input consists of the qubit to be encoded in arm a plus an ancilla in aim b in the state $(|\uparrow\rangle+|\downarrow\rangle) / \sqrt{2}$ The output is the requined two-particle state in ams c and d lor $p=1$ For $p=0$ it becomes the requied state after a spin-flip $\left(\sigma_{1}\right)$ opetation on the election in alm d
symmetıic, and vice versa for the tuplet state) Let p_{t} be the charge q_{l} measured by detector $l, \bmod 2$ So $p_{l}=0$ means bunching and $p_{t}=1$ means antıbunching afteı beam splitter l The quantity

$$
\begin{equation*}
\mathcal{B}=p_{1}+p_{1} p_{2}+p_{1} p_{2} p_{3} \tag{6}
\end{equation*}
$$

takes on the value $0,1,2$, ol 3 depending on whether the incident state is $\left|\Psi_{0}\right\rangle,\left|\Psi_{1}\right\rangle,\left|\Psi_{2}\right\rangle$, or $\left|\Psi_{3}\right\rangle$, respectively The measurement of \mathcal{B} is therefore the required projective measurement in the Bell basis It is a destiuctive measurement, so it does not matter whether the charge detector operates as an electiometer (measuring q_{l}) or as a paity meter (measuing p_{t})

In Fig 2 we show how a chaige detector operating as a parity meter can be used to measure in a nondestiuctive way whether two spins are the same or opposite "Nondestiuctive" means without measuing whether the spin is up on down The device consists of two polarizing beam splitters in selies, with the change detector in between (A polaizing beam splittei fully tiansmits \uparrow and fully reflects \downarrow) At the input two elections are incident in different aims Input equals output if each election is in a spin eigenstate The measured charge party then records whether the two spins are the same or opposite We will refer to this device as an encoder, because it can deterministically entangle a qubit in the arbitaty state $\alpha|\uparrow\rangle+\beta|\downarrow\rangle$ and an ancilla in the fixed state $(|\uparrow\rangle+|\downarrow\rangle) / \sqrt{2}$ into the two-pat ticle entangled state $\alpha|\uparrow\rangle|\uparrow\rangle+\beta|\downarrow\rangle|\downarrow\rangle$

To consti uct a CNOT gate using the Bell-state analyzeı we follow Ref [2], where it was shown that teleportation can be used to conveit a probabilistic logical gate into a nearly determimstic one It is well known that a piobabilistic CNOT gate can be constiucted from beam splitters and single-qubit operations The design of Pittman et al [7] has success probability $\frac{1}{4}$ and works for fermions as well as bosons It consumes an entangled pan of ancillas, which can be created probabilistically using a beam splitter and charge detector [14] Because the gate is not deteiminisic, il cannot be used in a scalable way inside the computation However, the CNOT gate can be repeatedly executed off-line, independent of the progiess of the quantum algo1thm, untıl it has succeeded Two Bell measurements teleport the CNOT operation into the computation [24], when needed In this way a quantum algo11 thm can be executed using only single-patticle Hamiltonians and single-paiticle measurements

In Fig 3 we show how to constiuct a CNOT gate using the encoder Our design was inspined by that of Pittman et al [7], but athei than being piobabilistic it is exactly deterministic We take two encoders in senes, with a change of basis on going fiom the first to the second encoder The change of basis is the Hadamard transiormation

FIG 3 Deteımınstic CNOT gate for noninteracting elections Each shaded box contans a pan of polaızing beam splitters and a change detector, as descibed in Fig 2 The foul Hadamaid gates $H=\left(\sigma_{1}+\sigma\right) / \sqrt{2}$ otate the spins entering and leaving the second box The input of the CNOT gate consists of the contiol and target qubits plus an ancilla in the state $(|\uparrow\rangle+|\downarrow\rangle) / \sqrt{2}$ The spin of the ancilla $1 s$ measured at the output. The outcome of that measurement together with the two paities $p_{1} p_{7}$ measured by the charge detectors determine which operations $\sigma_{c} \sigma_{t}$ one has to apply to contiol and target at the output in order to complete the CNOT operation Foi the contiol, $\sigma_{c}=\sigma_{z}$ if $p_{2}=0$ while $\sigma_{c}=\mathbb{1}$ if $p_{2}=1$ For the taiget, $\sigma_{t}=\sigma_{t}$ if the ancilla is down and $p_{1}=1$, on if the ancilla is up and $p_{1}=0$ Otheiwise, $\sigma_{1}=\mathbb{1}$ The calcu lation is given in Ref [30]

$$
\begin{equation*}
|\uparrow\rangle \rightarrow(|\uparrow\rangle+|\downarrow\rangle) / \sqrt{2}, \quad|\downarrow\rangle \rightarrow(|\uparrow\rangle-|\downarrow\rangle) / \sqrt{2} \tag{7}
\end{equation*}
$$

The CNOT operation flips the spin of the taiget qubit it the spin of the contiol qubit is \downarrow Contiol and taiget are input into separate encoders The ancrlla of the encoder for the contiol is fed back into the encoder for the target At the output, the spin of the ancilla is measured Conditioned on the outcome of that measurement and on the two parities measured by the encoders, a Paulı matıix has to be applied to contiol and target to complete the CNOT operatıon

