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According to random-matiix theoty intetference elfects 1n the conductance of a ballistic chaotic
quantum dot should vanish o (7,/7p)” when the dephasing time 7, becomes small compaied to the
mean dwell time 7, Alemnet and Laikin have piedicted that the power law ciosses over o an
exponential suppiession « exp(—7,/7,4) when 7, diops below the Ehienfest time 7, We tepoit the
st observation of this crossover 1n a computer stmulation of unncrsal conductance fluctuations Thent
theory also predicts an eaponential suppression « exp(~7,/7p) 1n the absence ol dephasing—which 15
not observed We show that the cflcctive tandom-matiix theory proposed previously tor quantum dots

without dephasing explains both observations
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An 1nstiuctive way to classify quantum inteiference
effects 1n mesoscopic conductors 1s to ask whether they
depend exponentially o1 algebiaically on the dephasing
time 7, The Ahatonov-Bohm effect 1s of the foimer
class, while weak localization (WL) and univeisal con-
ductance fluctuations (UCF) aie of the latter class [1,2] It
1s easy enough to understand the ditfetence on the one
hand, Ahaionov-Bohm oscillations in the magnetocon-
ductance of a 11ng requue phase cohetence for a cettain
minimal time 7,,, (the time 1t takes to criculate once
along the 11ng), which becomes exponentially impiobable
if 74 <1y, On the other hand, WL and UCF m a dis-
otdered quantum dot originate fiom multiple scatteting
on a broad 1ange of time scales, not limited fiom below,
and the supeiposition of exponents with a 1ange of decay
1ates amounts to a powel law decay

In a seminal paper [3], Aleiner and Laikin have ar-
gued that ballistic chaotic quantum dots aie 1n a class of
theit own In these systems the Ehienfest time 7z 1ntto-
duces a lower limiting time scale for the inteifeience
effects, which aie exponentially suppiessed if 74 < 7g
The physical pictuie 1s that election wave packets 1n a
chaotic system can be desciibed by a single classical
tiajectory for a time up to 75 [4] Both WL and UCE,
however, require that a wave pachet splits into pattial
waves which follow different tiajectoties befoie inteifer-
ing Only the fiaction exp(—7g/74) of elections which
have not yet dephased at time 7 can theiefore contiibute
to WL and UCF

The WL coriection AG = (G) — G 1s the deviation ot
the ensemble averaged conductance (G) (1n zeto magnetic
field) fiom the classical value G, = N/2 (We measuie
conductances mn units of 2¢?/h and assume an equal
number of modes N >> | 1n the two leads that connect
the quantum dot to election 1esetvoirs ) The WL coriec-
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tion accotding to tandom-matrix theory (RMT),

1
AGryr = _4_1(1 +7p/74) 7" (H

has a power law suppiession « 74 /7, when T4 becomes
smaller than the mean dwell time 7, 1n the quantum dot
[5] Simulatly, RMT piedicts for the UCF a power law
suppiession % (7,/7p)? of the mean-squared sample-to-
sample conductance fluctuations [5.6],

1
VdIGRMT Z@(l + ’TD/T(/J_,)VZ, (2)
with 8 =2 (1) in the piesence (absence) of a time-
1eversal symmeti y-bieaking magnetic field

Aleinet and Laikin have calculated the 7 dependence
of the WL coiiection, with the 1esult [3]

AG = e“/’r/’/e‘zl’F/TnAGRMT 3)

The two exponential suppiesston factois in Eq (3) result
ftom the absence of interfering tiajectories for times
below 75 The fust factor exp(—7g/7,) accounts for the
loss by dephasing and the second factor exp(—27z/7p)
accounts for the loss by escape 1nto one of the two leads
The UCF aie expected to be supptessed similaily

The physical pictute presented by Alenet and Laikin
1s simple and suppoited by two independent calculations
[3,7] And yet, it has been questioned as a 1esult of some
very 1ecent computer sumulations of UCF [8,9] and WL
[10] 1n the absence of dephasing The expected exponen-
tial reduction of quantum inteiference effects due to
escape 1nto the leads was not obseived In fact, both
WL and UCF weie found to be completely independent
of 7, even though the simulations extended to system
stzes for which 7p was well above 7, To explain these
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negative tesults, Jacquod and Sukhot ukov {8] invoked the
effective RMT of Silvestiov et al [11] In that approach,
the electrons with dwell times >7 are described by RMT
with an effective number Ny = Nexp(—7./7p) of
modes Then no rdependence 1s expected as long as
Ngjy > l—even 1f 70 > 1)

Since the predicted exponential reduction factor due to
escape 1nto the leads has not appeated 1n the simulations,
1t 1s natural to ask about the factor o exp(—7,/74) due to
dephasing Does 1t exist? An expetimental study of two
dimensional (2D) weak localization has concluded that 1t
does [12], but since leads play no1ole 1n 2D, these expei1
ments cannot 1eally tesolve the 1ssue In the absence of
experiments on the zeto-dimensional geometry of a quan-
tum dot, we have used computer sumulations to provide an
answer We find that a relatively small amount of dephas-
ing 1s sufficient to intioduce a maiked 7, dependence of
the UCF Ow observation can be explained by incoipo
rating dephasing 1nto the effective RMT We find that

AG = enﬂr/—/AGRI\(r (4)

VaiG = e ¥ VaGrup (3

and show that Eq (5) provides a fitting-paiameter fiee
desciiption of the numerical data

We have intioduced a dephasing lead {13] in the kicked
1otator, which 1s the same dynamical system studied 1n
Refs [8-10,14] 1n the absence ot dephasing The kicked
1otator piovides a stioboscopic desciiption of chaotic
scattering 1n a quantum dot [15], in the sense that the
wave function 1s detetmined only at times that are multi-
ples of a time 7y (Which we set to unity) The mean dwell
time 7p = M/2N = r/N§ 1s the ratio of the dimension
M of the Floquet matiix (cotresponding to a mean level
spacing § = 27r/M) and the dimension 2N of the scat
tering matrix (without the dephasing lead) The kicking
stiength K = 7 5 determines the Lyapunov exponent A =
In(K/2) = 132 The Ehientest time 1s given by [16,17]

.o A In(NZ /MY f N> M, )
L {O if N<JM

The dephasing lead incieases the dimension of the
scattering mati1x S to M X M It has the block form

S0 Sor So2
S=1{s0 Su Sz} 7N
$20 821 S22

where the subsciipts 1,2 label the two 1eal leads and O
labels the dephasing lead The two 1eal N-mode leads ate
coupled ballistically to the system, while the 1emaining
M — 2N modes ate coupled via a tunnel baiiter The
dephasing 1ate 1/7, = I'(1 — 2N/M) 15 propoitional to
the tunnel probability I' per mode The dephasing lead 1s
connected to an election 1esetvoir at a voltage which 1s
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adjusted so that no curient 1s dtawn The conductance G 1s

then detetmined by the coefficients G, = Tls,,s,*/
thiough Buttiker’s foimula [13],
G1oGoa
G=Gp+——""—
2 Gt G
N =G — G )N —Gyp — Gy
=G +( i )( 22 12) )

2N_G]] _G[Z—G')’) _G'_;[

For I' «< |, the dephasing lead model is equivalent to
the imaginaty eneirgy model of dephasing [5], which is
the model used by Aleiner and Laikin {3] (We will also
make use of this equivalent 1epresentation later on ) Theie
exist other models of dephasing 1n quantum tianspost
[18,19], but for a comparison with Ref [3], om choice
seems most appropiiate