The computational power of the paity detectors is remarkable The CNOT gate of Fig 3 requires a single ancilla to achieve a 100% success piobability, while the optimal design of LOQC needs n ancillas in a specially prepared entangled state for a $1-1 / n^{2}$ success probability [8] In this respect it would seem that FEQC is computationally mote poweiful than LOQC, but we emphasıze that Fig 3 applies to bosons as well as termıns If parity detectors could be realized for photons (and there exist proposals in the literature [6]), then the design of Fig 3 would diamatically simplify existing schemes for LOQC

In conclusion, we have shown that fiee-election quan tum computation (FEQC) is possible in pinciple either neally determınıstically (using a Bell-state analyzeı with
a charge detector operating as an electiometer) or exactly deterministically (using an encodeı with a chatge detector operating as a paity meter) Unhike photons, elections interact stiongly if brought close together, so there is no need to rely exclusively on single-particle Hamiltonians We expect that FEQC would ultimately be used for flying qubits [25], while other gate designs based on shoit-1ange interactions $[15,26]$ would be preferied for stationary qubits

The two ingiedients of the cucuits considered here, beam splitters [27,28] and cha1ge detectors [13,16,17], have both been realized by means of point contacts in a two-dimensional election gas The time-resolved detection required tor the operation as a logical gate has not yet been realized The cuirently achievable time iesolution for chaige detection is $\mu \mathrm{s}$ [16], while the resolution required for ballistic elections in a semiconductor is in the ps iange That time scale is not inaccessible [29], but it might not be possible to reach the required single-election sensitivity due to the unavordable shot noise in the chatge detector In the light of this, is could be more piactical to stait with isolated elections in an airay of quantum dots, rather than with flying qubits, in oider to investigate the potential and limitations of oui theoretical concept on a presently accessible time scale

We have benefitted from discussions with B M Terhal This work was supported by the Dutch Science Foundation NWO/FOM, by the US Aimy Research Office (Giants No DAAD 19-02-0086 and No DAAD 19-01-C-0056), and by the CambirdgeMIT Institute, Ltd
${ }^{1}$ Peımanent addıess IBM, T J Watson Research Center, PO Box 218, Yoiklown Heights, NY 10598, USA
[1] M A Nielsen and I L Chuang, Quantum Computation and Quantum Information (Cambirge University, Cambu ıdge, 2000)
[2] E Knill, R Laflamme, and G J Milburn, Naturc (London) 409, 46 (2001)
[3] B M Terhal and D P DiVincenzo, Phys Rev A 65, 032325 (2002)
[4] E Knill, quant-ph/0108033
[5] M Koashı, T Yamamoto, and N Imoto, Phys Rev A 63, 030301 (2001)
[6] D Gottesman, A Kılacv, and J Preskıll, Phy Rev A 64, 012310 (2001)
[7] T B Pittman, B C Jacobs, and J D Fianson, Phys Rev A 64, 062311 (2001)
[8] I D Fianson, M M Donegan, M J Fitch, B C Jacobs, and T B Pitlman, Phys Rev Lell 89, 137901 (2002)
[9] H F Holmann and S Takeuch, Phys Rev A 66, 024308 (2002)
[10] T C Ralph, N K Langford, T B Bell, and A G White, Phys Rev A 65, 062324 (2002)
[11] J L Dodd, T C Ralph, and G J Milbuin, Phys Rev A 68, 042328 (2003)
[12] J D Fianson, B C Jacobs, and T B Pittman, quant-ph/ 0401133
[13] E Buks, R Schuster, M Herblum, D Mahalu, and V Umansky, Nature (London) 391, 871 (1998)
[14] S Bose and D Home, Phys Rev Lett 88, 050401 (2002)
[15] D Loss and D P DiVincenzo, Phys Rev A 57, 120 (1998)
[16] J M Elccıman, R Hanson, L H Willems van Beveren, L M K Vandersypen, and LP Kouwenhoven, Appl Phys Lett 84, 4617 (2004)
[17] M Field, C G Smith, M Pepper, D A Ritchie, J E F Fiost, G A C Jones, and D G Hasko, Phys Rev Lett. 70, 1311 (1993)
[18] S B Bıavyı and A Yu Kıtaev, quant-ph/0003137
[19] C H Bennctı, G Bıassard, C Ciepeau, R Jolsa, A Peres, and W K Wootters, Phys Rev Lett 70, 1895 (1993)
[20] L Vardman and N Youan, Phys Rev A 59, 116 (1999)
[21] N Lutkenhaus, J Calsamıglia, and K-A Suomincn, Phys Rev A 59, 3295 (1999)
[22] P G Kwiat and H Wemfuter, Phys Rev A 58, 2623(R) (1998)
[23] G Burkard, D Loss, and E V Sukhorukov, Phys Rev B 61, 16303(R) (2000)
[24] D Gottesman and I L Chuang, Nature (London) 402, 390 (1999)
[25] A E Popescu and R Ioniciolu, cond-mat/0306401
[26] B E Kane, Natuie (London) 393, 133 (1998)
[27] M Henny, S Oberholzei, C Su unk, T Heinzel, K Ensslin, M Holland, and C Schonenberger, Science 284, 296 (1999)
[28] W D Oliver, J Kım, R C Liu, and Y Yamamoto, Science 284, 299 (1999)
[29] E A Shaner and S A Lyon, cond-mat/0308460
[30] C W J Beenakke, D P DiVincenzo, C Emary, and M Kindeımann, quant-ph/0401066 (see appendix)