Since we need a 1elatively small Lyapunov exponent 1n
order to teach a laige enough Ehienfest time, our simu-
lations aie sensitive to short noneirgodic tiajectories
These intioduce an undesited dependence of the data on
the position of the leads Preliminary investigations in-
dicated that UCF in a magnetic field was least sensitive to
the lead positions, so we concentiate on that quantum
mteiference effect in the numerics The variance VaiG
of the conductance was calculated 1n an ensemble cieated
by sampling 40 values of the quasieneigy To determine
the dependence on the lead positions, we repeated the
calculation for 40 different configuiations of the leads
Er1o1 bais 1n the plots give the spiead of the data

Theie ate four time scales in the pioblem A7, 7, T
and 7 To 1solate the 7 dependence we 1nciease both M
and N at constant1atio M /N and fixed K, I" Then only 71
varies Results aie shown in Fig 1 The vaiiance of the
conductance 1s divided by the RMT piediction (2), with
B = 2 because of bioken time-teveisal symmetiy [20]
We see that for 7, > 7, thete 1s no systematic depen-
dence of UCF on the Ehienfest time, consistent with
Refs [8,9] Howevet, an unambiguous 7 dependence
appeais for 74 = 7, 1egardless of whether 7 1s smaller
ot laiger than 7p

To explain the data in Fig | we intioduce dephasing
mto the effective RMT Four that puipose, 1t 1s moie
convenient to use an 1maginaty eneirgy than a dephasing
lead, so we fitst make the connection between these two
equivalent 1eptesentations Theie exists an exact coite-
spondence for any N [5], which 1equiies a 1einjection step
to ensuie curient conseivation Foi the case N > | of
mterest hete, thete 1s a sumpler way

The coefficients G, = G‘f,’ + Gf‘/ m Eq (8) consist of a
classical contiibution Gf} of order N plus a (sample spe-
cific) quantum coriection G?, of order unity The classical

contribution 1s

1

G = 5N+ 7p/mg)™", forny€{1,2} (9

N}
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FIG 1 Vanance of the conductance fluctuations normalised
by the RMT value (2) as a function of the dimension M of the
scatteting matuix of the kicked rotator with a dephasing lead
Each data set 1s fo1 a fixed valuc of the dwell ime 7, = M/2N
and dephasing ume 74, =1 '(1 = 2¥/M)~" The Lyapunov
exponent A = 1 32 15 kept the same for all data sets The curves
show the Ehienfest time dependence (5) predicted by the
cffectrne RMT, without any fit paiameter

Substitution mto Eq (8) gives a classical conductance
G, = N/2 independent ot dephasing—as 1t should be
To leading o1der 1n N we obtain the quantum cor tection to
the conductance,

—

(G2 + Gy — Gy — Ga) (10)

(Notice that the classical contitbution diops out of the
right-hand side ) Foi I' <« 1, the effect of the dephasing
lead on the coefficients G, 1s equivalent to the addition of
an tmaginary part 1/i/27, to the eneigy With the help of
Eq (10) we can compute the effect of dephasing on WL
and UCE,

AG = (Gy(E + th/274)), (11)

VaiG = ((G,(E + th/214)P) — (AGR,  (12)

by averaging the scatteiing matiix at a complex eneigy
without having to enfoice cuiient conset vation

Effective RMT [11] 1s a phenomenological decomposi-
tion of the scatteting matiix S(z) 1n the tume domain into
a classical detetministic pait S to1 £ < 7 and a quantum
pait S, with RMT statistics for 1 > 7,
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SL](’)

_ if t <7,
S = {Sq([) = Sgmrlt — 7£)

if 1> 7p (13
The RMT patt §, couples to a teduced number Ny =
Nexp(—71g/7p) of channels in each lead The mean dwell
time 1n the quantum dot of these channels1s 7, + 7, The
classical pait § couples to the iemaimning 2(N — N.)
channels (See Ref [17] for an explicit constiuction of
Scl )

Only S, contiibutes to G, Fourter tiansformation to
the enetrgy domain gives

Sy(E) = e F/T Spa (E) (14)

whete we have used that Spp (1) = 0117 <0 The mati1x
Srwmt has the RMT statistics of a fictitious chaotic cavity
with zero Ehienfest time, N modes in each lead, and
the same mean dwell time 7, as the ieal cavity (see
Fig 2) For ieal energy the phase factor exp(iE7p/f) 1s
uelevant, hence all 7 dependence 1s hidden 1n Ny and
Oqit Since AG and VairG are independent of these two pa-
tametets, they aie also independent of 7, The 1maginary
pait 1/i/27, of the eneigy that iepiesents the dephas-
ing 1ntioduces a 7, dependence of G, exp(—7r/74)
Insertion of this factor into Eqs (11) and (12) yields the
results (4) and (5) given 1n the introduction

The cuives in Fig | follow fiom Eq (5) They desciibe
the simulation quite well—without any fit paiameter
To test the agreement between simulation and effective
RMT 1n a diftetent way, we have collected all our data
m Fig 3 1n a plot of —(7,/2) In(VaiG/VaiGgpyr) veisus
In(N?/M) According to Eq (5), this should be a plot of 7
vetsus In(N?/M), which 1n view of Eq (6) 1s a stiaight
line with slope 1/A = 076 Theie 1s considerable scatter

chaotic cavity

lead with lead with
time delay time delay
T2 N Nett T2

mean dwell time ™

FIG 2 Pictorial tepiesentation of the effective RMT of a
ballistic chaotic quantum dot The part of phase space with
dwell times >7g 1s represented by a fictiious chaotic cavity
(mean level spacing 8.), connected to electron reservoirs by
two long leads (N, propagating modes, one-way delay time
7¢/2 for each mode) The effective patameters are determined
by Neit/N = 8/8e; = exp(—7g/7p) The scattering matrix of
lead plus cavity 1s exp(tETg/F)Spamr(E), with Sgyr(E) distrib
uted according to RMT A finile dephasing time 7, 15 1ntro-
duced by the substitution E — E + t/i/27, The part of phasc
space with dwell times <7 has a classical scattering matrix,
which does not contiibute to quantum interference effects
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FIG 3 Four data sets of fixed 7, 7p cach consisting of a
range of M betwcen 10?7 and 2 X 10* plotted on a double-
logarithmic scale The sohid line with slope 1/4 = 076 1s the
scaling predicted by Egs (5) and (6)

ot the data 1n Fig 3, but the systematic parameter depen-
dence 1s consistently described by the theory as N and M
valy over 2 orders of magnitude

In conclusion, our findings explain the puzshing differ-
ence 1n the outcome of previous experimental [12] and
numerical [8-10] seaiches tor the Ehienfest ttme depen-
dence of quantum inteiference effects in chaotic systems
the experiments found a dependence while the computei
stmulations found none We have i1dentified the absence of
dephasing 1n the simulations as the otigin of the differ-
ence By mtioducing dephasing 1nto the simulation, we
tecover the exponential 7./7, suppiession factor pre-
dicted by Alemer and Laikin [3] The effective RMT
explains why this supptession factor 1s obseived while
the exponential 7/7 suppiession factor of Eq (3) 1s not

It remans an outstanding theotetical challenge to pro-
vide a microscopic foundation for the effective RMT, o1
alternatively, to detrve Eqs (4) and (5) fiom the quasi-
classical theory of Refs [3,7] One might think that
diffraction of a wave packet at the point contacts 1s the
key ingiedient that 1s piesently missing from quasiclas-
sics and which would eliminate the exponential 75/7p
suppiession factor from Eq (3) Howevel, our obser vation
of an exponential 7;/7,4 suppiession factor suggests
otherwise 1f diffiaction at the edge of the point contacts
wele the dominant mechanisms by which wave packets
are split into patrtial waves, then the chaiacteristic time
scale for the suppiession of quantum inteifetence by
dephasing would not be different fiom the mean dwell
time 7p
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